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Fig. 1. (a-b) The DVR results for the Torso Phantom dataset from two viewpoints; (c-d) The results by applying the image recoloring
scheme [14] to (a-b); (e-f) our results. (c-f) are generated for the deuteranope perception. The results and the pairwise color difference
(DIS(,) computed in the CIE L*a*b* space) among pixels indicate that our approach (e and f) achieves better color consistence than
the image recoloring scheme (c and d) from two different viewpoints. Our approach (f) is also superior to the image recoloring scheme
(d) in terms of visual labeling.

Abstract—Color vision deficiency (CVD) affects a high percentage of the population worldwide. When seeing a volume visualization
result, persons with CVD may be incapable of discriminating the classification information expressed in the image if the color transfer
function or the color blending used in the direct volume rendering is not appropriate. Conventional methods used to address this
problem adopt advanced image recoloring techniques to enhance the rendering results frame-by-frame; unfortunately, problematic
perceptual results may still be generated. This paper proposes an alternative solution that complements the image recoloring scheme
by reconfiguring the components of the direct volume rendering (DVR) pipeline. Our approach optimizes the mapped colors of a
transfer function to simulate CVD-friendly effect that is generated by applying the image recoloring to the results with the initial
transfer function. The optimization process has a low computational complexity, and only needs to be performed once for a given
transfer function. To achieve detail-preserving and perceptually natural semi-transparent effects, we introduce a new color composition
mode that works in the color space of dichromats. Experimental results and a pilot study demonstrates that our approach can yield
dichromats-friendly and consistent volume visualization in real-time.

Index Terms—Dichromacy, direct volume rendering, volume classification, image recoloring.

1 INTRODUCTION

Direct volume rendering (DVR) is an effective method used to display
meaningful information from 3D scalar fields [10]. By assigning
different opacities to various regions, DVR provides an exploratory
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preview of the underlying dataset without the explicit construction of
an intermediate model. It is especially useful when semi-transparent
effects are required to show the internal structures of a scalar field.
The mappings from the scalar values to opacities are achieved by
using an opacity transfer function, which is used to highlight important
features while suppressing or hiding other regions. Designing an
opacity transfer function is basically a volume classification problem,
and plays a central role in volume visualization [18].

DVR involves another type of transfer function, namely, the color
transfer function that specifies a color for each class when the
opacity transfer function is selected. Using DVR [16], the mapped
colors and opacities are accumulated using a chosen color blending
method (e.g. [19]). Thus the visualization result is heavily influenced
by the color and opacity transfer functions, as well as the color
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composition mode. Despite continued research in color design [28],
transparency optimization [4] and color blending [5] for effective
DVR, little attention has been paid to the color specification of the
transfer function. Although well-studied color design principles [3,
23] can be applied to the color selection, perceptually deficient
results may occur because the DVR process involves an additional
transparency-modulated color composition process.

This situation may be exaggerated when the visualization results are
shown to persons with color vision deficiency (CVD) [27]. To address
the challenging case, this paper proposes an approach that makes the
DVR usable for those people. Instead of providing dichromats with
a visualization system, we seek to modify the components of DVR
to allow a user with normal vision to generate results perceivable by
dichromats. This feature is especially useful because a high percentage
of the population worldwide are affected by CVD [25], and volume
visualization has become a widely used communication and analysis
tool for a variety of users.

The task, however, is non-trivial because dichromats may miss
the classification information shown in the DVR images. The main
reason is that the color space of a dichromatic observer is much
smaller than that of normal persons. A straightforward solution
would be to choose the mapped colors of the transfer function in a
CVD-friendly fashion [3]. However, choosing distinguishable colors
may fail because the colors may be mixed into other colors within
the opacity-weighted procedure, or even be dissolved due to the
occlusions under varied viewing configurations.

Alternatively, image recoloring techniques [21, 22] can be used to
enhance the color distinguishability for dichromts. The pioneering
work of Kuhn et al. [12] enhances the perceptibility of the volume
visualization to a great degree and is further improved to preserve
temporal coherence at a low cost [14]. Note that the DVR results
exhibit internal structures generated by the transfer function, as well
as their occlusion relationships. The image recoloring scheme solely
relates to the composed colors in the image space, and consequently
may lose this information even though certain image characteristics
like the contrast [14] can be maintained. In some situations, it may
suppress subtle details and lead to indistinguishable labeling (see
Figure 1 (d)). Moreover, color-inconsistent results can occur when
the viewpoint is dynamically changing (see Figure 1 (c-d)).

Generally speaking, the image recoloring scheme is designed
for still images, while volume visualization is an interactive and
view-dependent process. In particular, the semi-transparent cue
from the DVR results is unpredictable because its expressiveness is
determined by multiple factors, namely, the mapped colors, opacities,
lighting and their composition under certain viewing configuration.
This complicates the CVD-friendly design in DVR, and consequently
prevents the image recoloring scheme from being the perfect solution.

