
Real-Time Shape Illustration Using
Laplacian Lines

Long Zhang, Ying He, Member, IEEE, Jiazhi Xia, Xuexiang Xie, and Wei Chen

Abstract—This paper presents a novel object-space line drawing algorithm that can depict shapes with view-dependent feature lines

in real time. Strongly inspired by the Laplacian-of-Gaussian (LoG) edge detector in image processing, we define Laplacian lines as the

zero-crossing points of the Laplacian of the surface illumination. Compared to other view-dependent feature lines, Laplacian lines are

computationally efficient because most expensive computations can be preprocessed. We further extend Laplacian lines to volumetric

data and develop the algorithm to compute volumetric Laplacian lines without isosurface extraction. We apply the proposed Laplacian

lines to a wide range of real-world models and demonstrate that Laplacian lines are more efficient than the existing computer

generated feature lines, and can be used in interactive graphics applications.

Index Terms—Nonphotorealistic rendering, real-time line drawing, Laplacian lines, view-dependent feature line, object-space line

extraction, volume illustration.

Ç

1 INTRODUCTION

LINE drawings are an effective way to convey shapes in a
relatively succinct manner by ignoring the less important

or distracting details [2]. For complicated models or large-
scale scenes, line drawing can be used to eliminate unneces-
sary visual clutter and depict essential information. A recent
study shows that people interpret certain shapes almost as
well from a line drawing as from a shaded image [3].

In the past decade, there has been a large amount of

work on computer-generated line drawings, including

suggestive contours [4], ridge-valley lines [5], apparent

ridges [6], principal and suggestive highlights [7], photic

extremum lines (PELs) [8] and demarcating curves [9], etc.

These methods generate feature lines on 3D surfaces by

computing either the second order (such as suggestive

contours and highlights) or third order (such as ridge-valley

lines, apparent ridges, PELs and demarcating curves)

derivatives of certain surface-related properties. Typically,

the derivatives have to be calculated on-the-fly by discrete

differential geometry [10], [11]. The computations usually

are expensive when the high order derivatives are involved.

Thus, the existing third order feature lines can hardly be

used for interactive graphics applications.

Besides the object-space feature lines, image-space algo-
rithms also draw much attention. For instance, Salisbury et al.
[12] represented the pen-and-ink drawings with a gray-scale
image, augmented by a set of discontinuity segments, along
with a stroke texture to produce consistent drawings at any
scale and resolution. One distinctive advantage of image-
space algorithms is that the algorithm complexity is image-
resolution dependent, making them amenable for hardware
acceleration [13]. It also provides an efficient way to map
screen-space patterns onto 3D models [14], and to convey
both the geometry and material [15]. Furthermore, image-
space line drawings usually are computationally efficient by
avoiding the expensive computations of surface derivatives,
as most object-space algorithms do. Thus, image-space
algorithms can easily be used to render animated models in
real time. However, image-space algorithms often suffer from
pixel-level artifacts and are difficult for shape stylization.

This paper presents an efficient object space algorithm to
generate view-dependent line drawings for interactive
graphics applications. Our method is inspired by an
analogy with image edge detection. Loosely speaking, we
aim to simulate the Laplacian-of-Gaussian (LoG) edge
detector in surface to extract view-dependent feature lines
in object-space. The LoG operator can highlight regions of
rapid intensity change while reducing the sensitivity to
noise, and has proven to be an effective solution for image
enhancement [16]. We define Laplacian lines as a set of
points, where the Laplacian of the diffuse illumination
vanishes, and the gradient magnitude is greater than certain
user-specified threshold. Laplacian lines inherit the advan-
tages of the LoG operator by employing a smoothing
preprocessing to reduce the high frequency noise prior to
the differentiation step. They provide considerably abstrac-
tive visual information and suppress distracting details.

Similar to apparent ridges, PELs and demarcating
curves, Laplacian lines are third-order features that require
third-order derivatives of the underlying surfaces. How-
ever, in sharp contrast to the other third-order features that

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 7, JULY 2011 993

. L. Zhang is with the Institute of Graphics and Image, Hangzhou Dianzi
University, Hangzhou 310018, China. E-mail: lzhang@cad.zju.edu.cn.

. Y. He and J. Xia are with the School of Computer Engineering, Nanyang
Technological University, 50 Nanyang Avenue, BLK N4, Singapore
639807. E-mail: {yhe, xiaj0002}@ntu.edu.sg.

. X. Xie was with the School of Computer Engineering, Nanyang
Technological University, 50 Nanyang Avenue, BLK N4, Singapore
639807.

. W. Chen is with the State Key Laboratory of Computer Aided Design and
Computer Graphics (CAD&CG), Zhejiang University, Hangzhou, China
310058. E-mail: chenwei@cad.zju.edu.cn.

Manuscript received 7 Oct. 2009; revised 2 Apr. 2010; accepted 27 Apr. 2010;
published online 8 Sept. 2010.
Recommended for acceptance by L. Kobbelt.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2009-10-0237.
Digital Object Identifier no. 10.1109/TVCG.2010.118.

1077-2626/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

need to compute the derivatives on-the-fly, all the third-
order derivatives of Laplacian lines can be completely
precomputed. In particular, we show that the Laplacian of
diffuse illumination is equivalent to the dot product of
Laplacian of normals and the lighting vector. Note that
Laplacian of surface normals is view-independent, and thus
can be precomputed. As a result, the runtime Laplacian line
extraction algorithm is just as simple as the conventional
silhouette extraction algorithm, i.e., simply replacing the
surface normal with Laplacian of normal.

The proposed Laplacian line is a general framework that
can be applied to both surface and volumetric models. The
key step in Laplacian line extraction algorithm is to
compute the Laplacian of normals. For the surface case,
we take advantage of the recently developed mesh Laplace
operator [17], and show that it is much more robust than the
conventional cotangent Laplacian operator. For the volume
case, the underlying data are represented by the implicit
function. Computing the Laplace-Beltrami operator is not as
easy as the explicit representation. Using Weatherbrun’s
result [18], we derive a closed form formula to compute the
Laplacian of normals in the volumetric data.

We conduct a wide range of experiments on real-world
and synthetic data sets and demonstrate the capability of
Laplacian lines to illustrate large-scale surface and volume
models. Fig. 1 shows Laplacian lines and several other
popular feature lines. Our approach not only generates
visually pleasing results, but also is more efficient than the
existing approaches.

The major contributions of this paper include:

. We generalize LoG edge detector to 3D surfaces, and
define Laplacian lines as the zero-crossing points of
Laplacian of illumination.

. We show that Laplacian of illumination is equal to
the dot product of Laplacian of surface normals and
the viewing vector, yielding an efficient Laplacian
line extraction algorithm, since Laplacian of surface
normals can be precomputed.

. By employing the recently developed mesh Laplace
operator [17], our Laplacian line extraction algo-
rithm is robust and insensitive to irregular tessella-
tion. Furthermore, the users can globally control the
number of extracted lines by specifying the Gaussian
kernel size.

. We also define Laplacian lines for volumetric data
sets and derive a closed form formula to compute the
Laplacian of normals in implicit surface. Based on our
theoretical results, we develop an algorithm to extract
volumetric Laplacian lines without isosurface extrac-
tion. Following Burns et al.’s line tracing algorithm
[19], our volumetric Laplacian lines can be drawn
interactively with the user-specified isovalues.

