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JF-Cut: A Parallel Graph Cut Approach for
Large-scale Data

Yi Peng, Li Chen, Fang-Xin Ou-Yang, Wei Chen and Jun-Hai Yong

Abstract—Graph Cut has proven to be an effective scheme to solve a wide variety of segmentation problems in
graphics community. The main limitation of conventional graph-cut implementations is that they can hardly handle large-
scale datasets because of high computational complexity. Even though there are some parallelization solutions, they
commonly suffer from the problems of low parallelism (on CPU) or low convergence rate (on GPU).
In this paper, we present a novel graph cut algorithm that leverages a parallelized jump flooding (JF) technique
and a heuristic pushing and relabeling scheme to enhance the components of the graph cut process, namely,
multi-pass relabel, convergence detection and block-wise push-relabel. The entire process is parallelizable on GPU,
and outperforms existing GPU-based implementations in terms of global convergence, information propagation, and
performance. We design an intuitive user interface for specifying interested regions in cases of occlusions when handling
volumetric data or video sequences. Experiments on a variety of datasets, including images (up to 15K × 10K), videos
(up to 2.5K × 1.5K × 50), and volumetric data, achieve high quality results and a maximum 164-fold speedup over
conventional approaches.

Index Terms—Graph Cut, Jump Flooding, Visibility, Segmentation
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1 INTRODUCTION

G Raph Cut can be employed to efficiently
solve a wide variety of graphics and com-

puter vision problems, such as segmentation,
shape fitting, colorization, multi-view recon-
struction, and many other problems that can
be formulated to maximum flow problems [1].
The basic idea of graph cut is to partition the
elements into two disjoint subsets by finding
the minimum cut using maximum flow algo-
rithms. Graph cut is advantageous compared
with other energy optimization methods due
to its high accuracy and high efficiency. By
leveraging incremental or multi-level schemes
[2], [3], the complexity of user interactions can
be greatly reduced.
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Existing graph cut methods can be classi-
fied into two categories: augmented path based
methods that are solely workable in CPU [1],
[4], [5]; push-relabel based that can be accel-
erated with GPU [6], [7]. The former normally
requires a global data structure, like priority
queue and dynamic trees [8], and thus is in-
tractable for parallelization and handling large-
scale dataset. On the other hand, using the
push-relabel scheme may lead to slow conver-
gence rate, or yield non-global optimal result-
s. It is also inefficient in tackling large-scale
datasets.

Early work on image graph cut, such as
lazy snapping [2] and grabcut [9] perfor-
m pre-segmentation or use GMM(Gaussian
Mixed Model) components to reduce the da-
ta scale. Analogously, video-cutout [10] intro-
duces a hierarchical mean-shift based prepro-
cess to support interactive segmentation, and
volume-cutout [11] takes a watershed over-
segmentation. All of them require a time-
consuming pre-processing and may lead to
approximated results.

This paper introduces a parallel graph cut
approach that is capable of handling large-

http://cgcad.thss.tsinghua.edu.cn/jackiepang/
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scale datasets with fast convergence rate. The
key idea is to accelerate the propagation of
flow in the graph with three schemes. First,
a jump flooding technique is employed to im-
prove Breadth-First Search (BFS) based oper-
ations. Second, a heuristic push-relabel tech-
nique that uses block-wise alternation and in-
block iteration to facilitate quick convergence
to the optimal result. Third, a convergence
detection technique is designed to guarantee
global convergence. The main gain of these
schemes is that the information propagation
speed throughout the network is greatly in-
creased. The entire process is parallelizable and
can be implemented in GPU, making it a quite
challenging solution for large-scale datasets.

In summary, the main contributions of this
paper are twofold:

1) A GPU-based graph cut scheme that com-
bines jump flooding, heuristic push /rela-
bel and convergence detection to achieve
high performance and quality;

2) An interactive graph cut based data seg-
mentation system that allows for intuitive
data selection, interaction and segmen-
tation for large-scale datasets (images,
videos and volumetric data).

In the remainder of this paper, we first take a
brief review of the literature in Section 2. Our
approach is elaborately introduced in Section
3, followed by the user interaction in Section
4. Experimental results and comparison are
presented in Section 5. Section 6 concludes our
approach and highlights the future work.

2 RELATED WORK

2.1 Augmenting Path Based Methods
The kernel of graph cut is to solve a maximum
flow problem, which is typically addressed
by finding augmented paths in the residu-
al network. The pioneered Ford-Fulkerson al-
gorithm has a computational complexity of
O(Emax |f |), where E and f denote number
of edges and the maximum flow, respective-
ly. It, however, can only handle weights with
integer values. Thereafter, Edmonds-Karp al-
gorithm takes the Breadth-First Search(BFS) to
find the augmented path with a complexity
of O(V E2), and is feasible for weights with

floating point values. Similarly, Dinitz blocking
flow algorithm also takes the BFS, but differs
from others in that it searches multiple shortest
path in each iteration, and has a computa-
tional complexity of O(V 2E). The complexity
can be further reduced into O(V E log V ) by
employing a dynamic tree technique. Further,
a complexity of O(V E) can be achieved by
combining the binary blocking flow algorithm
and the KRT algorithm [12].