In addition, the conventional color blending operation (i.e., the
OVER operator in the RGB space) may lead to results that are
observed as similar or even identical to one of the input colors
by dichromats, and consequently induce an ambiguous perception
of the volume classification information. Figure 2 compares the
simulated perceptions of a deuteranope (second row) to the results
by the conventional blending mode (first row) and our results (third
row). Specifically, our results are generated by converting the
input colors to the CVD-friendly space and employing a new color
composition mode. When the opacity of the bottom left rectangle
is 0.53, the simulated perception (the middle image of the second
row) indicates that the top right rectangle is front of the other one,
which is contradictory to the result by the conventional color blending
operation (first row). The plots (see Figure 2 (b)) of the color
differences (defined in Section 4.1) between two pixels A and B with
respect to the opacity further confirm the deficiency of the second row:
the plot in blue has a point of zero moment (i.e., the smallest difference
appears when the opacity is 0.53), while the plot in red indicates that
our results conform to the perception of the trichromats (i.e., the color
difference is in approximate proportion to the opacity).

We argue that a more sophisticated solution should take the
components of the entire DVR pipeline into account, in which
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Fig. 2. (a) From top to bottom: compositing two colored rectangles
with respect to different composition opacities by using the conventional
color blending mode; The simulated perceptions of deuteranopes with
respect to the first row; our results. When the opacity of the bottom left
rectangle is 0.53, the simulation gives false depth cue. (b) For results
by the simulation and our approach, the color differences between two
pixels A and B with respect to the opacity are plotted in blue and red,
respectively.

the image recoloring is an important, but not unique stage. This
paper presents an optimization-based color design technique built
upon the image recoloring scheme, and a novel CVD-friendly color
composition mode with the following contributions:

• A novel color optimization scheme, which modifies the
mapped colors of the color transfer function by simulating the
CVD-friendly effect obtained by the image recoloring scheme.

• A new color composition mode that is performed in the reduced
color space of dichromats, together with a new blending operator
that preserves the perceptibility of the composition result.

Rather than introducing a novel color enhancement scheme, our
approach complements the image recoloring scheme with a color
optimization process and a CVD-friendly color composition mode.
By integrating the new components into an interactive volume
visualization system, our approach makes the DVR results more
distinguishable for dichromats and also avoids the color inconsistence
mentioned above (see Figure 1 and Figure 2). Our approach does
not modify the opacity transfer function, and attempts to maintain
the classification information achieved by the users. In addition, the
modified color transfer function is independent of the DVR pipeline,
and can be reused in different volume visualization systems without
changing the DVR algorithm. The entire solution is compatible
with the conventional transfer function design and image recoloring
methods, and favors effective communication among trichromats and
dichromats.

The rest of this paper is organized as follows. We briefly
introduce some preliminary knowledge and related work in Section 2.
Our approach is described in Section 3, followed by results and
comparisons in Section 4. Conclusions and future work are given in
Section 5.

2 BACKGROUND AND RELATED WORK

2.1 The Dichromacy

The dichromats and anomalous trichromats are persons who are
deficient in response to three types of cones of the human eye,
named after their responses at long (L), medium (M) and short (S)
wavelengths. The sensitivities with respect to these three wavelengths
are used to characterize a color space, called the LMS space.
Among Caucasians, it is estimated that 2.3% of male population are
dichromats, and 5.7% of male population are anomalous trichromats.
The numbers are 0.03% and 0.39% for the female population,
respectively [25].

A dichromat may lose important information transmitted by
chromatic colors. In other words, the LMS color space of a dichromat
is much smaller than that of a person with normal vision. If two
colors lead to the same color vision perception for a dichromat (see
Figure 3 (a)), he or she cannot distinguish two objects labeled by
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Fig. 3. (a) Different colors may be observed as identical for a dichromat;
(b) The geometric representation of the LMS space for dichromats [2].

these two colors, posing a challenging problem for visual labeling
in visualization design. This also means that a dichromat cannot
sense both aesthetic and semantics of the volume visualization without
specific process.

A number of simulation models [2, 15, 27] have been studied
to simulate the dichromatic color perception for normal trichromats.
Among them, the Brettel model [2] is the most popular one based
on the reports of the unilateral dichromats (the ones with one
dichromatic eye and one normal trichromatic eye) [11]. Geometrically,
the perception capability of dichromats can be represented as two
half-planes in the LMS color space (see Figure 3 (b)). The dichromatic
perception of a color can be simulated by projecting it onto one
half-plane. In this paper we use the Brettel model.

Given a color denoted by [R,G,B]T in the RGB color space, the
dichromatic simulation can be formulated as follows:
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where T denotes the transformation between two color spaces. Mcvd is
a matrix that transforms the normal LMS values to the simulated LMS
values. It is obtained from the Brettel model, and varies for different
types of dichromacy. The subscript ’d’ indicates that the associated
variable is a simulated one of the dichromatic perception.