The rest of this paper is organized as follows: We briefly
review the related work in Section 2 and define the
Laplacian lines in Section 3. We present the algorithms to
extract Laplacian lines from surfaces and volumes in
Section 4 and Section 5, respectively. Experimental results
are presented in Section 6. We compare the proposed
Laplacian lines with other popular feature lines in Section 7.
Finally, we conclude our work and highlight the future
work in Section 8.

2 PREVIOUS WORK

There exists extensive literature in computer-generated line
drawings and their applications. We refer the readers to
Rusinkiewicz et al.’s SIGGRAPH course notes [2] for a
comprehensive list.

2.1 Object-Space Line Drawing

The object-space feature lines, usually, are defined by a
differential equation on the 3D surfaces. Silhouettes show
the strongest cues with model-to-background distinction
[20] [21]. However, silhouettes alone are quite limited in
conveying shape, since they cannot capture the structure and
complexity of the shape interior. DeCarlo et al. [4] proposed
suggestive contours that naturally extend contours and
convey the shape effectively. To address the problem that
suggestive contours do not appear in the convex regions,
DeCarlo and Rusinkiewicz [7] introduced highlight lines
which complement contours and suggestive contours.
Ridge-valley lines are powerful shape descriptors but
independent of the view point [5]. Judd et al. [6] proposed
apparent ridges that elegantly generalize ridge-valley lines
with view-dependent features. Aiming at line drawing

994 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 7, JULY 2011

Fig. 1. Laplacian lines (LL) are a set of object-space, view-dependent
feature lines, which generalize the Laplacian-of-Gaussian (LoG) edge
detector to 3D surfaces and volumes. Laplacian line is efficient in that
most expensive computations can be preprocessed and the runtime
complexity for LL extraction algorithm is similar to the silhouette
extraction. (a)-(d) View-dependent line drawings on 3D surface. (e)-
(g) View-dependent line drawings from the volumetric data where the
user specifies two isovalues (colored in black and blue). Note that
silhouettes are rendered in all drawings in this paper, if not specially
stated. Testing platform: a PC with 3.0 GHz CPU and 2.0 G memory.
(a) Suggestive contours (13:6fps). (b) Apparent ridges (2:6fps). (c) PELs
(2:0fps). (d) Laplacian lines (16:9fps). (e) Silhouettes (4:3fps).
(f) Suggestive contours (2:8fps). (g) Laplacian lines (3:9fps).

simplification, Ni et al. [22] proposed view-dependently
controllable feature lines using preconstructed multiresolu-
tion mesh. Inspired by the Canny edge detector, Xie et al. [8]
proposed photic extremum lines (PEL) on 3D surfaces.
Similar to apparent ridge, PEL is also a third-order feature
line, and thus computationally expensive. Kolomenkin et al.
[9] defined demarcating curves as the zeros of the normal
curvature in the curvature gradient direction. In their recent
work [23], Kolomenkin et al. considered the surface as an
unknown smooth manifold, on top of which is placed a local
height image. Then the relief edge is defined as the edges of
the local height image. They showed that relief edges are
continuous and smooth, and very promising for artifact
illustration in archeology [23]. Kalogerakis et al. [24]
proposed a real-time and highly parallel method to compute
curvatures and their derivatives for deforming objects. This
method is ideal for deforming objects with temporal
coherence by accurately predicting the curvatures and their
derivatives. However, for static objects, this property does
not hold, and the computation for surface curvatures and
their derivatives is still expensive. Recently, Zhang et al.
presented a GPU method to compute PELs in real time [25].

2.2 Image-Space Line Drawing

Image-space approaches, usually, are easy to implement,
since the complicated surface derivatives computations can
be avoided. Saito and Takahashi [26] pioneered a method to
extract feature lines, using image processing techniques.
Buchanan and Sousa [27] proposed the edge buffer data
structure, which enables highlighting various feature lines
on a polygonal model. Raskar et al. [28] presented a novel
NPR camera, which detects depth edges using multiflash
images. Winnemöller et al. [29] presented an automatic,
real-time video and image abstraction framework, using
difference-of-Gaussian edges. Lee et al. [15] proposed an
algorithm to automatically extract lines at appropriate
scales from abstract shading. Recently, Vergne et al. [30]
proposed a novel image-space local shape descriptor to
enhance surface depiction.

2.3 NPR from Volume Illustration

Besides surface rendering, nonphotorealistic rendering
techniques have been widely used for volumetric data sets.
Ebert and Rheingans [31] pioneered the volume illustration
approach by combing the physics-based illumination model
with NPR techniques to enhance important features. Later
on, Svakhine and Ebert [32] improved the volume illustra-
tion by incorporating many feature enhancements at
interactive speed. Lu et al. [33] presented a framework for
interactive direct volume illustration system that simulates
traditional stipple drawing. Nagy et al. [34] presented an
approach that automatically generates line drawings and
Toon shading to interactively enhance the important
features in volumetric data sets. Bruckner and Gröller [35]
presented a fully dynamic illustration environment for
volumetric data sets. Nagy and Klein [36] proposed a high-
quality algorithm to render silhouettes. Schein and Elber
[37] developed an adaptive algorithm to model and
visualize silhouettes from volumetric data with B spline
functions. Burns et al. [19] presented an efficient algorithm
to draw contours and suggestive contours from volumetric
data without extracting the isosurfaces. Dong et al. [38]

presented a surface hatching technique for medical volume
data. Chen et al. [39] presented a shape-aware volume
illustration framework by taking the shape variation into
consideration. Inspired by traditional visual and line
drawing techniques in medical illustration, Svakhine et al.
[40] presented efficient algorithms to effective emphasis/
de-emphasis of data and convey their spatial relationship.

3 DEFINITION OF LAPLACIAN LINES

The key question for a computer-generated line drawing
algorithm is: Where do we draw the lines? Cole et al. [41]
conducted a comparative study on where artists made line
drawings to convey 3D shapes. They registered a large
number of artistic drawings with rendered 3D models and
then quantitatively compared the artistic drawings with
computer-generated lines, such as occluding contours,
suggestive contours, apparent ridges, and Canny edges.
The result of the study showed that the Canny edges [42],
characterizing the significant changes in illumination,
provide the strongest cues for artists to draw lines [41].
This observation motivates a research direction that gen-
eralizes the feature detection from 2D images to 3D surfaces.

Inspired by the Canny edge detector [42], Xie et al. [8]
proposed photic extremum lines (PELs) that characterize
significant changes in the illumination. Given a 3D surface
S and the illumination function I : S ! IR defined on S,
they defined PELs as a set of points on the 3D surface,
where the variation of illumination in the direction of its
gradient reaches the local maximum [8], i.e.,

DdkrIðpÞk ¼ 0 and DdDdkrIðpÞk < 0;

where r denotes the surface gradient and d ¼ rI=krIk. As
shown in [8], PELs can produce high quality line drawings
for surfaces and volumetric data sets. However, they are
computationally expensive due to the involvement of
the third and fourth order derivatives. Furthermore, the
discrete differential geometry based mesh derivatives are
sensitive to noise and irregular tessellation. As a result, a
well tessellated and smooth mesh is required in [8].

