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Fig. 1. An application of non-parametric clustering to the value vs. value gradient magnitude feature space using the CT visible
woman feet dataset.

Abstract— The use of multi-dimensional transfer functions for direct volume rendering has been shown to be an effective means
of extracting materials and their boundaries for both scalar and multivariate data. The most common multi-dimensional transfer
function consists of a two-dimensional (2D) histogram with axes representing a subset of the feature space (e.g., value vs. value
gradient magnitude), with each entry in the 2D histogram being the number of voxels at a given feature space pair. Users then
assign color and opacity to the voxel distributions within the given feature space through the use of interactive widgets (e.g., box,
circular, triangular selection). Unfortunately, such tools lead users through a trial-and-error approach as they assess which data
values within the feature space map to a given area of interest within the volumetric space. In this work, we propose the addition of
non-parametric clustering within the transfer function feature space in order to extract patterns and guide transfer function generation.
We apply a non-parametric kernel density estimation to group voxels of similar features within the 2D histogram. These groups are
then binned and colored based on their estimated density, and the user may interactively grow and shrink the binned regions to
explore feature boundaries and extract regions of interest. We also extend this scheme to temporal volumetric data in which time
steps of 2D histograms are composited into a histogram volume. A three-dimensional (3D) density estimation is then applied, and
users can explore regions within the feature space across time without adjusting the transfer function at each time step. Our work
enables users to effectively explore the structures found within a feature space of the volume and provide a context in which the user
can understand how these structures relate to their volumetric data. We provide tools for enhanced exploration and manipulation of
the transfer function, and we show that the initial transfer function generation serves as a reasonable base for volumetric rendering,
reducing the trial-and-error overhead typically found in transfer function design.

Index Terms—Volume rendering, kernel density estimation, transfer function design, temporal volume rendering.

1 INTRODUCTION

A common method for direct volume rendering is to employ the use of
interactive transfer functions as a means of assigning color and opac-
ity to the voxel data. One of the most popular transfer function design
tools is the interactive 2D histogram widget introduced by Kniss et al.
[10]. In this widget, the user is presented with a 2D histogram (the
axes of which represent a feature space of the data) and various selec-
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tion tools are used to assign color and opacity to the voxels through
an interactive brushing of the feature space. However, the appropriate
selection of features in multi-dimensional transfer functions is a dif-
ficult task, often requiring the user to have an underlying knowledge
of the data set under exploration. Moreover, normal transfer function
design widgets typically include rectangular bounding boxes or other
linearly defined area specification tools for transfer function defini-
tion. Unfortunately, features located in the multi-dimensional space
may have complex shapes requiring extensive interaction to extract lo-
cal boundaries. Also problematic is the fact that within the volume
feature space, the features of interest are often not clearly visible as
peaks or valleys. Furthermore, in temporal volumetric data sets, the
feature space is changing across time, meaning that the structures cap-
tured with a transfer function in one time step may not be captured by
the same transfer function in the subsequent time step.

In this work, we propose enhancing the conventional 2D histogram
transfer function editing scheme through the application of a non-
parametric density estimation in order to visualize and extract arbi-



trarily sized and shaped clusters within the given feature space. We
apply a nearest neighbor kernel density estimation technique, utiliz-
ing the Epanechnikov kernel [21], to the feature space histogram. The
estimated density is then used to assign a color and/or opacity to the
data by placing each estimated density value into a 1D histogram bin.
Each bin corresponds to a given color, and the opacity can then be
assigned across the density values. As users manipulate the density
binning, regions within the feature space expand and contract, pro-
viding contextual information about the structures hidden within the
feature space. Users can then interactively select arbitrarily shaped re-
gions within the data feature space and those selected regions form the
transfer function used for volume rendering. In this manner, users are
able to easily extract regions found within the given feature space that
correspond to their regions of interest within the volume. A sample
result of our method is shown in Figure 1.