2.2 Color and Transparency in Volume Visualization

Volume visualization widely employs transparency-based modulation
to show internal structures, which complicates the choice of color
palette. In volume visualization, appropriate color design and
transparency modulation are vital to enhance the perceptibility.

The color design is subject to specific tasks [23]. Many
principles have been proposed to provide usable color maps,
like the ColorBrewer system [3]. In [28], a knowledge-based
system is proposed to capture established color design rules into a
comprehensive interactive system. In particular, enhance the color
accessibility for dichromats has attracted much attention in the image
and video processing communities. A general approach is to transform
colors from the color space of the normal trichromats to a reduced
color space. This scheme has been successfully extended to volume
visualization [12, 14].

Despite a large volume of literature on transfer function design,
little attention has been paid to the transparency design issues
in volume visualization. The psychology study indicates that
the perceived transparency relates to the human perception, and
is dependent on the lighting, color contrast and shape [7]. A
physical model [17] is proposed to rationalize visual perception on
transparency. A study reveals that the luminance is also important

to express the transparency information [8]. In [4], a suite of new
measures based on psychological principles is studied to evaluate the
perceptual quality of transparent structures in the DVR results.

Of great importance in the context of volume visualization is the
color blending operation. To maintain the hue component during
the DVR, a perception-guided composition mode [5] is proposed.
In this approach, the composition is performed in the color space
of trichromats, and cannot be used to enhance the color perception
for dichromats. Our approach employs a new CVD-friendly color
composition mode that emphasizes the luminance profile of the image
to enhance the transparency [26].

2.3 Image Recoloring for Color Enhancement

Much work has been dedicated to the problem of image or video
recoloring for dichromats. Existing color enhancement methods
can be mainly categorized into rule-based and optimization-based
approaches. The representative [6] of the first category uses a
two-stage process: the red/green contrast is first increased, and then
this information is used to adjust the brightness and blue/yellow
contrast. Machado et al. [15] present a physiologically-based model
that unifies the normal color vision, anomalous trichromacy, and
dichromacy. Its simulation is fast: only one matrix multiplication
is required for each pixel. In general, the rule-based scheme is
computationally efficient, but is limited by the rules, and needs many
parameter adjustments.

Optimization-based methods seek to solve an objective function to
achieve their goals. For instance, Rasche et al. [21] introduce a new
way to preserve visual details while reducing the gamut dimension.
The optimization is achieved by solving a quadratic objective function
with constraints that enforce luminance consistency. Because the
optimization process requires solving a large linear system, it is
computationally inefficient. From the viewpoint of color mapping,
computing the color transformation can be regarded as a dimension
reduction problem in the color space. For instance, Ma et al. [13]
employ a self-organizing color transformation (SOCT) to perform
this task. In [12], a mass-spring system is leveraged to optimize
the distribution of the color in a set of quantized colors. The
mass-spring system converges after several iterations, leading to better
performance than previous methods. More recently, this technique
was improved to support temporal coherent recoloring [14]. Our
approach is built upon the image recoloring scheme, and advances it by
incorporating the DVR pipeline into the color enhancement process.

3 COLOR TRANSFER FUNCTION OPTIMIZATION AND COLOR

COMPOSITION

DVR involves three stages: specifying color and opacity transfer
functions, sampling the scalar field, applying transfer functions
and shading, and composing the colors and opacities. The image
recoloring operation can be regarded as an additional process to the
pipeline, and has to be performed for each frame (see Figure 4 (a)).
In contrast, our approach employs an optimization process to modify
the color transfer function, which needs to be done only once for a
given transfer function. The optimization is guided by the results from
the image recoloring operation, i.e., the visualization generated by the
modified color transfer function is made as close as possible to the
results from the image recoloring process (see Figure 4 (b)).

3.1 Optimizing the Color Transfer Function

For clarity, in this section we assume that the density of the underlying
scalar field ranges from 0 to 255, and a one-dimensional transfer
function is considered. The extension to higher data precision and
multi-dimensional transfer function is straightforward.

Suppose that there is an opacity transfer function TTT ooo and a color
transfer function TTT ccc, which have M (i.e., 256) opacity entries and
RGB-triples, respectively. The DVR result is denoted as Id at the
image size of N (e.g., 512 × 512). Applying the image recoloring
technique [14] to Id yields an image Ir. Our approach seeks to
reconfigure TTT ccc at the size of M ×3 to TTT ∗

ccc, with which the generated
image I∗d approximates Ir as close as possible.
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Fig. 4. Comparison between the image recoloring scheme (a) and our approach (b). In (b), the two steps indicated with the italic fonts are two new
components introduced in our approach, and are described in Section 3.1 and Section 3.2. The symbols shown on the top of (b) are the variables
used in the color optimization stage.