To improve the performance of PELs and develop an
efficient and robust edge detector on 3D surfaces, this paper
presents Laplacian lines, which generalizes the Laplacian of
Gaussian (LoG) edge detector [43] from 2D images to 3D
surfaces. In the 2D image setting, the given image is first
convoluted by a Gaussian function and then the zero-
crossing of the Laplacian are defined as the edge point.
Then, we define Laplacian lines as follows:

Definition. The Laplacian lines are a set of points p on the 3D
surface S (with at least C3 continuity), where Laplacian of
illumination 4I passes through zero, and the gradient
magnitude krIk is greater than the user-specified threshold
� , i.e.,

4IðpÞ ¼ 0 and krIðpÞk � �; ð1Þ

where 4 is the Laplace-Beltrami operator on S.

Note that the illumination I in (1) is a general
illumination function, such as the popular Phong illumina-
tion and global illumination. However, to simplify the

ZHANG ET AL.: REAL-TIME SHAPE ILLUSTRATION USING LAPLACIAN LINES 995

computation, we make two assumptions on the light source
and the material of the underlying surface.

. The light source is a point light with unit intensity
and locates at the view point e. Then, for any point
p 2 S, the light vector l is equal to the viewing vector
e� p.

. The surface exhibits only diffuse reflection, namely,
the illumination IðpÞ ¼ nðpÞ � lðpÞ, where nðpÞ is the
normal of the point p 2 S.

We show that the above assumptions lead to a nice
property to separate the view-independent component from
the Laplacian of illumination. Given the local coordinate
system xi of S, let @i :¼ @=@xi be the partial derivative along
xi. Let gij, gij, bij denote the covariant metric tensor,
contravariant metric tensor, and coefficient of second
fundamental form, respectively. Let H be the mean
curvature. Then, Laplacian of illumination 4I can be
simplified as follows:

4IðpÞ ¼ 4ðn � ðe� pÞÞ
¼ ð4nÞ � ðe� pÞ þ n � 4ðe� pÞ þ gij@in � @jðe� pÞ
¼ ð4nÞ � ðe� pÞ � n � 4pþ gijbij
¼ ð4nÞ � ðe� pÞ � 2Hn � nþ 2H

¼ ð4nÞ � ðe� pÞ ¼ ð4nÞ � l:
ð2Þ

Note that 4n is view-independent and can be precom-
puted. Therefore, the runtime Laplacian line extraction is
more efficient than that of PELs by avoiding on-the-fly time-
consuming derivative computation. In particular, the
complexity of Laplacian line extraction is similar to the
silhouette extraction, where only the Laplacian of normal is
replaced by the normal.

Remark. We use the viewing vector l rather than the
normalized vector l=klk in (2) to simplify the derivation.
As shown in Fig. 3, the Laplacian of the illuminations
4ðn � lÞ and 4ðn � l=klkÞ are highly consistent after
scaling both to the same range. Therefore, the corre-
sponding Laplacian lines are also consistent.

4 COMPUTING SURFACE LAPLACIAN LINES

4.1 Robust Laplace Operator

This section shows the detailed algorithm to compute the
Laplacian lines on 3D surfaces. The key component in

Laplacian line extraction is to compute the Laplacian of
surface normal 4n. Many discrete Laplace-Beltrami opera-
tors exist [44]. However, the popular cotangent Laplace
operator depends highly on the mesh tessellation and tends
to be sensitive to noise [10]. As shown in Fig. 2, the given
table cloth model is smooth but with a irregular tessellation
(as revealed by the color map of the 4I shown in Fig. 2b).
As a result, the extracted Laplacian lines contain many short
segments and are not visually pleasing (Fig. 2c).

To develop a robust Laplacian line extraction algorithm,
we use the mesh Laplace operator proposed in [17]: Given a
function f : M ! IR defined on the mesh M, the mesh
Laplace operator LhM is defined as follows:

LhMfðpÞ ¼
1

4�h2ðpÞ
X
4i2S

Að4iÞ
3

X
q24i

e�
kq�pk2

4hðpÞ ðfðqÞ � fðpÞÞ; ð3Þ

where Að4iÞ denotes the area of triangle 4i and hðpÞ is a
positive quantity, which intuitively corresponds to the size
of the neighborhood considered at point p. When mesh M

is a sufficient approximation of a smooth underlying
surface S, LhM is close to the continuous Laplace-Beltrami
operator [17].

The Gaussian kernel h in (3) is closely related to the
number of extracted Laplacian lines. Intuitively speaking, h
is a smoothing factor, the larger the value of h, the smoother

996 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 7, JULY 2011

Fig. 2. Mesh Laplace operator versus cotangent Laplace operator. The popular cotangent Laplacian operator is sensitive to the mesh triangulation,
and thus does not generate smooth scalar field4I. The resulting Laplacian lines contain many short segments and are not smooth (see (b) and (c)).
Mesh Laplace operator, on the contrary, is robust to irregular tessellation and generates smooth Laplacian of illumination and Laplacian lines (see (d)
and (e)). (a) Shaded image. (b) The color map of 4I, using the cotangent Laplace operator. (c) LL of (b). (d) The color map of 4I, using the mesh
Laplace operator. (e) LL of (d).

Fig. 3. Comparison of 4ðn � lÞ and 4ðn � l=klkÞ. (a) Illumination of 1
dn � l,

where d is a user-specified constant to scale n � l into a reasonable
range such that we can view it. We set d to be the distance from the view
point to the center of the object. (b) Standard illumination I ¼ n � l=klk.
Note that4ðn � l=klkÞ and4ðn � lÞ have different ranges. Thus, we scale
both into ½0; 1�, and then use color map to visualize them as shown in (c)
and (d). The scaled Laplacians are highly consistent.

the Laplacian of illumination 4I and fewer the number of
Laplacian lines we obtain. Fig. 4 shows the smoothing effect
of specifying h from small to large value.

We would like to emphasize the the analogy between the
LoG edge detector and mesh Laplace operator. In edge
detection, the image is first convoluted with a Gaussian
filter to reduce the noise, and then followed by the discrete
Laplace operator to detect the zero-crossing points. In mesh
Laplace operator, see (3), the Gaussian filter with kernel h is
also applied to the function value. In some sense, the mesh
Laplace operator is a Laplace-of-Gaussian operator.

Compared to the cotangent Laplacian, the mesh Laplace
operator is numerically stable due to the positivity and
smoothing effects of the weights. As shown in Fig. 2, mesh
Laplace operator produces smoother 4I and Laplacian
lines than the cotangent Laplacian. Though the mesh
Laplace operator is more computationally expensive than
cotangent Laplace operator, 4n can be computed in the
preprocessing step and the runtime line extraction algo-
rithm is still simple and efficient.

4.2 Laplacian Line Extraction Algorithm

Given a triangle mesh M, our Laplacian line extraction
algorithm takes two parameters, h (see (3)) and � (see (1)),
and consists of four consecutive steps:

1. (Preprocessing) For each vertex, compute 4n using
(3).

2. For each vertex p, compute the dot product of the
viewing vector v ¼ e� p and 4nðpÞ, and detect the
zero-crossing of v � 4nðpÞ.

3. For each zero-crossing point p, compute krIðpÞk
and filter out the ones whose magnitude of gradient
is less than the user-specified threshold.

4. Trace the filtered zero-crossings to get the Laplacian
lines.

Step 1. We compute the vertex normal, using the
conventional discrete algorithm, i.e., weighted sum of the
per-face normals. Similar to LoG edge detector, where a
Gaussian filter is applied to reduce the image noise, we can
also reduce the illumination noise by smoothing the vertex
normals using the Gaussian or bilateral filter. In our
experiments, we found that the illumination I ¼ n � l is
smooth for clean data. Note that the mesh Laplace operator
also has smoothing effects; thus, smoothing normals for

clean data is not necessary. However, for noisy meshes or
meshes with very bad triangulation, the discrete normal
algorithm leads to poor results, and this smoothing step is
very helpful to reduce the noise of illumination. Then, we
compute 4n, using (3) for each vertex. The parameter h is
specified by the user.