For most applications in computer vision,
graph is sparse and structured (image and
video). Thus, Boykov-Kolmogorov (BK) algo-
rithm [4] leverages a search tree structure, and
achieves almost 10 times faster than Dinitz
blocking flow algorithm. The grid-cut algorith-
m [1] further refines the data structure and
optimizes the locality usage, leading to 4 times
speedup. The main limitation of augmented
path based methods is that a global data struc-
ture needs to be maintained (like array, tree or
sets), and thus has a low parallelization This
makes these methods inefficient for large-scale
datasets. There have been many solutions for
this problem. For instance, lazy snapping [2]
employs over-segmentation to reduce compu-
tation. Grab cut [9] adopts the GMM model to
reduce the data size. Other solutions employ
hierarchical structures (like hierarchical mean-
shift [10] or narrow band algorithm [3]) to
achieve multi-level cut. Note that, this kind
of approaches improve the performance at the
cost of the accuracy.

2.2 Push-Relabel Based Methods

The push-relabel scheme is an alternative
scheme for solving the maximum flow prob-
lems. The basic version has a complexity of
O(V 2E). If an FIFO-based heuristic algorithm
is used, the complexity becomes O(V 3). Using
dynamic tree structure leads to a complexity
of O(V Elog(V 2/E)). The H-PRF algorithm se-
lect the highest-label nodes for discharge, and
achieves the highest performance [13]. General-
ly, the serial push-relabel scheme is faster than
Dinitz algorithm, but is much slower than the
Boykov-Kolmogorov algorithm [4].
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2.3 Parallelization methods

Parallelization is a widely employed mech-
anism to speedup the computation. Because
the push-relabel scheme is more compatible
with parallelization than the augmented path
scheme, it has been widely refined to be GPU
implementations such CUDA-Cut [6] and Fast-
Cut [7], [14] approaches. The earliest CUDA-
Cut algorithm [6] is a straightforward imple-
mentation of the conventional Push-relabel al-
gorithm. It performs push followed by pul-
l to avoid data conflict and achieves 10-fold
speedups over BK. The disadvantage is that it
may yield inaccurate results since this algorith-
m doesn’t guarantee global optimum. The fast-
cut algorithm [7] introduces wave push and
global relabel to improve CUDA-Cut. How-
ever, it has a low convergence rate, thus is
insufficient to handle large datasets.

3 JUMP FLOODING-CUT

3.1 Preliminary Knowledge

Push-Relabel: starts with a excess flow (or
preflow, allowing a node to have more flow
coming into it than going out), push excess
flow closer towards sink (if excess flow cannot
reach sink, push it backwards to source), until
the maximum flow is found. Because different
active nodes (with excess flows) can be pushed
or relabeled simultaneously, this algorithm has
a high parallelism. Moreover, several heuristic-
s, such as Global Relabel and Gap Heuristics, can
be used to further improve the performance.

Global Relabel: computes height values
by performing Breadth-first Search (BFS) start-
ing from the sink. This heuristic technique
can greatly reduce the number of iterations,
because it implicitly find out the augmenting-
paths thus pushing a node in the optimal
direction. However, it should be used in the
earlier stage. Because more iterations leads to
better height field (formed by the height of each
node). If we use it later, the height field will be
recomputed and may become worse. Moreover,
the high cost of this technique doesn’t allow us
to use it frequently.

Convergence Detection: starts from
source (or sink), performs BFS on the residual
network to check whether a path from
source to sink exists. No existence means
the minimum cut is found, which partitions
the graph into two parts. Otherwise, the
push-relabel should be continued. Generally
starting from source is better, because we can
do labeling at the same time. Otherwise, we
should reverse the results to get the object
and all the neutral nodes (belong neither to
foreground, nor background) will be included.

Jump Flooding: computes the Voronoi Di-
agram in parallel. It can quickly compute the
nearest seed point(NSP) of each point. The
main idea is to replace the NSP of the current
node with the nearest NSP of its neighbors’
from a certain distance, which is halved in each
iteration. Jump Flooding (JF) can be used to ac-
celerate BFS in computing the nearest distance.
Given the nearest point, the nearest distance
can be derived if all the neighboring points are
connected with each other. Section 3.2 gives an
example of using JF to accelerate BFS.

3.2 Overview
Our approach consists of two parts as shown
in Fig.1: jump flooding based BFS and heuristic
push-relabel.

The first part is a basic module of our al-
gorithm, which improves the performance of
multi-pass global relabel and convergence de-
tection.