For each pixel in a DVR image, its color is accumulated from a set
of colors and opacities with the following composition operator [16]
in a back-to-front order:

C′
i = αiCi +(1−αi)C

′
i−1 (2)

where αi and Ci are the opacity and color of the ith sample after
applying the transfer function TTT ooo and TTT ccc, respectively. The final
accumulated color can be written as [10]:

C =
S

∑
i=1

αiCi

i−1

∏
j=1

(1−α j) (3)

where S denotes the sample number.
Let {Cm,m = 1,2,3, ...M} be the color set of the underlying color

transfer function. Applying the color transfer function to the ith
sample is identical to mapping the sample to a linear combination of
Cm (m = 1,2, ...,M): ∑M

m=1 θm,iCm, where θm,i denotes the weight of
Cm (m = 1,2, ...,M). The color of the ith sample is a result of applying
the color transfer function and computing its illumination using the
volumetric optical model [16]:

Ci = βi

M

∑
m=1

θm,iCm (4)

where βi denotes the volumetric illumination computed at the ith
sample.

Substituting Equation 4 to Equation 3 and rewriting Equation 3 as
a sum of Cm, yields:

C =
M

∑
m=1

Cm

(

S

∑
i=1

θm,iβiαi

i−1

∏
j=1

(1−α j)

)

(5)

We define ωm = ∑S
i=1 θm,iβiαi ∏i−1

j=1(1 − α j), which is the

accumulated weight associated with Cm.
From Equation 5, it is apparent that ωm is determined by the opacity

transfer function TTT ooo and the volumetric illumination. Therefore, it
only needs to be computed once during the optimization of {Cm,m =
1,2,3, ...M}.

Let Ct∗m (m = 1,2, ...,M) be the color triples of the intended
transfer function TTT ∗

ccc. For each pixel pk (k = 1,2, ...,N), the color
Cd∗

k at pk in I∗d can be expressed as a linear combination of Ct∗m:

Cd∗
k =

M

∑
m=1

ωm,kCt∗m, k = 1,2, ...,N (6)

where ωm,k (m = 1,2, ...,M) are the accumulated weights associated
with Ct∗m (m = 1,2, ...,M) at pixel pk.

By treating Ct∗m (m = 1,2, ...M) as unknown, Equation 6 can be
regarded as an over-determined equation set given that N ≫ M. This
yields a linear system:

argminE1 = argmin
N

∑
k=1

(Cd∗
k −Crk)

2

= argmin
N

∑
k=1

(
M

∑
m=1

ωm,kCt∗m −Crk)
2

(7)

where Crk is the color at pk in Ir.
Another concern is that the optimized transfer function TTT ∗

ccc be as
close as possible to the initial one TTT ccc because it is usually expected that
the assigned colors are preserved after the optimization. Accordingly,
we design another item:

argminE2 = argmin
M

∑
m=1

δm(Ct∗m −Ctm)
2 (8)

where δm is a binary parameter specified by the user to indicate
whether the mth color item should be preserved or not.

Weighting two items in Equation 7 and Equation 8 with an
adjustable parameter λ leads to:

argminE = argmin((1−λ )
E1

N
+λ

E2

M
) (9)

Here, the smaller λ is, the yielded DVR result is closer to Ir. In our
implementation, λ is initialized to be 0.

3.1.1 Solving the linear system

Note that a volume classification derived from the opacity transfer
function design yields a small number of classes. From the viewpoint
of the color design [3, 28], usually the number of color labels is
smaller than 8. To perform visual labeling in DVR, a user chooses
a set of distinct colors. The number of the selected colors is typically
small, e.g., 4 in the example shown in Figure 1. The pixel number N
determines the number of equations in Equation 6, and the color set
Ct∗m,m = 1,2,3, ...M of TTT ∗

ccc denotes the variable set.
If all N pixels in a DVR result are employed, the linear system

becomes a large over-determined minimization problem. To reduce
the complexity of the linear system, we randomly sample Nr pixels
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Fig. 5. The influence of the sampled pixels on the optimization result. (a) The DVR result Id and the associated color transfer function; (b-d) Results
I∗d with different numbers: 50, 200, and 1000, respectively. The snapshot on the top of each image I∗d denotes Ir that is generated by applying the
image recoloring to Id , and randomly sampled pixels’ positions. The optimized colors Ct∗m (m = 1,2,3,4) are shown on the top of each image.

(a) (b)

Fig. 6. The optimization configuration is the same as Figure 5 except
that (a) λ = 0.3; (b) λ = 0.7. The average colors in the red circles of (a)
and (b) are (184,178,110) and (177,176,65) in RGB-triple, respectively.
The colors in Figure 5 (a) and (b) are (178,173,40) and (191,183,168),
respectively.

in the DVR image. Before sampling, we eliminate the background
pixels since they do not contribute to the linear system (Equation 7).
Mathematically, Nr should be greater than M to avoid an undetermined
equation set which has infinite solutions. In our experiments Nr is set
to be 200, which produces satisfying results.