We further extend this scheme to temporal volumetric datasets. In
this case, we extract the corresponding feature space histogram of each
volumetric dataset from each time step, and create a volume of the fea-
ture space, with one axis of the volume representing time and the other
two axes representing the feature space dimensions. Kernel density es-
timation is then applied within this 3D space. At each time step, the
user is presented with only the single slice of the resultant histogram
volume that corresponds to this time step; however, from the density
estimation, temporal coherence is now embedded within this slice. A
second volume rendering of the histogram volume is also presented to
the user, and as a user selects a feature within the 2D histogram slice,
the temporal structure across the feature space volume is revealed. As
such, the selection within a slice of the feature space volume propa-
gates a transfer function across the entire temporal feature space, creat-
ing a 3D transfer function that will maintain temporal coherence. The
user may now step through time and watch the selected feature evolve
in both the temporal feature space and the volumetric space. In this
manner, once a feature of interest is identified in one time step of the
volume, the transfer function will be extended temporally and track
this feature as at it changes.

2 RELATED WORK

Early work by Kindlmann et al. [8] and Kniss et al. [10] applied the
idea of a multi-dimensional transfer function [12] to volume rendering.
This work identified key problems in transfer function design, noting
that many interactive transfer function widgets lack the information
needed to guide users to appropriate selections, making the creation of
an appropriate transfer function essentially trial-and-error which is fur-
ther complicated by the large degrees of freedom available in transfer
function editing. While many volume rendering systems have adopted
multi-dimensional transfer function editing tools, the creation of an
appropriate transfer function is still difficult as the user must under-
stand the dimensionalities of the feature space that they are interacting
within.

As such, much work has been done on providing users with a
simplified means of transfer function creation. Fang et al. [7] de-
fined transfer function design as a set of 3D image processing tools.
Takanashi et al. [24] utilized independent component analysis and
multi-dimensional histograms to classify areas in the volume domain.
By interactively clipping regions in the component space, users were
able to effectively generate opacity transfer functions in the data. Work
on statistically quantitative volume visualization by Kniss et al. [11]
noted that nearly all image data share the characteristic that samples
are spatially correlated, and focused on a general statistical classifica-
tion for feature extraction. Rezk-Salama et al. [17] utilized principal
component analysis for transfer function design, and Weber et al. [27]
utilized topology-based methods to extract features from volumetric
data and applied separate transfer functions for contour viewing. Wu
and Qu [29] proposed an intelligent scheme that allows users to create
multiple transfer functions and use the resultant volume renderings to
add or subtract regions to create enhanced focus plus context views.
Similarly, an interactive feature brushing interface was proposed by
Ropinski et al. [19] to facilitate automatic generation of a 1D transfer
function.

Unfortunately, the projection of the volumetric data properties
down to a 2D space will obscure features, making it difficult to sep-
arate regions of interest within the volume with only a 2D transfer
function. In order to overcome these difficulties, much research has
focused on enhancing transfer function design through the addition of
other data properties. Examples include work by Kindlmann et al. [9],
which employed the use of curvature information to enhance multi-
dimensional transfer functions, and Tzeng et al. [25], which focused
on higher dimensional transfer functions which use a voxel’s scalar
value, gradient magnitude, neighborhood information and the voxel’s
spatial location. Work by Potts et. al [16] suggested visualizing trans-
fer functions on a log scale in order to better enhance feature visibility.
Lundstrom et al. introduced the partial range histogram [13] and the
α-histogram [14] as means for incorporating spatial relations into the
transfer function design. Correa et al. introduced size based transfer
functions [5] which incorporate the magnitude of spatial extents of vol-
ume features into the color and opacity channels and visibility based
transfer functions [6] where the opacity transfer function is modified
to provide better visibility of features.