The second part is the core algorithm of our
approach. This part computes the maximum
flow in an efficient way especially for large
datasets, Section 3 presents more details. All
these algorithms are parallelized with OpenCL
(Open Computing Language), and a variety of
datasets are used to evaluate our approach.

We also design an intuitive user interface to
help users specify foreground and background
elements based on visibility, described in Sec-
tion 4. If the users are not satisfied with the
results, they can do local refinement.

3.3 Jump Flooding Based BFS
We use JF to accelerate Global Relabel and
Convergence Detection, because both of them
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Fig. 1. Approach Overview. Our approach consists of two parts: jump flooding based BFS and
heuristic push-relabel (the bottom part).

relies on BFS. In general, for GPU computing,
the dataset is often divided into blocks to fit
the hardware architecture for high efficiency.
When the dataset is small, using CPU to finish
BFS is enough. However, when the size be-
comes much larger, the increasing cost should
receive additional consideration. For instance,
if the data size is 1024 × 1024 × 512 and the
maximum block size is 256, we have to deal
with nearly four million blocks. Accordingly,
we introduce a Jump Flooding based algorithm
(JF-BFS), which includes five steps:

F-1 Initialize all the seed blocks that contain seed
nodes;

F-2 Perform jump flooding;
F-3 For each block, compute its nearest distance to the

seed blocks and the distance histogram;
F-4 Perform the scan primitive on the distance his-

togram;
F-5 Build the block list according to the prefix sum of

distance histogram.

Note that, all the above steps can be per-
formed on GPU. In the first step, a seed block
is defined to have at least one foreground or
background node, whose Nearest Seed Block
(NSB) is initialized as itself. Other blocks’ NSBs
are set to infinity. In the next step, we perform
the standard JFA. In the third step, for each
block, we compute the distance to its NSB as
the nearest distance to all the seed blocks. Then,
we compute the distance histogram and label
each block a corresponding order in the bin.
Finally, we compute its prefix sum [15] and

(a) Jump Size 2 (b) Direction X (c) Direction Y

(d) Jump Size 1 (e) Direction X (f) Direction Y

Fig. 2. Jump Flooding. 2(a)-2(c): the 1st flood-
ing with Size = 2. 2(d)-2(f): the 2nd flooding with
Size = 1.

calculate the final positions of all the blocks in
the list.

Fig.2 illustrates the process taking a 4 × 4
network as an example. The seed blocks are
(1,0) and (2,3) and the number inside a block
shows the current distance to the NSB. In this
case, the JFA includes two iterations. The step
size in the first iteration is 2 (Fig.2(a)-2(c)) while
in the second iteration it is halved to be 1
(Fig.2(d)-2(f)). In the first iteration, according
to the neighbors in the x direction, the NSBs
of block (3, 0) and (0, 3) are updated to (1, 0)
and (0, 3) respectively. After that, block (0, 1),
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(2, 1), (0, 3) and (2, 3) are updated by taking
the vertical neighbors into consideration. In
the second iteration, we process these blocks
in the same way using a smaller step size.
Finally, eight blocks colored in yellow have the
same NSB - block (1, 0) while the other blocks
colored in blue are the nearest to block (2, 3),
see Fig.2(f). The corresponding pseudo code is:

Algorithm 1 Jump Flooding(Size,Nearest)
p← Global-ID
q← Nearest[xp, yp]
d← Taxicab-Distance(p,q)
for each pt ∈ Neighbors(p, Size) do

qt ← Nearest[xpt , ypt ]
dt ← Taxicab-Distance(p,qt)
if dt < d then
d← dt
q← qt

end if
end for
Nearest[xp, yp]← q

3.4 Heuristic Push-Relabel
The basic idea of Heuristic Push-Relabel is to
process a block like a node, meaning that the
push and relabel operations are repeated in-
side a block until it is saturated. Compared
to the global push or relabel scheme, ours
has two advantages. First, the synchronization
operations in a block can avoid data conflict
for push and relabel, and local memory can
be efficiently used to cache intermediate data.
Second, alternate push and relabel improves
the propagation speed of information because
a node along each direction is pushed at the
same time.

This scheme is more efficient compared to
Wave Push which only handles one direction
each time. Moreover, it allow us to take advan-
tage of data locality thus jumping some of the
directions which needn’t to be processed.

Our method includes 4 steps:
H-1 Perform JF-BFS to build the block list and perform

back-and-forth relabel;
H-2 Repeat H-3 k1 times, then use JF-BFS to build the

list, then perform convergence detection;
H-2-1 Perform JF-BFS to build the block list, repeat

H-2-2 until no more nodes are marked;

H-2-2 Perform back-and-forth detection;
H-2-2-1 If any background node found, return to

H-2-1, otherwise repeat H-2-1-2 until no
more nodes are marked;

H-2-2-2 Mark the current node according to the
status of its neighbors.