With the schemes mentioned above, the computational complexity
is greatly reduced: the size of the linear system decreases from
5122 × 256 to approximately 200 × 8 (i.e., Nr = 200,M = 8). The
optimization in Equation 9 is solved by using the least-squares
method [20]. Solving this linear system can be done very efficiently.

We denote the DVR result generated with the optimized transfer
function TTT ∗

ccc as I∗d . The entire optimization process is illustrated in
Figure 4 (b). Figure 5 depicts the influence of the sampling number
Nr on the final result I∗d with λ = 0 in Equation 9. It can be seen
that the final results in (b-d) are similar with the change of Nr from
50 to 1000. The main reason is that the linear system (Equation 7) is
over-determined (Nr is much larger than the color number).

Color Preservation In Figure 5, the color of the lung part (indicated
by a red circle) is changed to grey after the optimization when the
color preservation is not used (λ in Equation 9 is set to be 0). By
changing λ to 0.3 or 0.7, different results that preserve the color to a
certain degree are obtained (see Figure 6). The average colors in the
red circles of Figure 5 (a-b) and Figure 6 (a-b) indicate that using λ
can effectively modulate the degree of color preservation during the
optimization.

3.1.2 Multi-view Optimization

DVR is a view-dependent process. The color optimization approach
described above only considers the solution under a single view. In

some situations, the classification information shown in a DVR image
is incomplete because of 3D occlusion, like the example shown in
Figure 7 (a). The corresponding color optimization process may lead
to unpleasing results (see Figure 7 (d)).

An entropy-based view selection [1] scheme may improve the
selection of the best view for constructing the linear system, which
has the potential to track all the non-zero coefficients ωm of the colors
Ct∗m (m = 1,2, ...,M) in the color transfer function TTT ∗

ccc. In our
implementation, the views can be manually specified or automatically
selected by assigning uniformly sampled viewing angles. The
constraints obtained under additional views are added to the linear
system.

Our solution for the multi-view optimization takes three stages.
First, multiple DVR results (see Figure 7 (b)) are generated, for each
of which a linear system with respect to Equation 7 is built. Then, the
linear systems are integrated by putting all constraints of each linear
system together. The energy item E1 of the final linear system has the
following form:

argminE1 = argmin
H

∑
h=1

Nr,h

∑
k=1

(
M

∑
m=1

ωm,kCt∗m −Crk)
2 (10)

where H is the number of views considered in the multi-view
optimization, and Nr,h is the number of the sampled pixels with respect
to the hth view.

Solving the integrated system yields a result that considers the
influences from multiple views. Suppose that there are 4 views, the
size of the integrated linear system is 4 times larger than the size of a
linear system. The effect using the multi-view optimization is shown
in Figure 7 (e).

3.2 CVD-friendly Color Composition

Transparency plays an important role in the usage of DVR for
illustrating the internal structures of the underlying scalar field. The
semi-transparent effect of the DVR is achieved by employing the
conventional opacity-modulated color composition (Equation 2) that
is performed in the color space for trichromats. The Brettel model
that simulates the perception of dichromats applies a non-linear
Gamma transformation to the RGB-triple input color. As a result, the
composited colors from the conventional color blending mode may be
mapped into a similar or identical color, causing possible information
loss (see Figure 2). Below we present two new techniques to address
this problem.

3.2.1 CVD-friendly Color Blending

The research on dichromacy (see Section 2.1) indicates that the color
space of dichromats is very limited, and can be represented by two
half-planes in the LMS color space, and be further simplified into one
plane in the CIE L*a*b* space [12].
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Fig. 7. Illustration of the multi-view optimization with the Four-sphere Phantom dataset. (a) The DVR result from a certain viewpoint. (b) The results
by applying the image recoloring algorithm [14] to the DVR results produced from four viewpoints, of which A corresponds to (a). The sampling
pixels are shown as white crosses. (c-d) The DVR results by using the optimized color transfer function obtained from A in (b); (e) The result by
employing the multi-view optimization scheme with the four images in (b).

Inspired by the hue-preserving color blending mode [5], the color
composition should be performed in the reduced color space of
dichromats to prevent the result from being outside the space and
meanwhile make it distinguishable for dichromats. We propose to
perform the linear combination of two colors with respect to the
geodesic distance on the two half-planes (see Figure 8 (b)). Compared
to conventional linear combination that is performed in the 3D LMS
space, this scheme ensures that the result lies in the two half-planes.
The algorithm is given in Algorithm 1.