While such extensions enhance the volume rendering and provide a
larger separability of volumetric features, they still fail to provide users
with information about the structures within a given feature space.
In fact, the addition of more dimensionality into the transfer func-
tion is often automatically incorporated into the rendering parameters,
obscuring the relationship between the volumetric properties and the
volume rendering. However, the addition of more dimensions should
provide more coherency between transfer functions, particularly in the
case of temporal volumes. Recent work by Akiba et al. [1, 2] utilized
parallel coordinate plots to create a volume rendering interface for ex-
ploring multivariate time-varying datasets. By means of a prediction-
correction process, Muelder and Ma [15] proposed to predict the fea-
ture regions in the previous frame, making the feature tracking coher-
ent and easy to extract the actual feature of interest.

3 NON-PARAMETRIC TRANSFER FUNCTION GENERATION

Our work focuses on providing the user with information about the
volume data within the confines of the transfer function feature space.
Given a 2D histogram representing some subset of an n-dimensional
space, not all features can be separated. In fact, the projection of n
dimensions to a 2D space ensures that some features will be obscured.
However, one can identify the neighborhood features within this two
dimensional projection, providing the users a context in which to ex-
plore their data. These identified features can be represented as clus-
ters of color based on the neighborhood properties, and users may then
explore the effects that growing or shrinking these neighborhoods (as
applied transfer functions) will have on the volume rendering.

3.1 Kernel Density Estimation

In order to create these neighborhoods and provide contextual infor-
mation about the feature space to the user, we employ the use of a vari-
able kernel method [21, 26] formed in Equation 1. A non-parametric
clustering approach is chosen in order to remove the need for a priori
knowledge about the number of clusters within a dataset (as opposed
to k-means clustering where the user specifies the number of clusters).
Furthermore, we utilize an adaptive kernel which scales the parameter
of the density estimation by allowing the kernel radius to vary based
upon the distance from each point, Xi, to the kth nearest neighbor in
the set comprising the N−1 data points of the histogram feature space.

f̂h(x) =
1
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N
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K
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)
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Here, f̂h(x) is the probability density estimate of the histogram (h)
at a given location, x, in the feature space, di,k represents the multi-
dimensional smoothing parameter and N is the total number of sam-
ples in the histogram (i.e., the number of voxels in the volume). The
window width of the kernel placed on the point Xi is proportional to
di,k (where di,k is the distance from the i-th sample to the k-th nearest
neighbor) so that data points in regions where the data is sparse will



have flatter kernels. We choose k = ⌊
√

N⌋ as this tends to approximate
the optimal density estimation fitting (this is a rule of thumb approxi-
mation [21]). Such a method groups the data based on their neighbor-
hood information, allowing us to visualize the underlying structure of
the data.

In order to reduce the calculation time, we have chosen to employ
the Epanechnikov kernel, Equation 2.

K(u) =
3

4
(1−u

2)1(||u||≤1) (2)

The function 1(||u||≤1) evaluates to 1 if the inequality is true and zero

for all other cases. Other kernels choices (i.e., Gaussian) could be uti-
lized; however, the Epanechnikov kernel is the kernel of choice for fast
calculations as it is less computationally expensive than a comparable
Gaussian kernel [21]. Future work will allow users to choose from a
variety of kernels including uniform, Gaussian, etc.

Currently, For a 256× 256 histogram, showing the feature space
of a 2563 volume (i.e., N = 2563) interactions with the kernel density
feature space tool results in a volume rendering frame rate of approxi-
mately 10 fps on an Intel Xeon 3.00 GHz processor with 2.0 GB or ram
using an Nvidia 8800 card. Note that the size of the histogram bins will
directly affect the kernel density estimation results. As the histogram
bins become larger (i.e., the histogram dimensions get smaller), more
voxel values will map to the same histogram bin. This results in the
adaptive kernel radius tending towards a value of one, and the resultant
density estimation becomes more discrete. In general, the smaller the
histogram bins in a 2D transfer function window, the easier it will be
to separate values as less voxels will map to the same coordinate.