Step 2. In the runtime step, we first compute the dot
product of the viewing vector v and 4n for each vertex. To
locate the zero-crossings, we follow the method in [5]. For
an edge ½v1;v2�, if 4Iðv1Þ4Iðv2Þ < 0, we use linear
interpolation to locate a zero-crossing on edge ½v1;v2� with

p ¼ j4Iðv1Þjv2 þ j4Iðv2Þjv1

j4Iðv1Þj þ j4Iðv2Þj
;

and consider p a point on a Laplacian line. Note that this
step is the same as the conventional silhouette extraction
algorithm, except that the normal n is replaced by the
Laplacian of normal 4n.

Step 3. For each zero-crossing point p, compute the
magnitude of gradient. In our prototype system, we
implement two methods to compute the gradient magni-
tude. For smooth meshes with good triangulation, we use
the popular discrete differential geometry approach [10],
[11]. For the noisy mesh, we solve the following optimiza-
tion problem:

min
X

kp�qk�h
jfðqÞ � fðpÞ � rfðpÞ � ðq� pÞj2; ð4Þ

where q 2M is within the distance h of p. Note that the
computation of gradient magnitude is only applied to the
zero-crossing points.

Step 4. We trace the detected zero-crossing to get the
feature lines. We use the following integral to measure the
strength of each line:

Z
krIkds �

X
i

krIðpiÞk þ krIðpiþ1Þk
2

kpi � piþ1k: ð5Þ

Finally, we delete the feature lines whose strengths are less
than the user-specified threshold � as shown in Fig. 5.

5 COMPUTING VOLUME LAPLACIAN LINES

Given a volume data set and a user specified isovalue,
volume Laplacian line is equivalent to the surface Laplacian
lines on the corresponding isosurface. Thus, a naı̈ve

ZHANG ET AL.: REAL-TIME SHAPE ILLUSTRATION USING LAPLACIAN LINES 997

Fig. 4. The size of Gaussian kernel h in mesh Laplace operator is closely
related to the number of extracted Laplacian lines. The larger the kernel
size, the more smoothing effects obtained, thus, the fewer number of
Laplacian lines extracted. The model is normalized to a unit cube.
(a) h ¼ 0:01. (b) h ¼ 0:03. (c) h ¼ 0:05.

Fig. 5. Trimming the Laplacian lines with the user-specified threshold � .
Increasing the threshold results in less number of extracted Laplacian
lines.

solution would be to extract the isosurface and then apply

the surface Laplacian line algorithm. However, this strategy

cannot lead to a real-time line drawing system even for

volume data sets of small size, since it is not practical to pre-

extract all isosurfaces and then precompute the Laplacian of

normals of the extracted isosurfaces. A better solution is to

directly compute the volume Laplacian lines in the volume

data sets without isosurface extraction.
In this section, we derive the formula to directly compute

the volume Laplacian lines. We use superscripts for vector

components and subscripts for partial derivatives with

respect to xi, i ¼ 1; 2; 3. Let f : � � IR3 ! IR denote the

volumetric data set. Given an isovalue c, define F ðx1; x2;

x3Þ ¼ fðx1; x2; x3Þ � c and denote S ¼ fðx1; x2; x3ÞjF ðx1; x2;

x3Þ ¼ 0g the isosurface. To avoid ambiguity in this section,

we use rS and 4S to denote the gradient and Laplace-

Beltrami operators defined on the isosurface S andr and4
the operators defined in euclidean space IR3.

Let g ¼ rF ¼ ðF1; F2; F3Þ be the gradient of F and g ¼
kgk be the magnitude. Then the normal of S is given by

n ¼ �gT =g. The Gaussian curvature K and mean curvature

H of S are given by [45], [46]:

K ¼ �
det

H gT

g 0

����
����

g4
; ð6Þ

H ¼ gHgT � g2TraceðHÞ
2g3

: ð7Þ

where H ¼ ðFijÞi;j¼1;2;3 is the 3	 3 Hessian matrix of F .
By the elegant formula of Weatherbrun [18], we compute

the Laplacian of normal as

4Sn ¼ ð2K �H2Þn� 25SH; ð8Þ

where 5SH ¼ 5H � ð5H � nÞn is on the tangent plane.
By straightforward computation, the gradient of mean

curvature 5H ¼ ðH1; H2; H3Þ is

Hk ¼
X3

i¼1

X3

j¼1

Aijk

2g3
� 3Bk

2g5
FiFjFij

� �

�
X3

i¼1

Fiik
2g
� Bk

2g3
Fii

� �
; k ¼ 1; 2; 3;

ð9Þ

where Aijk ¼ FiFjkFij þ FjFikFij þ FiFjFijk and Bk ¼P3
i¼1 FiFik.
In order to efficiently and robustly compute the

derivatives Fi, Fij, and Fijk, we extend Vieville and

Faugeras’s algorithm [47] from 2D images to 3D volume

data sets. Given a voxel ðx1
0; x

2
0; x

3
0Þ, we can approximate the

local function value by Taylor expansion

~fðx1; x2; x3Þ � f þ
X3

i¼1

fid
i

þ
X3

i¼1

X3

j¼1

fij
2
didj þ

X3

i¼1

X3

j¼1

X3

k¼1

fijk
6
didjdk

ð10Þ

with di ¼ xi � xi0, and f , fi, fij, and fijk denote the function

and its derivatives at the voxel ðx1
0; x

2
0; x

3
0Þ. Then the function

value of a nearby voxel ðx1
1; x

2
1; x

3
1Þ is approximately equal to

the integration of ~f over the voxel space, i.e.,

fðx1
1; x

2
1; x

3
1Þ �

Z 1
2

�1
2

Z 1
2

�1
2

Z 1
2

�1
2

~fðx1
1 þ x1; x2

1 þ x2;

x3
1 þ x3Þdx1dx2dx3:

ð11Þ

Let

Pi
n ¼

Z xi1�xi0þ1
2

xi
1
�xi

0
�1

2

ðxiÞn

n!
dxi:

Then, we have

fðx1
1; x

2
1; x

3
1Þ � f þ

X3

i¼1

ðfiP i
1 þ fiiP i

2 þ fiiiP i
3Þ

þ
X3

i¼1

X
i6¼j
ðfijP i

1P
j
1 þ fiijP i

2P
j
1Þ

þ f123P
1
1P

2
1P

3
1 :

ð12Þ

There are 20 unknowns in (12). Given sufficient number of
neighboring voxels, we can convert the problem to an
overconstrained linear system Ax ¼ b that can be solved by
least-square as x ¼ ðATAÞ�1ATb. Note that ðATAÞ�1AT is
the same for all voxels, and only b contains the neighboring
voxel values. In this way, each derivative is actually solved
by a simple filter operation. The filter size is related to the
quality of the derivatives. Usually, the larger the filter size,
the smoother and more robust the computed derivatives. In
our experiments, we found that 5	 5	 5 or 7	 7	 7 filters
lead to satisfying results for all tested models.

The algorithm for extracting Laplacian lines is as follows:
Step 1. (Preprocessing) Compute for each voxel the

derivatives Fi, Fij, Fijk by filtering the volumetric data set,
and then compute 4Sn, using (8).