Algorithm 1 CVD-friendly color blending for two colors Ci and C′
i−1

represented with RGB-triples, and an opacity αi, where Ci, C′
i−1 and

αi are of the same meanings as in Equation 2.

Xi = Mcvd ×RGB2LMS(Ci);
X ′

i−1 = Mcvd ×RGB2LMS(Ci−1);
IF Xi and X ′

i−1 are on the same half-plane

X ′
i = αiXi +(1−αi)X

′
i−1;

ELSE

Path = GeodesicPath(Xi,X
′
i−1);

Xp = Intersect(Path,LAB);

αp =
DIS(Xp,X

′
i−1)

DIS(Xp,Xi)+DIS(Xp,X
′
i−1)

;

IF αi > αp

X ′
i =

αi−αp

1−αp
Xi +

1−αi

1−αp
Xp

ELSE

X ′
i =

αp−αi

αp
X ′

i−1 +
αi

αp
Xp

END IF
END IF

C′
i = LMS2RGB(X ′

i )

*The function RGB2LMS transforms a color in the RGB color space
to the LMS color space.
*The function LMS2RGB transforms a color in the LMS color space
to the RGB color space.
*The function GeodesicPath calculates the geodesic path between two
positions in the space constructed by the two half-planes.
*The function Intersect calculates the intersecting point between Path
and LAB which is the intersection line of the two half-planes.
*The function DIS calculates the Euclidean distance of two colors in
the LMS color space.
*Mcvd denotes the matrix that transforms a normal LMS-triple color
to a simulated LMS-triple color (Equation 1).
*X , represented with LMS-triples, denotes the color in the space
constructed by the two half-planes.

3.2.2 Luminance Consistency

The CVD-friendly blending can generate results with a unique
luminance. However, the reduced color space of dichromats (i.e.,
the two half-planes), is not uniformly distributed. A region (e.g., the
region marked by a green star) that is near the intersection line E in

O
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W
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G

B

(a)
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Fig. 8. The conventional OVER operator performs a 3D linear
combination (a) in the RGB space. Because of the Gamma correction
used in the Brettel model, the interpolation path in (a) corresponds
to a curve in the LMS space (the yellow one in (b)). Simulating
the dichromatic perception is equal to projecting the curve onto
the two half-planes, yielding the dashed curve in yellow. The
transform-and-project operation may make the result similar or even
identical to one of the input colors, as demonstrated in Figure 2. In
contrast, our approach performs the interpolation along the geodesic
path lying on the two half-planes (see the dashed red line in (b)).

red is more compact than a region (e.g., the region marked by a yellow
star) that is far from E, as shown in Figure 8 (b). This is because the
simulated perception of dichromats is obtained by mapping the LMS
space to two half-planes with a warping transformation (Equation 1),
which leads to a distortion. This also causes a luminance-inconsistent
composition result.

We propose to employ an additional process to modify the
luminance channel L∗ of the L∗a∗b∗-triple after the color composition
(Algorithm 1) is performed:

L∗(C′
i) = αiL

∗(Ci)+(1−αi)L
∗(C′

i−1) (11)

where L∗(·) denotes the conversion from a RGB-triple to the L∗ color
channel. Ci, C′

i−1, and αi are of the same meanings as in Equation 2.

Figure 9 (a) is a DVR result generated with the conventional color
blending mode. Figure 9 (b) shows the simulated perception for a
deuteranope based on (a). Due to the color coincidence induced
by the limited perception, the boundary between dentin and pulp
dissolves in Figure 9 (b). With the proposed new blending mode,
the boundary becomes recognizable (see Figure 9 (c)). However, the
luminance of the blended color is much lighter than expected, making
the visualization over-blurred. An additional optimization aiming at
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(a) (d)(b) (c)

Fig. 9. Result comparison for the Tooth dataset. (a) The DVR with
the conventional over operator in the RGB space; (b) The simulated
perception of a deuteranope based on (a); (c) The DVR with the
CVD-friendly color blending in the LMS space (Section 3.2.1); (d)
Enhancing (c) with the luminance consistency scheme described in
Section 3.2.2.

luminance consistency further improves the perception of the result,
as shown in Figure 9 (d).

Note that a person with the normal vision can observe the
internal structures of a semi-transparent DVR result by means of the
chromatic information, even with the conventional color blending
mode. However, this does not hold for dichromats due to the
limitation of the reduced color space. Our approach outperforms
existing solutions in the sense that not only the distinguishability is
maintained by employing a new CVD-friendly blending mode, but
also the luminance consistency is preserved thanks to the luminance
correction scheme.