H-3 Repeat H-4 k2 times, count active blocks, use Scan
to build two block lists for even blocks and odd
blocks;

H-3-1 For each block, set the flag by checking
whether it contains active nodes;

H-3-2 Perform scan primitive on the flags;
H-3-3 Build two lists for even and odd blocks

respectively;
H-4 Perform push-relabel for even blocks and odd

blocks respectively;
H-4-1 Repeat H-4-1 until no more nodes can be

pushed;
H-4-2 Relabel even nodes and odd nodes respec-

tively, then push in the same way.

3.4.1 Back-and-Forth Relabel
In this step, we first use JF-BFS to build the
block list for subsequent scheduling. Based on
the list, we perform a back-and-forth relabel,
which means first process the blocks in an
ascending order and then in a descending or-
der. It can help us to find out the paths that
often change direction. Because after we finish
relabel in one direction, the paths that pass
along the same direction have already been
found, and if we try an opposite direction then,
we can easily find out all the paths that change
their directions only once. For JF-BFS, the seed
blocks are defined as including background
nodes (with negative excess flow).

3.4.2 Convergence Detection
This step detects global convergence while la-
beling the cutting results by checking whether
there exists an augmenting-path in the residu-
al network. If so, we need further actions to
increase the flow, otherwise we have found
the maximum flow. We perform JF-BFS staring
from the foreground nodes because it can both
mark the final results and avoid neutral nodes
(see Section 3.1).

The principle implied by these sub-steps is
that when we get the maximum flow(or mini-
mum cut), the residual network will be divided
into two parts, and for each part all the nodes
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should be connected, and all the edges belong
to the minimum cut should be saturated. It
means we can start from one part, repeat ex-
panding to decide whether we have met the
global optimum.

This step ensures that our algorithm can find
the maximum flow thus get the optimal results.
In the implementation, due to the expensive
cost of this procedure, we repeat step 3 k1 times
and then perform it once. k1 defaults to 4 and
can be specified by users. Generally, it would
be better to increase k1 when data size becomes
much larger.

3.4.3 Active Block Counting
Active Block Counting is designed to reduce
the computational cost by build a block list
for active blocks, which is mainly based on the
two facts: during the process only some of the
nodes can be pushed or relabeled, and as more
data is processed the number of active nodes
will decrease. So only process active nodes
efficiently improve the performance. Because
active-blocks change slowly, we can do one
counting after k2 iterations. k2 whose default
value is 4 can also be specified by users. This
procedure includes three sub-steps:

Here, we use two assistant flags to record the
detection results. If the current block contains
active nodes, we set its corresponding flag(even
flag corresponds to even block) to be 1, other-
wise to be 0. After that, we perform scan to
compact the flags into a scheduling lists.

3.4.4 Block-Wise Push-Relabel
As mentioned earlier, iterative push-relabel in-
side a block takes advantage of locality and in-
crease the propagation speed of flow compared
with Wave Push as shown in Fig.3.

The kernel code (2D-version) is shown in
Algorithm 2. We first load the data from global
memory to local memory, then perform iter-
ative push-relabel, and finally write back the
data. At each iteration, there are two stages:
relabel and push. In the relabel stage, we first
check whether a node is active, and then pro-
cess even nodes and odd nodes respectively,
because these two kinds of nodes have data
conflict with each other. In the push stage, we

(a) Wave Push (b) Block-Wise Push

Fig. 3. Heuristic Push. 3(a): only handles one
direction each time. 3(b): jumps some of the
directions which needn’t to be processed.

Algorithm 2 Push-Relabel(Node)
p← Local-ID
copy global Node to local Node′
d′ ← false
barrier()
while not d′ do
ta ← Active(Node′[xp, yp])
tp ← (xp + yp) mod 2
if ta and tp = 0 then
Relabel()

end if
barrier()
if ta and tp = 1 then
Relabel()

end if
d′ ← true
barrier()
ta ← Active(Node′[xp, yp])
if ta and tp = 0 and Push() then
d′ ← false

end if
barrier()
if ta and tp = 1 and Push() then
d′ ← false

end if
barrier()

end while
copy local Node′ to global Node
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process the nodes in the same way. All the
directions are tried one after another. When a
node becomes inactive after push in one direc-
tion, we skip over the following directions. In
this way, a lot of unnecessary computations can
be avoided. Then we process the nodes in the
same way.

4 USER INTERACTION

We design a user interface based on our ap-
proach for different datasets, see Fig.4. It can
help users mark foreground and background
based on visibility, build energy function ac-
cording to the scenario and finally shows the
graph results. Based on the results, users can
also make local refinements.