Step 2. To trace volumetric Laplacian lines, we follow
Burns et al.’s seed-and-traverse approach [19]. First, a set of
random voxels are chosen as seeds. For each seed, we check
whether it intersects with the isoline, i.e., the intersection
between the isosurface and the surface satisfying 4SI ¼ 0.
We adopt the Marching Line algorithm [48] to perform such
test. Specifically, we check whether each face of the under-
lying voxel intersects the isoline. If yes, we trace the
neighboring voxel with respect to that face and then
we perform a similar test on that voxel. The tracing procedure
continues until we get back to the seed voxel or reach the
volume boundary. Note that this step is the same as that of

998 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 7, JULY 2011

Fig. 6. Extracting volume Laplacian lines from the Head model. (a) The
volume rendering result. (b) The volume rendering of 4I. (c) Volume
Laplacian lines corresponding to (b).

silhouette extraction from volumetric data sets in [19], except
that we replace normals n with Laplacian of normals4Sn.

Step 3. We test the visibility of the extracted Laplacian
lines by the ray casting approach as described in [19]. We
cast a ray from each point of extracted Laplacian lines to
the view point and test whether the ray intersects with the
isosurface of the current isovalue. Note that this approach
does not need to explicitly construct the isosurface. Then
the user can choose to either draw the hidden Laplacian

lines with a different color from the visible lines or simply
ignore them.

Step 4. Finally, we compute k 5 Ik for each point of
extracted Laplacian lines by means of finite differences, and
filter out the false lines with small intensity change
k 5 Ik � � , where � is the user-specified threshold.

As stated earlier, the proposed volume Laplacian lines
can be computed directly in the volumetric data sets
without isosurface extraction. The user only needs to

ZHANG ET AL.: REAL-TIME SHAPE ILLUSTRATION USING LAPLACIAN LINES 999

Fig. 7. Laplacian lines show comparable results with other object-space feature lines and are more efficient. Ridge-valley lines, suggestive contours
and apparent ridges are rendered with the rtsc software [4]. (a) Suggestive contour. (b) Ridge-valley lines. (c) Apparent ridges. (d) PELs.
(e) Laplacian lines.

specify the desired isovalue(s) and the threshold � to filter
out the false Laplacian lines. Note that Xie et al. computed
the PELs in volumetric data sets, using isosurface extraction
that is time consuming and very difficult to control as the
users cannot see the extracted lines in real-time [8].
Compared to PELs, the proposed volumetric Laplacian
lines are a truly view-dependent line in volumetric data
sets. Furthermore, it is flexible, efficient and easy to
implement. Fig. 6 shows the volumetric Laplacian lines of
the head model.

6 EXPERIMENTAL RESULTS

We tested Laplacian lines for a wide range of surface and
volumetric models on a PC with 3.0 GHz CPU and 2 GB
memory.

6.1 Surface Laplacian Lines

For surface models, our current CPU-based implementation
can generate Laplacian lines at interactive frame rates for all
test models with up to three million faces. We compared the
performance of Laplacian lines with other popular view-
dependent feature lines, such as silhouettes, suggestive
contours, apparent ridges and PELs with the same hard-
ware configuration. To make the comparison fair, we tune
up the parameters of each feature line (except the silhou-
ette) to make the generated line draws have similar
appearances (i.e., similar number of lines). Fig. 7 shows
the visual comparison of various feature lines on 3D
surfaces, and Table 1 shows the complexity of the test
models and the detailed performance evaluation. As
mentioned in Section 4, Laplacian line extraction algorithm
is similar to the silhouette, except that a trimming process is
required to remove short and false Laplacian lines. Also,
Laplacian lines usually contain much more number of
features than silhouettes. Therefore, rendering Laplacian
line is slower than rendering silhouettes. Suggestive
contour is a second-order feature that the radial curvature
vanishes. In the implementation of suggestive contours, the

viewing vector is first projected to the tangent plane and
then the radial curvature is computed as the linear
combination of principal curvatures which are also pre-
computed. Laplacian lines only compute the dot product of
the viewing vector and the precomputed 4n; thus, it is
more efficient than suggestive contours. Apparent ridges
and PELs are computationally expensive due to the third-
and fourth-order derivatives are computed at runtime.
Thus, Laplacian lines are much more efficient than apparent
ridges and PELs.

Fig. 8 shows Laplacian lines for various large-scale 3D
surfaces of complex geometry and fine details. Laplacian
lines can also be naturally combined with NPR shading to
convey the shapes more effectively. As shown in Fig. 9,
most of the Laplacian lines coincide with the edges of the
Toon shading that makes the rendering results natural and
visually pleasing.

6.2 Volume Laplacian Lines

Since volumetric data sets usually contain much more
number of data (i.e., voxels) than that of the surface (i.e.,
vertices); it requires great care to design the volumetric
Laplacian line algorithm. Given the user-specified isovalue,
the brute-force algorithm simply goes through every voxel
that both satisfies (1) and intersects the isosurface. As
pointed out in [19], the extracted lines in volumetric data set
with N voxels is of order

ffiffiffiffiffi
N3
p

, i.e., the majority of the voxels
do not contain the lines. Thus, the brute-force algorithm is
not efficient and can hardly lead to real-time line drawing
even for small scale data sets. To improve the performance,
we followed the seed-and-traversal algorithm proposed by
Burns et al. [19]. Rather than checking every voxel, the seed-
and-traversal approach starts from random seeds. If one
seed happens to contain the point of Laplacian line, then
we start to trace the Laplacian line from the current seed.
The tracing will either come back to the seed or stop on the
boundary of the volumetric data sets. We typically used
50,000 random seeds per frame, as suggested by Burns et al.
[19]. And in our experiment, the number of random seeds
does not affect the performance too much. What dominates
the efficiency is the number of features in the underlying
model. This approach works well in practice and does not
generate the flickering artifacts, as demonstrated in the
figures and accompanied video.

Table 2 shows the statistics of Laplacian lines, silhouettes
and suggestive contours on volumetric data sets. Note that
the performance of the seed-and-traversal approach de-
pends highly on the number of extracted lines. Given the
same view point, Laplacian lines, silhouettes and suggestive
contours usually generate very different number of ex-
tracted lines. Our experiments show that Laplacian lines
and suggestive contours usually contain much more lines
than silhouettes. Thus, the widely-used fps (frames-per-
second) is not enough to measure the true complexity of the
above lines. In our experiments, we also compute the
points-per-frame ppf to measure the total number of
extracted feature points for each frame. Thus, the product
pps ¼ ppf 	 fps measures the total number of extracted
feature points per second (points-per-second). As shown in
Table 2, the inequality ppsLL > ppsS > ppsSC holds for most
of the test models. The reason ppsLL > ppsSC is that

1000 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 7, JULY 2011

TABLE 1
Performance Measurement of Surface Laplacian Lines

The statistics for silhouettes, suggestive contours and apparent ridges
are obtained using the rtsc software [4]. #4: number of triangles; fS ,
fSC , fAR, fPEL and fLL are the frame-per-second (fps) for silhouettes,
suggestive contours, apparent ridges, PELs and Laplacian lines,
respectively.

ZHANG ET AL.: REAL-TIME SHAPE ILLUSTRATION USING LAPLACIAN LINES 1001

Fig. 9. Conveying 3D surfaces, using Laplacian lines and Toon shading.