Figure 1 illustrates this process (in the 2D case) using the CT vis-
ible woman feet. Here, the user is presented with the typical 2D his-
togram widget in the value vs. value gradient magnitude feature space.
Each entry in the feature space histogram contains information on the
number of voxels that map to these features. Given this information,
we use the variable kernel method (Equation 1), to create a continu-
ous density distribution function across the entire feature space. This
method would produce comparable results to the continuous scatter-
plots work by Bachthaler and Weiskopf [3] if a logarithmic color scale
were to be applied and a finer grid was used in the density estimation;
however, our method provides information about clustered structures
within the 2D histogram feature space where as the continuous scatter-
plot method does not. The values obtained in this procedure now rep-
resent a probability that a voxel will be found at a location in feature
space. We then create a 1D histogram of the probability distribution
and color the feature space based on the chosen binning, thereby gen-
erating our transfer function. The transfer function is then applied to
color the volume, and boundary enhancement (see Section 3.2) is ap-
plied for the opacity. Note that the arc-like structures (which represent
material boundaries) are preserved, indicating that they share similar
distributions of points within the feature space. By creating an auto-
matic coloring of the image, we not only provide information about the
underlying feature space structures, but we also provide the user with
a reasonable starting transfer function, reducing the trial-and-error ex-
ploration time typically required for transfer function creation. The
resultant rendering is able to effectively color the various structures
within that feature space (note that this method cannot separate over-
lapping features as it still only uses two-dimensions and the projection
of the data down to two-dimensions can result in a combination of fea-
tures). From there, the user may interact within the clustered transfer
function space, refining the number, size and color of the clusters. As
such, this initial transfer function generation is able to provide users
with a solid starting point for feature space exploration, and users are
then able to quickly navigate through the feature space to segment out
regions of interest, greatly reducing the time taken to create a transfer
function.

Note that the choice of the number of histogram bins for the KDE
coloring is not the same as choosing the number of clusters in a k-
nearest neighbor approach. In the case of the non-parametric cluster-
ing, we have simply mapped a range of density values to a discrete
color. Notice that in Figure 2 the red bin corresponds to two unique

clusters. However, this discretization is also a limitation in the system
as the user must individually selected each red cluster for visualiza-
tion in order to determine which feature(s) of the volume the cluster
maps too. Examples of this selection and exploration can be seen in
Figure 4.

Related work has been done by Shamir [20] where feature-space
analysis was applied to unstructured meshes in order to automatically
identify structures within the volume. This work utilized a mean shift
procedure for clustering which is similar to kernel density estimation.
This clustering is performed across a five dimensional space (the x, y
and z components of the volume and the value vs. value gradient mag-
nitude feature space), where as we only perform this on the feature
space. However, the goal of Shamir’s work was volume segmentation
as opposed to transfer function design and interactive feature extrac-
tion. Our work provides users with interactive tools to segment the
feature space of a volume, and provides a means in which to explore
and understand the relationships between a given feature space group
and the related volumetric data.

Work by Roettger et al. [18] also generated transfer functions
through feature space analysis. Automatic setup of multi-dimensional
transfer functions is enabled by adding spatial information to the his-
togram of the underlying dataset. The approach taken in this paper
differs as we focus on the neighborhoods within a feature space to find
natural borders of the feature space point densities and project these
feature clusters back to the volumetric domain. While our method is
currently only applied to the 2D feature space (or 3D temporal feature
space), an extension to n-dimensions is minor, and the incorporation
of variable neighborhood information for clustering should improve
upon the work by Roettger et al. Furthermore, our procedure also
smoothes the noise in the data, interpolating the 2D histogram at all
positions through the kernel density estimation procedure. In medical
datasets, Roettger et al. noted that their clusters have added noise and
segmentation filtering is necessary. In contrast, our interactive wid-
gets allow users to adjust the cluster boundaries, allowing for greater
filtering precision as demonstrated in Section 4.