4 RESULTS

We implemented our approach in Microsoft Visual C++ and tested on
a number of datasets on a PC equipped with an Intel double-core 3.0
GHz CPU, 3 GB host memory and an Nvidia GeForce GTX 280 video
card with 1 GB video memory. The dataset configuration is listed
in Table 1. All images are rendered at the resolution of 512× 512.
Figure 10 and Figure 11 show the results for the Feet, Tooth, Head
and Schaedel datasets. All results except Figure 10 are generated
with 1D transfer functions. Figure 10 (a-c) shows the results using
a 2-D transfer function (intensity vs. gradient magnitude). Other
results using a 2-D transfer function with shading are demonstrated
in Figure 10 (d-f).

In our current implementation, we performed the optimization of
the color transfer function on CPU, and modified the pipeline of a
CUDA accelerated volume renderer to achieve CVD-friendly color
composition. The transfer function optimization can be completed
very quickly: the calculation of the coefficients ωm can achieve a rate
of 20k pixels per second for the results without shading, and 4k pixels
per second for the ones with shading. For a typical configuration
that Nr = 200 and M = 4 for Equation 9, the least-squares solver
takes less than 0.1 second. More performance statistics using different
configurations of Nr and M are shown in Table 2. Because the new
color composition is performed whenever two colors are mixed, the
overhead of the new color composition is about 15% FPS decrease.

4.1 Quantitative Evaluation

The global chromatic diversity (GCD) in an image perceived by
dichromats is computed as the average of the color differences
between every pair of pixels. In [13], the efficiency of the
recoloring algorithm is evaluated by comparing the global chromatic
diversities of the input image and recolored image. A common
definition of the color difference employs the Euclidean distance in
a device-independent color space, e.g., the CIE L*a*b* color space.
Given two colors Ci(L

∗
i ,a

∗
i ,b

∗
i ) and C j(L

∗
j ,a

∗
j ,b

∗
j), the color difference

DIS is defined as:

DIS(i, j) =
√

(L∗
i −L∗

j)
2 +(a∗i −a∗j )

2 +(b∗i −b∗j )
2

Table 1. Configurations for eight volume datasets. #C denotes the class
number produced by the opacity transfer function.

Data #size #C

Engine 256×256×128 2

Feet 256×128×256 3

Four-sphere phantom 256×256×256 4

Head 256×256×113 2

Schaedel 512×512×333 12

Teapot 256×256×178 2

Tooth 256×256×161 3

Torso Phantom 256×256×256 12

Table 2. Performance statistics in seconds using different Nr and M.
P
P
P
P
P
P

Nr

M
4 8 12 20 30

200 0.0624 0.374 0.858 1.99 3.29
1000 0.1248 0.702 1.622 3.42 7.21
2000 0.2028 1.045 2.356 5.66 14.8
3000 0.2808 1.373 3.198 7.06 17.4

Table 3. The global chromatic diversities of the DVR results, the
simulation to the DVR images, the results of applying the image
recoloring algorithm [14] to the DVR images, and our results.

Data Fig.1 Fig.4 Fig.5 Fig.7 Fig.9 Fig.10 Fig.11 Fig.12 Fig.13

DVR 3.7/3.4 3.81 4.32 1.03 4.52 5.8/2.6 5.7/4.0 3.20 2.51

Simu. 3.3/3.0 2.98 3.07 0.77 2.83 4.2/1.9 2.9/2.5 1.83 1.87

Recol. 3.8/3.3 3.93 4.32 1.00 – 6.0/2.8 6.8/3.8 3.67 1.72

Ours 3.6/3.2 3.82 3.54 0.80 3.00(d) 5.2/2.6 6.0/3.0 2.88 1.72

DIS(i, j) ≈ 2.3 corresponds to a JND (just noticeable difference) of
two colors [24].

Table 3 lists the global chromatic diversities of the DVR results,
the simulated perception of a deuteranope to the DVR images, the
results of applying the image recoloring algorithm [14] to the DVR
images, and our results. From the statistics, we conclude that the
image recoloring algorithm [14] produces images with the highest
GCD values because it is designed to achieve high color contrast.
By optimizing the color transfer function, our approach maintains
the color consistency during interactive volume exploration, and
meanwhile preserves relatively high GCD.

4.2 User Evaluation

A set of tests were performed with 25 volunteers, of which 5 subjects
have color vision deficiency and 20 subjects are normal trichromats.
All subjects are well educated and are familiar with computers. 96% of
them had no experience with volume visualization. The persons with
color vision deficiency are further classified into 3 deuteranomalous
and 2 deuteranopes with the Ishihara test [9]. All the graphics user
interfaces of our system and DVR results were displayed on a 24-inch
wide LCD monitor at the sRGB mode.

The first test was designed to verify the effectiveness of the
proposed color blending mode. Each subject was presented a sequence
of side-by-side result comparisons of the conventional blending mode
(Equation 2) and our method for the example shown in Figure 2
(a). With changes of the opacity of the front rectangle from 0 to
1, the color of the overlapped region is changing from the color of
the back rectangle to the color of the front one. In this test, all
subjects noticed the discontinuous color transition in the overlapped
region by the conventional blending mode (see Figure 2 and the video
demonstration).