4.1 Labeling
For 3D datasets, it is quite difficult for users
to specify the foreground and background. The
conventional way is to mark the nodes slice
by slice. However, it takes users a long time
to specify. In our system, we provide users a
WYSIWYG way to do labeling (both for 2D
and 3D datasets). The basic idea is to mark
what users actually see based on visibility.
This technique is combined with ray casting
algorithm and users need to specify a visibility
threshold α (defaults to 0.25)

In ray casting algorithm, the integration for-
mula of the Absorption Plus Emission model [16]
is given by:

I(D) = I0

n∏
i=1

ti +
n∑
i=1

gi

n∏
j=i+1

tj (1)

Where ti and gi denote the transparency of
the ith segment and its glow respectively. The
corresponding front-to-back compositing algo-
rithm can be rewritten as follow:

ci =

{
0 i = 1
ci−1 + αi(1− αi−1)(ri, gi, bi, 1) 2 ≤ i ≤ n

(2)
where c is the color of the ith segment, and

vi = αi(1 − αi−1) is the opacity contribution
of this segment. We define it as the Visibility,
which is different from [17], [18]. If it is larger

than the visibility threshold α, we define its
neighboring nodes as what users want to mark.
This technique can be integrated with transfer
functions, so users can select the nodes with d-
ifferent depths at one time, which significantly
simplify the interactions.

4.2 Scenario-Driven Energy Function
Energy Function is used to define the capacity
of each edge in the graph, which measures the
similarity of different subsets. The generic form
of the energy function is given by:

E = λ
∑

R(p) +
∑

B(p, q) (3)

where R and B denote the region properties
and boundary properties respectively [19]. We
provide users different ways to build the ener-
gy function. For a specific scenario, users can
choose a best way to set up the model.

For scalar field data, we simplify the energy
function introduced by BK which uses proba-
bility distribution to measure the similarity and
has a low accuracy. We prefer to focus on the
continuity of a structure:

Cs(p, q) =

{
0 p, q ∈ F

⋃
B

exp(− (Ip−Iq)2
2σ2 ) otherwise

(4)

Es(p) =

 +Emax p ∈ F
−Emax p ∈ B
0 p ∈ U

(5)

where the nodes are divided into three
groups: F(foreground), B(background) and
U(unknown). Cs denotes the capacity of
neighbor-edge, Es denotes the excess flow of a
node, σ can be estimated as ”sampling error”.

For vector field data, we define the region
and boundary terms similar to Lazy Snapping
which measures the similarity in the feature-
space:

Cv(p, q) =

{
0 p, q ∈ F

⋃
B

1
1+‖vp−vq‖ otherwise (6)

Ev(p) =


+Emax p ∈ F
−Emax p ∈ B
λ

min ‖cBi −vp‖−min ‖cFi −vp‖
min ‖cBi −vp‖+min ‖cFi −vp‖

p ∈ U
(7)
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Fig. 4. User Interface. The JF-cut supports labeling and scenario-driven energy function.

Here Cv denotes the neighbor-capacity, Ev
denotes the excess flow and is defined by the
minimum distance to the center of a cluster
which the current node belongs to. These cen-
ters are computed by K-Means Clustering which
is also parallelized. It helps us extract key
features from the foreground and background,
so that the noises can be effectively restrained
which improves the accuracy of results. In this
algorithm, the number of clusters k defaults to
8, and the seed points are initialized using a
histogram equalization technique.

Our system also supports feature extraction,
which can convert a scalar data into a multi-
dimensional data. These features include gra-
dient, curvature [20] and so on.

5 RESULTS AND DISCUSSIONS
We implement an integrated system using
OpenCL 1.0 and QT 4.8. Our system supports
across heterogeneous platforms. The experi-
mental environment is: Windows 8 64bit with
Intel (R) Core i7 X 870 @ 2.93GHz and Nvidia
GeForce GTX TITAN @ 6GB (or ATI Radeon
HD 7990). Different kinds of datasets are used
to evaluate our method, and we compare our
algorithm with both CPU based methods and
GPU based methods.

5.1 Datasets
We use two kind of datasets, one of them is
a part of the benchmark provided by Grid-
Cut [1]. Below is the detail information of

TABLE 1
Benchmark Datasets

Name Scale Width Height Depth Max Flow Size (MB)

Flower(M)

1 x 1 600 450 1 1208089 3.35

4 x 4 2400 1800 1 7856011 53.5

16 x 16 9600 7200 1 50618597 856

Person(M)

1 x 1 600 450 1 880461 3.35

4 x 4 2400 1800 1 5042635 53.5

16 x 16 9600 7200 1 29042350 856

Sponge(M)

1 x 1 640 480 1 343591 3.81

4 x 4 2560 1920 1 1910718 60.9

16 x 16 10240 7680 1 10136071 975

Bone(U)

1 x 1 x 1 256 256 119 71344 111

2 x 2 x 2 512 512 238 1913780 892

Liver(U)

1 x 1 x 1 170 170 144 625447 59.5

2 x 2 x 2 340 340 288 3886049 476

Babyface(U)

1 x 1 x 1 250 250 81 222943 72.4

2 x 2 x 2 500 500 162 3316927 579

Adhead(U)

1 x 1 x 1 256 256 192 589368 180

2 x 2 x 2 512 512 384 3594110 1440

1) M - Middlebury College: http://vision.middlebury.edu/MRF/
2) U - University of Western Ontario: http://vision.csd.uwo.ca/data/

maxflow/

the datasets and the scaled-up versions of the
datasets. These datasets are used to test the
performance of different algorithms (TABLE 1).