3.2 Coloring and Opacity

As previously stated, the coloring of the transfer function is based on
1D histogram binning of the probability values calculated during the
kernel density estimation procedure. Figure 2 illustrates the 1D his-
togram created based on the probability density estimation method de-
fined in Section 3.1. Values on the left of the histogram represent low
density areas, while values on the right represent high density areas.
Users are able to interactively select the number of bins (and their
color). The default color scheme utilizes a qualitative color scheme
[4] with a default of twelve color bins (although other schemes could
also be applied). In Figure 2, we can observe the effect of increasing
or decreasing the number of bins. Users may also increase or decrease
the number of bins by entering into a ‘join’ mode in which they can
click on any two histogram bins and they will merge together, with
the resultant color being that of the first bin clicked. In joining bins,
the effect is to increase the width of a histogram bin, thereby increas-
ing the number of voxels mapped to a given color. This will result in
neighboring rings joining together into a single area. Users may also
separate bins by right clicking within a bin. The two resultant bins will
remain the same color until the user chooses to assign a new color.

Allowing the users to interactively change the number of bins can
create more meaningful clusters. For example, in the Feet dataset, one
may expect to find four materials, namely, air, bone, skin and soft tis-
sue. By starting with four bins (as opposed to twelve), structures will
group together in a more intuitive manner. However, it is important to
note that the number of clusters seen can be greater than the number
of bins selected. These clusters represent peaks and valleys within the
feature space; therefore, clusters of colors appear in various regions
across the feature space as the point density changes.

In order to enhance data exploration within the feature space, our
histogram widget also allows users to interactively adjust the size of
the bins. Users may choose from initial settings of either equally
spaced or exponentially sized bins, or users may use the mouse to



Fig. 2. Two examples of clustering done by binning the probability density estimates of the histogram data. This example uses the value versus the
value gradient magnitude feature space of the visible woman feet.

Fig. 3. Temporally coherent transfer function volume: (Left) A single time step rendering of the velocity fields in the tornado volume, (Left-Center)
The transfer function volume, (Right-Center) A clustered 2D histogram extracted from the volume at time step t, (Right) The 1D histogram of the
transfer function volume showing various opacity applications in the color bins.

expand the boundary of any histogram bin. As the bin grows or
shrinks, regions in the transfer function also grow and shrink, and these
changes are automatically reflected in an interactive volume rendering
window.

While the color selection is done semi-automatically through the
non-parametric clustering, we utilize a boundary enhancement [22]
method for modulating the opacity. This choice was made based on
the fact that areas with high gradients often represent boundaries be-
tween materials. In order to more effectively illustrate these areas, one
may simply increase the opacity proportional to the gradient magni-
tude such that

oe = oo · |−→▽(P)|α (3)

where
−→▽(P) is the gradient at the sampled point P, oo is the original

sample opacity, oe is the enhanced sample opacity, and α is the bound-
ary exponent which serves to change the sensitivity of the magnitude
of the rendered boundary. The application of our density estimation
transfer function coupled with boundary enhancement typically leads
to high-quality renderings with no user interaction. To clarify, the ren-
dering in Figure 1 was generated completely automatically. Once an
initial rendering is generated, the user may begin exploring their data
in the feature space; meanwhile, by providing such a starting location,
we have vastly increased the user’s ability to understand the relation-
ships between the feature space domain and the volumetric domain.

Along with boundary enhancement, our control widgets also pro-
vide several schemes for manually adjusting the opacity values. In the
1D density estimation histogram distribution, the user may enter the
opacity selection mode and modify how the opacity is mapped across
the color bin. The red line found in the histogram bins indicates the
opacity value across the histogram space. The top of each bin repre-
sents an opacity of one, and the bottom zero. Users may select from

one of seven default opacity curves (variations of linear, triangular, and
sinusoidal) by clicking in the histogram bin. Figure 3 (Right) shows
the modified opacity curves in the histogram bin. Future work will
contain an interface for user defined opacity curves.