Fig. 8. Conveying 3D surfaces, using Laplacian lines.

volumetric Laplacian lines have a smaller per-voxel
computation cost than suggestive contours. On the other
hand, ppsLL > ppsS because Laplacian lines are much more
denser than silhouettes. Consequently, most randomly
selected seed voxels do not intersect the underlying isoline.
Such computation costs are not included in the pps metric.
Fig. 10 shows the performance of suggestive contours and
volumetric Laplacian lines.

To make a more fair comparison, we also tried a simple
bucket based approach. Given a volumetric model, we
uniformly divide its voxel value range into a set of intervals.
And for each interval, we use a bucket to store all voxels
whose values are in the interval. When the user specifies an
isovalue at runtime, only the voxels in the corresponding
bucket are processed. In this approach, the same number of
voxels is processed for all feature lines. As shown in Table 3,
volumetric Laplacian lines have very similar efficiency with
silhouettes, and are faster than suggestive contours.

Fig. 11 shows volumetric Laplacian lines on various
volumetric data sets. We use color to distinguish Laplacian
lines of different isovalues. For more interactive demos,
please see the accompanying video.

7 COMPARISONS AND DISCUSSIONS

7.1 Comparison to Silhouettes

Silhouettes are a set of first-order feature lines that show
strongest cues with model-to-background distinction. La-
placian lines are different from silhouettes in general in that
they are third-order features. However, Laplacian lines
coincide with silhouettes in certain areas.

In case of the point light, the lighting vector l is
equivalent to the viewing vector v, i.e., l ¼ v ¼ e� s. Note
thatrH is on the tangent plane of p. Let w be the projection
of l onto the tangent plane of p. By Equation (8), Laplacian
lines satisfy

ð4nÞ � l ¼ ð2K �H2Þn � l� 2ðrHÞ � l
¼ ð2K �H2Þn � v� 2ðrHÞ �w
¼ ð2K �H2Þn � v� 2DwH ¼ 0:

ð13Þ

Clearly, the Laplacian lines coincide with the silhouettes if
and only if DwH ¼ 0, i.e., the mean curvature is constant or
near constant along the viewing direction. This explains
that the silhouettes usually coincide with the Laplacian
lines for the local neighborhood of points, where the mean
curvature does not change too much along the viewing
direction (see Fig. 12).

From the implementation point of view, Laplacian line
extraction is very similar to the silhouette extraction except
that the normal n is replaced by Laplacian of normal 4n,
and filtering and trimming are applied to the zero-crossing
points. Note that the number of zero-crossing points is
much less than the number of the vertices in the given
model, and these post-processing steps take only a small

1002 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 7, JULY 2011

TABLE 3
Performance of Volumetric Laplacian Lines, Suggestive

Contours, and Silhouettes Using the Bucket-Based Approach

Fig. 10. Comparison of the performance of volumetric Laplacian lines
with suggestive contours, using the seed-and-traverse approach [19].
(a) Suggestive contours. (b) Laplacian lines. pps, the number of
extracted feature points per second, roughly measures the complexity
of the per-voxel computation. The computation of Laplacian lines is less
expensive than suggestive contours.

TABLE 2
Performance of Volumetric Laplacian Lines, Suggestive Contours, and Silhouettes Using the Seed-and-Traversal Approach [19]

The fps is proportional to the number of processed voxels. ppf is the average number of processed points per frame and pps ¼ ppf 	 fps measures
the total number of extracted points per second.

amount of time. Therefore, rendering Laplacian lines is
slightly slower than that of silhouettes. Our experimental
results show that the performance of rendering silhouettes
(in terms of fps) is 1.2 times more than the Laplacian lines
(see Table 1).

7.2 Comparison to Suggestive Contours

Suggestive contours are second-order features, which
naturally extend the contours in concave regions. Note that

the suggestive contours algorithm can also precompute the
curvature, and thus the performance of suggestive contours
is similar to Laplacian lines. However, suggestive contours
must be used together with silhouettes, since they cannot
illustrate salient features in convex regions. In contrast,
Laplacian lines work well on both convex and concave
regions. In many cases, Laplacian lines, without silhouettes,
can produce satisfactory rendering results.

7.3 Comparison to Ridge-Valley Lines, Apparent
Ridges, and PELs

Ridge-valley lines, apparent ridges, PELs and Laplacian
lines are third-order feature lines. Ridges and valleys are
curves where the surface bends sharply. Ridge-valley lines
are determined by the geometry and independent of the
view point, thus, they can hardly make a natural looking line
drawing in an animation sequence. By introducing view-
dependent curvatures, apparent ridges elegantly extend
ridge-valley lines, yielding more perceptually pertinent
results. PELs generalize the Canny edge detector to 3D
surface and characterize the significant changes of illumina-
tion. Note that the proposed Laplacian line approach is also
an extension of image edge detection. As expected, Lapla-
cian lines can generate similar results as PELs (see Figs. 13c

ZHANG ET AL.: REAL-TIME SHAPE ILLUSTRATION USING LAPLACIAN LINES 1003

Fig. 11. Laplacian lines for volumetric data sets. Laplacian lines of different isovalues are rendered in different colors.

Fig. 12. Laplacian lines are very close to silhouettes, if the mean
curvature is constant or near constant along the viewing direction, i.e.,
DwH ¼ 0, where w is the projection of viewing vector to the tangent
plane. (a) Mean curvature. (b) Silhouettes. (c) LL. (d) Silhouettes þLL.

and 13d). From the computation point of view, apparent

ridges and PELs compute the third-order derivatives on-the-

fly, using discrete differential geometry. As the Laplacian of

normals can be precomputed, extracting Laplacian lines is

much faster than apparent ridges and PELs.

7.4 Comparison to Edge Detection

The effect of Laplacian lines is different from its 2D counter-

part. Compared to conventional image edge detection, our

Laplacian lines approach is numerically stable and does not

suffer from the precision issues, as shown in Fig. 13b. In terms

of 3D shape stylization, Laplacian lines can be easily

combined with other NPR techniques, such as Toon shading

(see Fig. 9), stylization, hatching, diffusion curves, etc.

7.5 Limitations

Laplacian lines generalize the LoG edge detector, and thus,
inherit its limitations as well. For instance, Laplacian lines
cannot convey the corners effectively. Fig. 14 shows
Laplacian lines and other feature lines for a cube model with
sharp and round corners/edges, respectively. Laplacian line
works for the sharp corners; however, it fails for the round
corners. For such a case, ridge-valley line and apparent ridge
seem to be the best choice. Furthermore, Laplacian line is not
suitable for time-variant or deformable models, where the
normals and their Laplacians cannot be precomputed.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new line drawing
technique, based on the LoG edge detector. We showed that
Laplacian of illumination can be decomposed so that the
time-consuming computation of Laplacian of normals can
be precomputed. As a result, the runtime Laplacian line
extraction is as simple as the conventional silhouette
extraction. As Laplacian lines contain much more informa-
tion than silhouettes, rendering Laplacian lines is slightly
slower than that of silhouettes. In addition, by taking
advantage of the recently-developed mesh Laplace operator
[17], we can produce robust and smooth Laplacian lines on 3D
complicated models. Then, we generalized Laplacian lines to
volumetric data sets and develop the algorithm to extract
volumetric Laplacian lines without isosurface extraction. We
also revealed the relationship between Laplacian lines and
silhouettes and showed that Laplacian lines coincide with
silhouettes, if the mean curvature does not change too much
along the viewing direction. Our experimental results
demonstrate that Laplacian lines are an effective view-
dependent feature and are promising to convey large scale
models for interactive graphics applications.