Another set of datasets are downloaded from
the internet as shown in TABLE 2, which in-

http://vision.middlebury.edu/MRF/
http://vision.csd.uwo.ca/data/maxflow/
http://vision.csd.uwo.ca/data/maxflow/
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TABLE 2
Other Datasets

Name Width Height Depth Max Flow Size (MB)
Madagascar 10800 8100 1 13536344426 83.4

Lower Than Atlantis 9900 7500 1 26054700795 70.8
TimeScapes 2560 1440 30 80886496 105.0

THE CROODS 1920 1080 40 180301245 79.1
Life of PI 1920 1080 32 1178329527 63.2
MRBrain 256 256 109 29036 13.6
Lobster 301 324 56 238405 5.2

cludes high-resolution images, HD videos and
volume datasets.

We conduct experiments on these large
datasets to show the practicality and efficiency
of our method. Because our system only sup-
port 3D raw format currently, datasets need to
be converted into this format. An image can be
seen as a volume dataset that has only one slice,
and a video can be processed as a series of im-
ages. In these experiments, the foreground and
background are colored in magenta and green
respectively, the cut results are highlighted in
yellow.

Image Segmentation: The results of image
segmentation includes two parts, as shown in
Fig.5. The first part contains standard datasets
(from Middlebury) with provided energy func-
tion. In the second part the data sizes are much
larger, and we use the second clustering based
model to set up energy function. These datasets
come from NASA 1 2

Video Cutout: For video datasets, we use
the same model (clustering based) to build
energy function. These videos are clipped from
official trailers of different films such as THE
CROODS 4, TimeScapes 5. Life of Pi 6. Fig.6 shows
the cutout results.

Volume Segmentation: For volume
datasets (scalar field datasets), we use the
first model to set up energy function. Because
the augmenting-paths are much longer, the
computing costs are much higher compared

1. Lower Than Atlantis: http://thecelebculture.files.wordpress.
com/2013/08/a1posterlta.jpg

2. Madagascar: http://wallpaper.imgcandy.com/images/
233316-jessica-alba-wardrobe-malfunction-original-source-of-image.
jpg

4. TimeScapes - Trailer 2 4k 2560p: http://red.cachefly.net/
TimeScapes4K2560p.mp4

5. THE CROODS - Official Trailer 3: http://www.youtube.com/
watch?v=xrbwgn kRBo

6. Life of Pi - Trailer 2 Official: http://www.youtube.com/watch?
v=m7WBfntqUoA

TABLE 3
GPU Based Methods

Instance CUDA-Cut Fast Cut JF-Cut Speedup
Name % Total P/R P/R -/CUDA -/Fast
flower 73.6 48.6 9.7 4.2 11.5 2.3
4 x 4 67.3 622.2 262.4 90.0 6.9 2.9

16 x 16 - - 9636.7 2192.3 - 4.4
person 35.8 73.9 20.9 10.0 7.4 2.1

4 x 4 67.4 612.0 290.9 120.7 5.1 2.4
16 x 16 - - 12131.0 3403.6 - 3.6
sponge 100.0 48.7 5.4 4.4 11.0 1.2

4 x 4 97.3 637.3 151.7 31.4 20.3 4.8
16 x 16 - - 3689.5 595.3 - 6.2
bone - - 5643.6 616.9 - 9.1

2 x 2 x 2 - - 68712.3 6749.9 - 10.2
liver - - 6211.4 585.7 - 10.6

2 x 2 x 2 - - 165704.3 16441.2 - 10.1
babyface - - 7932.5 830.2 - 9.6
2 x 2 x 2 - - 104277.6 11309.2 - 9.2
adhead - - 17084.4 1654.6 - 10.3
2 x 2 x 2 - - 115991.0 10511.7 - 11.0

1) CUDA-Cut (v1.0) - http://cvit.iiit.ac.in/resources/cudacuts/

with images. The segmentation results of CT 7

and MRI 8 datasets are shown in Fig.7.

5.2 Performance
We first compare our method with CUDA-Cut
[6] and Fast-Cut [7], [14] which are GPU based
methods, and then with CPU based methods
BK and Grid Cut.

GPU Based Methods: CUDA-Cut pro-
vides two different implementations: atomic
(PushPull + Relbel) and stochastic (Push +
PullRelabel). We use the stochastic version to
compare, because it is faster. We also observe
that CUDA-Cut doesn’t guarantee global con-
vergence and it often outputs larger energies.
So we divide the minimum energy by its out-
put to measure the degree of approximation as
listed in the second column of TABLE 3.