3.3 Feature Space Exploration

In order to explore the data feature space, we provide users with the
ability to select any color region in the given 2D histogram window.
Area selection will effectively create a mask for the transfer function,
and only voxels located within the region selected will be rendered.
Users may select/deselect a region simply by clicking in the feature
space, and if the user chooses to expand these areas through the use
of the density estimation histogram controls, the selection will follow
this expansion. Users may also combine areas in the feature space by
entering a combination mode. In this mode, the user clicks on one
area in the feature space, and then another. This will result in the sec-
ond area being colored the same as the first area. However, such a
combination disables the density estimation histogram mapping. For
example, Figure 2 has two distinct red areas in the density estimated
transfer function. If one of those areas were combined with the pur-
ple area, there is no guarantee that such a combination equally splits
the red bin. In fact, it is more likely that both red areas share a com-
bination of values across the entire red bin. As such, one histogram
color bin does not necessarily represent a single neighborhood in the
feature space. These features allow for interactive region exploration
and combination, letting the user quickly search for neighborhoods of
interest within the feature space. In depth examples of the use of these
modes can be found in Section 4.



Fig. 4. Feature segmentation and transfer function design in the CT Bonsai dataset.

3.4 Temporal Coherency in Transfer Function Design

In this work, we extend our previously described feature space clus-
tering into the temporal dimension. In the case of temporal volumetric
data, each time step consists of a volume data set, from which a 2D
feature space can be extracted. We create a volume of these feature
space histograms (the third dimension being time), and, as in the 2D
histogram case, we apply the variable kernel density estimation to ex-
tract features within this new volume. The feature space volume is
then colored based on the 3D probability density binning (as was done
in the 2D case). Now at each time step, the transfer function is the
slice of the feature space volume that corresponds to the current time
step.

Figure 3 illustrates this procedure on a time step of the tornado
dataset. Figure 3 (Left) shows the volume rendering of the tornado
data set based on a single transfer function time step (Figure 3 (Left-
Center)) extracted from the temporal transfer function volume (Fig-
ure 3 (Right-Center)) at time step t and binned according to the 1D data
histogram (Figure 3 (Right)). Here, the user can see the feature space
clusters propogated over the entire temporal space. The green-red axis
plane of Figure 3 (Left-Center) represents the feature space domain,
and the blue axis represents the temporal domain. All previously de-
scribed widgets also operate in this space; however, modifications to
the 1D density histogram now affects the entire transfer function vol-
ume, and selections, as described in Section 3.3, also propagate across
the transfer function volume.

Such a method is a vast improvement over current transfer function

design as data clusters are able to evolve over time, these data clus-
ters then become part of the transfer function, and features of interest
are able to be visualized over time, without manual adjustment of the
transfer function. Unfortunately, should features leave and re-enter or
somehow become obscured by other features due to the projection into
the 2D feature space, our current implementation would be unable to
account for these changes. However, as shown in the results of Sec-
tion 4.4 and 4.5, our method is able to provide high-quality results
even under this limitation.

4 EXPLORING THE FEATURE SPACE

In this section, we illustrate the benefits and limitations of our system
using common volumetric datasets as examples. Here, we discuss the
potential for feature segmentation, fast transfer function creation, and
temporally coherent transfer function design.

4.1 Feature Segmentation

When provided with a 2D histogram of the feature space, novice users
have little to no intuition as to what data points in the feature space
map to volumetric features. By utilizing our non-parametric clustering
technique, we are able to quickly provide the users with information
on how the feature space relates to the volumetric space. In Figure 4,
the user begins with the value vs. value gradient magnitude feature
space, and then automatically applies our method to generate a color
transfer function. While the initial volume rendering is less than de-
sirable, the user is able to immediately understand which clusters in



Fig. 5. Feature segmentation and transfer function design comparing traditional transfer function design methods to our non-parametric clustering
method in the Cayley’s cubic data set using the value versus value gradient magnitude feature space.