We will pursue several research directions in the future.
First, our current implementation can be easily improved by
employing a GPU-based acceleration scheme due to the
parallel nature of Laplacian line extraction. Second, each
kind of computer-generated line has its own advantages
and disadvantages. Thus, there is a need to investigate

1004 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 7, JULY 2011

Fig. 13. Comparison of Laplacian lines with LoG edge detector and
PELs. Applying LoG edge detector directly to the rendered image does
not generate satisfactory results. Note the short lines in (b). Clearly, the
object space algorithm (d) is much more robust. In addition, PELs and
Laplacian lines are both generalized from image edge detectors. As
shown in (c) and (d), the results are very similar. However, Laplacian
lines are much more efficient than PELs. (a) Shaded model. (b) LoG
edges. (c) PELs (0:7fps). (d) Laplacian lines ð6:0fpsÞ.

Fig. 14. Laplacian lines work for the sharp corners, however, they do not convey the rounded corners effectively. (a) Shaded image. (b) Ridge-valley
lines. (c) Apparent ridges. (d) Suggestive contours. (e) LoG edge detector. (f) Laplacian lines.

effective techniques to combine various feature lines to

better convey the shape.

ACKNOWLEDGMENTS

This work was supported by the Singapore National
Research Foundation Interactive Digital Media R&D Pro-
gram, under research Grant NRF2008IDM-IDM004-006.
Long Zhang was supported by NSFC 60903085 and an
Open Project Program of the State Key Lab of CAD&CG
(A0905). Wei Chen was supported by 973 program of China
(2010CB732504) and NSFC 60873123. Part of the work has
been presented in ACM Symposium on Interactive 3D
Graphics and Games (I3D ’09) [1]. The authors thank the
anonymous reviewers for their careful reviews and con-
structive comments, and Princeton and Rutgers Computer
Graphics Groups for providing the rtsc software. The
surface models are courtesy of Stanford University, Aim@
Shape, and artist3d.com. The volume models are courtesy
of www.volvis.org and Stefan Roettger. Xuexiang Xie was
with the School of Computer Engineering, Nanyang
Technological University at the time of this work. He is
now deceased.

REFERENCES

[1] L. Zhang, Y. He, X. Xie, and W. Chen, “Laplacian Lines for Real-
Time Shape Illustration,” Proc. ACM Symp. Interactive 3D Graphics
and Games (I3D ’09), pp. 129-136, 2009.

[2] S. Rusinkiewicz, F. Cole, D. DeCarlo, and A. Finkelstein, “Line
Drawings from 3D Models,” Proc. ACM SIGGRAPH Course Notes,
2008.

[3] F. Cole, K. Sanik, D. DeCarlo, A. Finkelstein, T. Funkhouser, S.
Rusinkiewicz, and M. Singh, “How Well Do Line Drawings Depict
Shape?” Proc. ACM SIGGRAPH ’09, pp. 1-9, 2009.

[4] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella,
“Suggestive Contours for Conveying Shape,” Proc. ACM
SIGGRAPH, pp. 848-855, 2003.

[5] Y. Ohtake, A. Belyaev, and H. Seidel, “Ridge-Valley Lines on
Meshes via Implicit Surface Fitting,” Proc. ACM SIGGRAPH,
pp. 609-612, 2004.

[6] T. Judd, F. Durand, and E. Adelson, “Apparent Ridges for Line
Drawing,” Proc. ACM SIGGRAPH, 2007.

[7] D. DeCarlo and S. Rusinkiewicz, “Highlight Lines for Convey-
ing Shape,” Proc. Non-Photorealistic Animation and Rendering
(NPAR ’07), pp. 63-70, 2007.

[8] X. Xie, Y. He, F. Tian, H.S. Seah, X. Gu, and H. Qin, “An
Effective Illustrative Visualization Framework Based on Photic
Extremum Lines (PELs),” IEEE Trans. Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1328-1335, Nov. 2007.

[9] M. Kolomenkin, I. Shimshoni, and A. Tal, “Demarcating Curves
for Shape Illustration,” ACM Trans. Graphics, vol. 27, no. 5, Dec.
2008.

[10] M. Meyer, M. Desbrun, P. Schr, and A. Barr, “Discrete Differential
Geometry Operators for Triangulated 2-Manifolds,” J. Visualiza-
tion and Math., 2002.

[11] S. Rusinkiewicz, “Estimating Curvatures and Their Derivatives on
Triangle Meshes,” Proc. Second Int’l Symp. 3D Data Processing,
Visualization and Transmission (3DPVT ’04), pp. 486-493, 2004.

[12] M. Salisbury, C. Anderson, D. Lischinski, and D.H. Salesin, “Scale-
Dependent Reproduction of Pen-and-Ink Illustrations,” Proc. 23rd
Ann. Conf. Computer Graphics and Interactive Techniques, pp. 461-
468, 1996.

[13] R. Raskar and M. Cohen, “Image Precision Silhouette Edges,”
Proc. Symp. Interactive 3D Graphics, pp. 135-140, 1999.

[14] S. Breslav, K. Szerszen, L. Markosian, P. Barla, and J. Thollot,
“Dynamic 2D Patterns for Shading 3D Scenes,” ACM Trans.
Graphics, vol. 26, no. 3, pp. 20-28, 2007.

[15] Y. Lee, L. Markosian, S. Lee, and J.F. Hughes, “Line Drawings via
Abstracted Shading,” ACM Trans. Graphics, vol. 26, no. 3, p. 18,
2007.

[16] R. Haralick and L. Shapiro, Computer and Robot Vision. Addison-
Wesley Publishing Company, 1992.

[17] M. Belkin, J. Sun, and Y. Wang, “Discrete Laplace Operator on
Meshed Surfaces,” Proc. Symp. Computational Geometry, 2008.

[18] C. Weatherbrun, Differential Geometry of Three Dimensions, vol. 1.
Cambridge Univ. Press, 1927.

[19] M. Burns, J. Klawe, S. Rusinkiewicz, A. Finkelstein, and D.
DeCarlo, “Line Drawings from Volume Data,” ACM Trans.
Graphics, vol. 24, no. 3, pp. 512-518, 2005.

[20] A. Hertzmann and D. Zorin, “Illustrating Smooth Surfaces,” Proc.
27th Ann. Conf. Computer Graphics and Interactive Techniques,
pp. 517-526, 2000.

[21] B. Gooch, P.J. Sloan, A. Gooch, P. Shirley, and R.F. Riesenfeld,
“Interactive Technical Illustration,” Proc. ACM Symp. Interactive
3D Graphics, pp. 31-38, 1999.

[22] A. Ni, K. Jeong, S. Lee, and L. Markosian, “Multi-Scale Line
Drawings from 3D Meshes,” Proc. ACM Symp. Interactive 3D
Graphics and Games (I3D), pp. 133-137, 2006.

[23] M. Kolomenkin, I. Shimshoni, and A. Tal, “On Edge Detection on
Surfaces,” Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR ’09), pp. 2767-2774, 2009.

[24] E. Kalogerakis, D. Nowrouzezahrai, P. Simari, J. McCrae, A.
Hertzmann, and K. Singh, “Data-Driven Curvature for Real-Time
Line Drawing of Dynamic Scene,” ACM Trans. Graphics, vol. 28,
no. 1, pp. 1-24, Jan. 2009.