We implement Fast-Cut using OpenCL and
extends it to support 3D datasets (Some of
the optimization techniques are deprecated for
generality). To be fair, we perform global rela-
bel once at the beginning, use the same block
size and mainly compare the cost on push-
relabel which is the major part of all GPU based
methods.

TABLE 3 shows the performance of CUDA-
Cut, Fast-Cut and our method with millisec-
ond precision. Because CUDA-Cut consumes
too much device memory, it can not handle

7. MRBrain: http://www-graphics.stanford.edu/data/voldata/
8. Lobster: http://www.volvis.org/

http://thecelebculture.files.wordpress.com/2013/08/a1posterlta.jpg
http://thecelebculture.files.wordpress.com/2013/08/a1posterlta.jpg
http://wallpaper.imgcandy.com/images/233316-jessica-alba-wardrobe-malfunction-original-source-of-image.jpg
http://wallpaper.imgcandy.com/images/233316-jessica-alba-wardrobe-malfunction-original-source-of-image.jpg
http://wallpaper.imgcandy.com/images/233316-jessica-alba-wardrobe-malfunction-original-source-of-image.jpg
http://red.cachefly.net/TimeScapes4K2560p.mp4
http://red.cachefly.net/TimeScapes4K2560p.mp4
http://www.youtube.com/watch?v=xrbwgn_kRBo
http://www.youtube.com/watch?v=xrbwgn_kRBo
http://www.youtube.com/watch?v=m7WBfntqUoA
http://www.youtube.com/watch?v=m7WBfntqUoA
http://cvit.iiit.ac.in/resources/cudacuts/
http://www-graphics.stanford.edu/data/voldata/
http://www.volvis.org/
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(a) Flower - 600× 450 (b) Person - 600× 450 (c) Sponge - 640× 480

(d) Madagascar - 10800× 8100 (e) Lower Than Atlantis - 9900× 7500

Fig. 5. Image Segmentation Results. 5(a)-5(c): benchmark datasets with small size. 5(e)-5(d):
large images. 1 2

(a) TimeScapes - 2560× 1440× 30 (b) THE CROODS - 1920× 1080× 40 (c) Life of PI - 1920× 1080× 36

(d) TimeScapes - Frame (e) THE CROODS - Frame (f) Life of PI - Frame

Fig. 6. Video Cutout Results. 6(a), 6(d): the cut-out bird 4. 6(b), 6(e): the cut-out Eep 5. 6(c), 6(f):
the cut-out tiger 6.
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(a) MRBrain - 256× 256× 109 (b) Lobster - 301× 324× 56

Fig. 7. Volume Segmentation Results. 7(a): MRBrain - MRI and the cutout brain 7. 7(b): Lobster -
CT and the cutout claw 8.

TABLE 4
Convergence Rate

Instance Iterations Ratios
Name CUDA Fast JF -/CUDA -/Fast
flower 155 41 10 15.5 4.1
4 x 4 232 174 81 2.9 2.1

16 x 16 - 516 195 - 2.6
person 232 100 26 8.9 3.8

4 x 4 232 203 88 2.6 2.3
16 x 16 - 692 366 - 1.9
sponge 155 31 14 11.1 2.2

4 x 4 232 114 27 8.6 4.2
16 x 16 - 234 84 - 2.8
bone - 265 125 - 2.1

2 x 2 x 2 - 410 184 - 2.2
liver - 498 170 - 2.9

2 x 2 x 2 - 1721 697 - 2.5
babyface - 512 194 - 2.6
2 x 2 x 2 - 876 413 - 2.1
adhead - 518 197 - 2.6
2 x 2 x 2 - 439 175 - 2.5

large datsets, even there are 6GB device mem-
ory. Our method achieve a maximum 19-fold
speedup, see sponge 4×4. Larger datasets lead
to higher speedups, which means our approach
is more suitable for large datasets.

The convergence rate of different meth-
ods are shown in TABLE 4. Because the
augmenting-path in volume datasets are longer
than in images, volume datasets need more
iterations. Our method has higher convergence
rates which are more than twice the rates of
Fast-Cut and almost 10-fold by CUDA-Cut.

CPU Based Methods: We download the
latest version of BK (V3.02) and Grid-Cut (V1.1)
and compile them to get the 64-bit programs.
For large datasets, such as adhead (2 x 2 x
2), BK requires a contiguous memory which
is larger than 4GB. We use the same compiler
settings for comparison, see the table notes in
TABLE 5.