Fig. 6. The electron orbitals of a two million atom Indium-Arsenic quantum dot simulation in the second excited state: (Left) the p orbital rendered
using non-parametric clustering of the p-value versus p-value gradient magnitude feature space, (Right) the p orbital rendered using non-parametric
clustering of the p-value verse s-value feature space.

the feature space map to volumetric features (for example, the purple
color obviously maps to the leaves and the blue color to the earth).
Using this knowledge, the user can quickly modify the cluster colors
to a more natural set (green for leaves, brown for earth, etc.).

However, while the initial volume rendering is able to provide infor-
mation about the relation between feature space clusters and volumet-
ric properties, the user may still not be clear on the exact relationship
of each feature cluster in the volume rendering. To better explore the
feature space, the user may interactively select one (or more) clusters
in the feature space using the mouse and a new transfer function is
applied to the volumetric data, representing only the selected feature
space clusters. In the example of Figure 4, the user finds that the mid-
dle green cluster is actually also a portion of the earth. The user can
then join that cluster to the brown grouping, and a final rendering is
created. Note that fuzzy artifacts still exist in the final rendering as
the leaf air boundary is indistinguishable in our technique due to the
fact that the 1D histogram binning that is mapping colors to areas of
similar density. Notice how in the bottom left cluster of the Generated
Transfer Function in Figure 4, the purple cluster encompasses the red
cluster. The data nearest the red cluster is most likely the source of the
noise; however, even by adjusting the bin width the noise can only be
reduced, not eliminated.

4.2 Arbitrarily Shaped Transfer Functions

As shown in the previous examples, our technique provides an intu-
itive method for quick transfer function generation. However, the ar-
gument could be made that were novice users informed that the arc-
shaped structures represent material boundaries; they could simply se-

lect those areas with rectangular transfer function widgets and produce
a reasonably high-quality image. Such an argument is valid; however,
if the user is then provided with a dataset with no discernable arc-
shapes, where should exploration begin? Further, as was shown in
Figure 4, clusters within feature space do not typically follow simple
square clustering.

To illustrate the benefit of arbitrarily shaped clusters, our next ex-
ample utilizes the Cayley’s cubic data [28] shown in Figure 5. The
Cayley’s cubic is the unique cubic surface satisfying the equation:

4(x3 + y3 + z3 +w3)− (x+ y+ z+w)3 = 0 (4)

Here, the user has rendered a portion of the Cayley cubic through our
transfer function generation widgets by selecting the purple region of
Figure 5 (Left). In order to create a similar rendering using common
box widgets, the user needs multiple interactions. Furthermore, the
knowledge of where to draw such a grouping might never be real-
ized from merely analyzing the distribution within the feature space.
As such, it becomes clear that while powerful, rectangular transfer
function editing widgets can pose severe limitations on the data explo-
ration; moreover, providing a user with a starting point as to where to
draw a transfer function within the feature space is extremely useful.

4.3 Applications Across Arbitrary Feature Spaces

In the previous examples, we applied non-parametric transfer function
generation to the value versus value gradient magnitude feature space
of data; however, the choice of the feature space dimensions is arbi-
trary. In fact, by choosing a more meaningful feature space, users may
be able to better extract particular features of interest. In Figure 6 we



Fig. 7. Oriented structural flow visualizations of temperature advection in a convection dataset with numerical labels corresponding to the time-step.
(Top) The volumetric rendering and (Bottom) their associated transfer function.

illustrate the difference that feature space choices make in our meth-
ods output by utilizing the s-orbital and p-orbital electron probability
density functions from a two million atom Indium-Arsenic quantum
dot simulation in the second excited state.

In Figure 6 (Left) we apply non-parametric transfer function gener-
ation to the p-value versus p-value gradient magnitude feature space
(where p is the orbital), and in Figure 6 (Right) we apply non-
parametric transfer function generation to the p-value versus s-value
feature space. By comparing the resultant renderings, scientists can
gain a better understanding of how various feature space dimensions
interact in the physical volumetric space. For instance, Figure 6
(Right) is useful to understand areas and structures within the quan-
tum dot where density relationships between p-orbital and s-orbital
electron density are maintained.