The second test compared the image recoloring scheme and our
approach. In particular, the algorithm presented in [14] that
can achieve real-time performance and temporal coherent image
recoloring effects was studied. Its key idea is to preserve the color
contrast while the colors are converted to the color space of the
dichromats. Each subject was allowed to freely interact with our
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(a) (b) (c) (d) (e) (f)

Fig. 10. Results for the Feet and Tooth datasets. (a,d) The DVR results and the initial transfer function; (b,e) The results by means of [14]; (c,f) Our
results. 2-D transfer functions (intensity vs. gradient magnitude) are used for both datasets. Volumetric shading is additionally applied for the Tooth
dataset.

(c)(b)(a) (e) (f)(d)

Fig. 11. Results for the Head and Schaedel dataset. (a,d) The DVR result; (b,e) The recolored image using [14];(c,f) Our results; The bottom
images of (a) and (d) show the simulated perception of a deuteranope. Note that, in (c) the chromatic details around the ear region are visualized
in blue, while these details are less visible in (b).

volume visualization system, such as rotating the rendered dataset.
Most of them thought that the color contrast is preserved with the
image recoloring algorithm [14], while our approach achieves a
relatively lower color contrast. When there are more than 3 classes
in the DVR, 22 out of 25 subjects observed that the results produced
by the algorithm [14] exhibit color inconsistency like the one shown in
Figure 1 (c-d). All subjects agreed that our results effectively preserve
the coherence and avoid the color inconsistency.

4.3 Discussions

Our approach can be regarded as an improvement to the image
recoloring scheme in the context of DVR, rather than a new color
design or color configuration solution. The basic motivation of the
image recoloring operation is to preserve or even amplify the color
contrast. Specifically, the image recoloring algorithm [14] seeks to
find a vector Vab in the CIE L*a*b* space which induces the largest
contrast loss, and then scale and project the input colors onto the
plane defined by L* and Vab. It leverages an additional technique to
preserve the temporal coherence. Yet, its main drawback in the context
of DVR is that it solely maximizes the color contrast in the image
space, and may sacrifice the image continuity in the boundary regions
or when a semi-transparent effect is employed. Figure 12 (b) shows
an example where a sharp discontinuity appears at the boundary of a
ring-like object. In contrast, our approach inherently avoids the color
inconsistency and preserves the temporal coherence by optimizing
the color transfer function. Due to the use of a color accumulation
procedure, our approach is capable of preserving important structural
information that has been captured in the volume classification stage.
Similar to Figure 12 (a), the structure visible in Figure 12 (c) gives a
continuous visual cue.

Note that our approach is compatible with all image recoloring
approaches. As shown in Figure 13, one image recoloring approach
fails to enhance the contrast for the deuteranope, while another one
works well.

In solving Equation 9, Nr pixels are sampled to construct the
objective function. Using this scheme, it is possible that the coefficient
of one color in the transfer function is not caught. In practice, using
an adequately large Nr (>1000) can mostly eliminate this problem. A
more sophisticated solution will be studied in the future.

In contrast to the image-based recoloring techniques [12, 14] that
increase the color contrast, our approach generally lowers the color
contrast. This is because ours attempts to treat the color of each
pixel as an accumulation of the colors of the samples. Thus, in some
situations our approach cannot produce satisfactory results by solving
the linear system in Equation 9. In addition, our approach cannot yield
improvement when the initial DVR is suitable for dichromats.

5 CONCLUSIONS

In this paper, we have described a new DVR approach that
can produce satisfactory results for dichromats. Our approach
reconfigures the DVR pipeline by combining the image recoloring
scheme with a new color optimization technique and a color
composition mode. The integrated DVR system achieves interactive
performance, and produces pleasing results that reveal correct
occlusion information and preserve as much visual detail as possible
for dichromats. Experimental results and user evaluation demonstrate
that our approach can yield dichromats-friendly and consistent volume
visualization.

In the future, we plan to explore more color and transparency design
schemes to make volume visualization usable for persons with other
disabilities or even children. The automatic view selection can be
performed by employing the entropy-based scheme [1]. Studying
appropriate automatic view selection schemes is one avenue of future
work. In addition, we plan to explore a sophisticated and efficient
sampling strategy. A small Nr may be insufficient when the image size
of the DVR is large. We also plan to investigate appropriate means to
extend our approach to illustrative visualization.
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(a) (b)

(c) (d)

Fig. 12. (a) A DVR result for the Engine dataset; (b) The result by
applying the image recoloring algorithm [14]; (c) Our result; (d) from
top to bottom: the pixel chromatic diversities of the marked region in
(a-c). Our result exhibits smooth shapes of the internal structures, while
the image recoloring operation may result in discontinuity because it
increases the color contrast where the contrast is high (circled in red
ellipses).
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