TABLE 5
CPU Based Methods

Instance BK Grid-Cut JF-Cut-N (TITAN) JF-Cut-A (HD 7990)
Name Total Total Total -/BK -/Grid Total -/BK -/Grid
flower 35 35 6 6.1 6.1 6 5.7 5.7
4 x 4 593 242 108 5.5 2.2 101 5.9 2.4

16 x 16 12615 4420 2560 4.9 1.7 1575 8.0 2.8
person 36 15 12 3.0 1.2 14 2.5 1.1

4 x 4 642 248 138 4.6 1.8 118 5.5 2.1
16 x 16 11736 3878 3930 3.0 1.0 2417 4.9 1.6
sponge 32 12 6 5.5 2.1 13 2.5 1.0

4 x 4 600 193 42 14.2 4.6 41 14.8 4.8
16 x 16 10358 3088 788 13.1 3.9 595 17.4 5.2
bone 6434 1262 731 8.8 1.7 421 15.3 3.0

2 x 2 x 2 256083 47977 7536 34.0 6.4 4707 54.4 10.2
liver 11589 5138 654 17.7 7.9 305 38.0 16.8

2 x 2 x 2 957459 306653 17470 54.8 17.6 7923 120.8 38.7
babyface 9524 3857 903 10.6 4.3 459 20.8 8.4
2 x 2 x 2 952648 310028 12257 77.7 25.3 5825 163.5 53.2
adhead 28757 9550 1828 15.7 5.2 980 29.3 9.7
2 x 2 x 2 282740 62222 12093 23.4 5.1 7921 35.7 7.9

1) BK (v3.02) - http://pub.ist.ac.at/∼vnk/software.html
2) Grid-Cut (v1.1) - http://gridcut.com/downloads.php
3) Compiler Settings for GCC (v4.7.1) -O3 -march=native -

mtune=generic -DNDEBUG

TABLE 5 compares the performance of BK,
Grid-Cut and our method. The speedup in-
creases with the data scale, except for some
datasets. Because Grid-Cut is an optimized
version of BK, its speedups lower than BK’s.
We achieve a maximum 6-fold speedup (flower
- TITAN) for images and 164-fold speedup
(babyface - HD 7990) for volume datasets. We
also observe that there exists a notable vari-
ability, the decisive factor may be the graph
topology. The reason is that in volume datasets
most of the terminal-edges have zero capac-
ity, while in images most of them are posi-
tive, which will greatly affect the convergence
rate. These speedups are lower than of GPU
based methods, because there exist big dif-
ferences between CPU based methods (based

http://pub.ist.ac.at/~vnk/software.html
http://gridcut.com/downloads.php
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on augmenting-path) and GPU based methods
(based on push-relabel). In summary, for large
datasets our method significantly outperforms
other methods.

5.3 Discussions

We analyze the tuning techniques that are used
in our implementation and discuss the limita-
tions of our approach.

Algorithm Tuning: For better perfor-
mance, we develop a 2D version of our ap-
proach to handle images. Other optimizations
includes using local memory to cache the data
which has multiple read or write per execution,
checking if the value has changed before writ-
ing, using SOA (Structure of Array) instead of
AOS (Array of Structures) and designing com-
pact structure (four bytes per unit) to support
coalesced read and write for global memory
and avoid bank conflicts. We also use AMD
APP Profiler and NVIDIA Visual Profiler to help
us identify performance bottlenecks.

Quality: Compared with CUDA-Cut, our
approach guarantees the convergence, meaning
that we can get the optimal results. Compared
with Fast-Cut, we use in-block push-relabel
to improve the speed of information propa-
gation, thus achieving fast convergence. And
because of that, our approach can handle large
datasets. More details of JF-Cut are available at
https://github.com/15pengyi/JF-Cut.

Limitations: Our approach has
several limitations compared with CPU-
based methods. First, the feasible data
size of our approach is limited by
CL DEVICE GLOBAL MEM SIZE and
CL DEVICE MAX MEM ALLOC SIZE which
are defined by the OpenCL environment. For
GeForce GTX TITAN and AMD Radeon HD
7990 these parameters are (6GB, 1.5GB) and
(3GB, 512MB) respectively. Instead, the size
of contiguous-memory on CPU can be much
larger, e.g. 32GB is available. The GPU based
methods also have to copy data from host
memory to device memory, which takes up
extra time. Compared with BK our method
currently only support structured data.

6 CONCLUSION

In this paper, we introduce a parallel graph
cut approach named JF-Cut to handle large
datasets which has two main advantages:

1) improving the performance of graph cut
for large datasets using a GPU-based
graph cut scheme based on jump flood-
ing, heuristic push /relabel and conver-
gence detection;

2) providing users an interactive graph cut
based data segmentation system that al-
lows for intuitive data selection, inter-
action and segmentation for large-scale
datasets.

We use a variety of datasets (both a bench-
mark and different large datasets) to evalu-
ate the performance of our approach. The re-
sults show that our method achieve a max-
imum 164-fold speedup, and it be effective-
ly used in different scenarios. The source
code of JF-Cut will be soon available at
https://github.com/15pengyi/JF-Cut.

Other future work includes extending our
approach to support unstructured data, opti-
mizing the codes and making an independent
library for end users to use.
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