4.4 Temporally Coherent Transfer Functions

As previously stated, our transfer function generation method also is
able to readily capture structures in n-dimensional space. By applying
non-parametric density estimation across a volume of feature spaces,
we are able to create a transfer function at each feature space time
step that encodes information about the growth of volumetric features.
Figure 7 demonstrates the application of our temporal transfer function
generation method across a series of time steps of the convection in a
box data set.

We apply a sine function to map the scalar data value to opacity,
creating alternating low and high opacity contours in order to create
the advection results [23]. In each of the transfer function time steps,
we can see the cluster shapes grow tracking regions of like density
distributions across time. As the user scrolls through time, the transfer
function is extracted from the transfer function volume (described in
Section 3.4). As such a new transfer function is automatically applied
to the volume at each time interval, eliminating the need for transfer
function modification at each step. Here, researchers are able to see
the mixing and obtain a feel for the time varying properties in a single
image with the transfer function showing both the internal and external
structures.

Furthermore, Figure 8 demonstrates how a static transfer function
may fail to follow features of the volume. From time step 4380 to
4620 in the cloud simulation, one can observe that the static transfer
function seems to lose the upper cloud features which are prevalent
when using the temporally coherent transfer function.

4.5 Enhanced Feature Space Knowledge

While the temporal transfer function is a powerful tool for feature
tracking, it also is able to enhance a user’s knowledge about their data
set by providing an analysis in the change of density distributions at
each time interval. In many simulation models, researchers want to

look at the frequency in which data variable relationships occur within
a data set. For example, in the simulated cloud generation of Fig-
ure 8, the transfer function is generated on the turbulent kinetic energy
(TKE) versus water content. At each time step, the atmospheric sci-
entist is interested in understanding the density of voxels for a given
(TKE, water content) pair and the change of this relationship over time
during the cloud formation process. By analyzing the transfer function
clusters at each time step, the researcher can see how the voxel distri-
bution changes over time, and future work will track the voxels over
time for enhanced analytic capabilities.

5 CONCLUSIONS AND FUTURE WORK

In this work, we have shown that the application of non-parametric
density estimation for clustering in feature space can provide the basis
for semi-automatic transfer function generation. Volumetric structures
are quickly separated in the feature space (when possible), and users
are able to effectively render individual features by using our interac-
tive widgets. Our work enables users to more effectively explore the
volumetric feature space by automatically grouping neighborhoods of
similar distributions, and these neighborhoods then tend to correlate
to volumetric features. Furthermore, the extension of this scheme to
temporal volumetric data provides a means for creating temporally co-
herent transfer functions, allowing users to track changing volumetric
features without the need to redefine the transfer function at each stage
of the process. Our scheme has proven to be effective over various
types of volumetric data, ranging from scalar data (such as CT and
MRI) to flow data.

However, our scheme does have several limitations. First, areas
with similar density distributions will map to the same color bin of the
KDE histogram, and the resulting clusters will need to be explored in
order to determine the feature space cluster, volumetric feature corre-
spondence. Second, the growth of KDE bins will not always allow for
100There are instances where this could cause features and noise to
blend together.

Future work will incorporate advanced edge dragging tools for the
clusters to allow for better editing as well as the extension of our
scheme to n-dimensional feature space, as well as enhanced widgets
for the exploration of higher data dimensionalities. By incorporating
this method across a higher number of dimensions, features that were
not separable in the current system should become separable.
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Fig. 8. The use of non-parametric two-dimensional transfer functions to visualize time steps of a simulated cloud formation in the feature space
of TKE versus water content. (Top) The volumetric rendering using the red portion of our temporal transfer function. (Bottom) The volumetric
rendering using a static 2D transfer function. .
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