[25] L. Zhang, Y. He, and H.-S. Seah, “Real-Time Computation of
Photic Extremum Lines (PELs),” The Visual Computer, vol. 26,
no. 6, pp. 399-407, 2010.

[26] T. Saito and T. Takahashi, “Comprehensible Rendering of 3D
Shapes,” Proc. ACM SIGGRAPH, vol. 24, no. 4, pp. 197-206, 1990.

[27] J.W. Buchanan and M.C. Sousa, “The Edge Buffer: A Data
Structure for Easy Silhouette Rendering,” Proc. First Int’l Symp.
Non-Photorealistic Animation and Rendering (NPAR ’00), pp. 39-42,
2000.

[28] R. Raskar, K.-H. Tan, R. Feris, J. Yu, and M. Turk, “Non-
Photorealistic Camera: Depth Edge Detection and Stylized
Rendering Using Multi-Flash Imaging,” ACM Trans. Graphics,
vol. 23, no. 3, pp. 679-688, Aug. 2005.

[29] H. Winnemöller, S.C. Olsen, and B. Gooch, “Real-Time Video
Abstraction,” ACM Trans. Graphics, vol. 25, no. 3, pp. 1221-1226,
2006.

[30] R. Vergne, R. Pacanowski, P. Barla, X. Granier, and C. Schlick,
“Light Warping for Enhanced Surface Depiction,” ACM Trans.
Graphics, vol. 28, no. 3, 2009.

[31] D. Ebert and P. Rheingans, “Volume Illustration: Non-
Photorealistic Rendering of Volume Models,” Proc. IEEE Conf.
Visualization, pp. 195-202, 2000.

[32] N.A. Svakhine and D.S. Ebert, “Interactive Volume Illustration
and Feature Halos,” Proc. Pacific Conf. Computer Graphics and
Applications, pp. 347-354, 2003.

[33] A. Lu, C.J. Morris, D.S. Ebert, P. Rheingans, and C.D. Hansen,
“Non-Photorealistic Volume Rendering Using Stippling Techni-
ques,” Proc. IEEE Conf. Visualization, pp. 211-218, 2002.

[34] Z. Nagy, J. Schneider, and R. Westermann, “Interactive Volume
Illustration,” Proc. Vision, Modeling, and Visualization Workshop
(VMV ’09), pp. 497-504, 2002.

[35] S. Bruckner and M.E. Gröller, “Volumeshop: An Interactive
System for Direct Volume Illustration,” Proc. IEEE Conf. Visualiza-
tion, pp. 671-678, 2005.

[36] Z. Nagy and R. Klein, “High-Quality Silhouette Illustration for
Texture-Based Volume Rendering,” Proc. Workshop Computer
Graphics (WSCG ’04), pp. 301-308, 2004.

[37] S. Schein and G. Elber, “Adaptive Extraction and Visualization of
Silhouette Curves from Volumetric Datasets,” The Visual Compu-
ter: Int’l J. Computer Graphics, vol. 20, no. 4, pp. 243-252, 2004.

[38] F. Dong, G.J. Clapworthy, H. Lin, and M.A. Krokos, “Nonphotor-
ealistic Rendering of Medical Volume Data,” IEEE Computer
Graphics and Applications, vol. 23, no. 4, pp. 44-52, July 2003.

[39] W. Chen, A. Lu, and D.S. Ebert, “Shape-Aware Volume Illustra-
tion,” J. Computer Graphics Forum, vol. 26, no. 3, pp. 705-714, 2007.

[40] N.A. Svakhine, D.S. Ebert, and W.M. Andrews, “Illustration-
Inspired Depth Enhanced Volumetric Medical Visualization,”
IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 1,
pp. 77-86, Jan./Feb. 2009.

[41] F. Cole, A. Golovinskiy, A. Limpaecher, H.S. Barros, A.
Finkelstein, T. Funkhouser, and S. Rusinkiewicz, “Where Do
People Draw Lines?,” ACM Trans. Graphics, vol. 27, no. 3, 2008.

ZHANG ET AL.: REAL-TIME SHAPE ILLUSTRATION USING LAPLACIAN LINES 1005

[42] J. Canny, “A Computational Approach to Edge Detection,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 6,
pp. 679-698, Nov. 1986.

[43] D. Marr and E. Hildreth, “Theory of Edge Detection,” Proc. Royal
Soc. London, vol. 207, pp. 187-217, 1980.

[44] G. Xu, “Discrete Laplace-Beltrami Operators and Their Conver-
gence,” Computer Aided Geometric Design, vol. 21, no. 6, pp. 767-
784, Oct. 2004.

[45] A.G. Belyaev, A.A. Pasko, and T.L. Kunii, “Ridges and Ravines on
Implicit Surfaces,” Proc. Int’l Conf. Computer Graphics, pp. 530-535,
1998.

[46] R. Goldman, “Curvature Formulas for Implicit Curves and
Surfaces,” Computer Aided Geometric Design, vol. 22, no. 7, pp. 632-
658, 2005.

[47] T. Vieville and O.D. Faugeras, “Robust and Fast Computation of
Unbiased Intensity Derivatives in Images,” Proc. Second European
Conf. Computer Vision (ECCV ’92), pp. 203-211, 1992.

[48] J.-P. Thirion and A. Gourdon, “The 3D Marching Lines
Algorithm,” Graphical Models and Image Processing, vol. 58, no. 6,
pp. 503-509, 1996.

Long Zhang received the PhD degree in 2008
from the Department of Mathematics, Zhejiang
University. He is an assistant professor in the
School of Computer Science and Technology,
Hangzhou Dianzi University. His current re-
search interests include NPR, expressive ren-
dering, and visualization.

Ying He received the BS and MS degrees in
electrical engineering from Tsinghua University,
China, and the PhD degree in computer
science from the State University of New York
(SUNY), Stony Brook. He is currently an
assistant professor at the School of Computer
Engineering, Nanyang Technological University,
Singapore. His research interests include com-
puter graphics, computer-aided design, and
scientific visualization. His major works include

manifold splines, polycube parameterization, volumetric mapping, and
computer-generated line drawings. More information about his
research can be found at http://www.ntu.edu.sg/home/yhe.

Jiazhi Xia received the BS and MS degrees
from Zhejiang University, in 2005 and 2008,
respectively. He is currently working toward the
PhD degree at the School of Computer En-
gineering, Nanyang Technological University,
under the supervision of Dr. Ying He. His
research interests include computer graphics
and human-computer interaction.

Xuexiang Xie received the BS degree in
computer science from Zhejiang University in
1996 and the PhD degree in computer engineer-
ing from Nanyang Technological University in
2009. His research interests include computer
graphics, scientific visualization, and computer
vision.

Wei Chen received the PhD degree in July 2002
from the Fraunhofer Institute for Graphics,
Darmstadt, Germany, as a joint PhD student,
under the supervision of Prof. Qunsheng Peng
and Prof. Georgios Sakas. From July 2006 to
September 2008, he was a visiting scholar at
Purdue University, working in PURPL with Prof.
David S. Ebert. Since December 2009, he is
working as a full professor in the State Key
Laboratory of Computer-Aided Design and

Computer Graphics at Zhejiang University, P.R. China. He has
performed research in computer graphics and visualization, and has
published more than 60 peer-reviewed journal and conference papers in
the last five years. His current research interests include scientific
visualization, visual analytics, and biomedical image computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1006 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 7, JULY 2011

