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Figure 1: The DimScanner interface on the Seattle 911 calls and responses dataset whose time span ranges from October 28, 2013 to February
14, 2014. (a) The categorization tree is structured with 16 1D views and 120 2D views contributed by 16 dimensions of the data. The tree
structure indicates the clustering hierarchy of pair-wise view relations such that views on the same branch are more likely to be related than
those far apart. (b) The dimension summary column summarizes the data types (by icons) of the dimensions. It indicates that the dataset
contains eight categorical dimensions, six numeric dimensions and two time-related dimensions. (c) The view selector widget displays a matrix
of all views. It highlights three groups of views selected by analysts with colors. (d) The view summary snapshots keep track of analysts’
observations (three highlighted groups are shown in this case).

ABSTRACT

Exploring multi-dimensional datasets can be cumbersome if data
analysts have little knowledge about the data. Various dimension
relation inspection tools and dimension exploration tools have been
proposed for efficient data examining and understanding. However,
the needed workload varies largely with respect to data complexity

∗e-mail: jjane.summer@gmail.com
†e-mail: chenwei@cad.zju.edu.cn, corresponding author
‡e-mail: junesnow26@gmail.com
§e-mail: huwanqi1234@gmail.com
¶e-mail: huangxinxin07@gmail.com
‖e-mail: ebertd@ecn.purdue.edu

and user expertise, which can only be reduced with rich background
knowledge over the data. In this paper we address the workload
challenge with a data structuring and exploration scheme that
affords dimension relation detection and that serves as the back-
ground knowledge for further investigation. We contribute a novel
data structuring scheme that leverages an information-theoretic
view structuring algorithm to uncover information-aware relations
among different data views, and thereby discloses redundancy
and other relation patterns among dimensions. The integrated
system, DimScanner, empowers analysts with rich user controls
and assistance widgets to interactively detect the relations of multi-
dimensional data.

Keywords: High-dimensional data visualization, information-
aware relation, data exploration.

Index Terms: Human-centered computing [Visualization]:
Visualization application domains—Visual vnalytics;



1 INTRODUCTION

Although multi-dimensional data can have great value, it can be
useless or even dangerous (e.g., considering misleading conclusions
generated from data) without proper processing and interpretation.
In particular, multi-dimensional data exploration is often used to
find relations and frequent patterns among dimensions and requires
need for semantic exploration for effectiveness. Since data analysts
are exploring and often do not know the exact information they
are looking for when they start the exploration, tools to help them
understand the relationships among the multiple dimensions are
necessary [4]. The following are typical challenges for multi-
dimensional data exploration:

• Data analysts can easily become confused when navigating a
large multi-dimensional data space. They explore the dataset
by randomly navigating from one view to another, expecting
to find useful patterns. They want to make the best use of
visualization, but an overview of all the data views without
proper organization is overwhelming.

• Redundant data can create unnecessary analysis workload.
Even though the data are cleaned in terms of data format,
redundant dimensions that encode useful but duplicate in-
formation may exist. If analysts can notice this similarity
or the relationships across the dimensions, then cognitive
complexity can be reduced.

Multiple approaches have been adopted for multi-dimensional
data exploration. Script-based data processing tools such as
Numpy1 and database scripts are well adopted. However, efficiency
is restricted by the users’ programming skills and inexpressive
data feedback. R2 is a statistical analysis tool that supports not
only data processing but also data distribution visualization. More
complex visualization layouts such as parallel coordinates and
scatter plot matrix can be employed to more effectively depict the
data distributions. This multi-view approach can generate a set
of data views for flexible investigation. However, even with these
approaches, analysts still spend much time randomly exploring the
many dimensions or data views in pursuit of valuable information.

These challenges can be addressed with an informative data
context that depicts the basic distributions of data dimensions and
the data dimension structure. The approach requires an efficient
information-aware organization and exploration scheme whose
primary task is to provide an information-rich understanding of the
data and to provide clues of relation patterns. We achieve this by
backing up the visualizations with not only data processing but
also data organization. Data organization is especially effective
in revealing basic structures between data dimensions and guiding
the analysts’ exploration process to a smaller subspace of the large
multi-dimensional space.

In this paper we contribute the design and implementation of
such a data structuring and exploration scheme that improves
the conventional multi-dimensional data exploration process with
a novel information-theoretic view matching and structuring tech-
nique. We first extract data views and characterize the view-wise
relations with mutual information. We then organize extracted
views in a configurable “categorization tree” [27] structure by
means of a quartet analysis technique, to present the information-
based relations among data views to provide context and structure
information. In addition, the constructed categorization tree results
in a hierarchical relation structure of data views, where views with
close relations are near each other and views with remote relations
are far apart.

DimScanner is an implementation of this multi-dimensional
data exploration process that integrates the relation matching

1http://www.numpy.org/
2https://www.r-project.org/

technique and the relation structuring technique. It accommodates
a suite of interactions and assistance widgets to empower analysts
with comprehensive preview and rich controls over data views. In
summary, the contributions of this paper are as follows:

• A view matching and structuring scheme that constructs view-
wise relation structures of multi-dimensional data;

• An exploration scheme that supports interactive investigation
and view-wise relation validation of multi-dimensional data.

2 RELATED WORK

Our discussion of relevant previous work contains two aspects:
inspecting dimensional relations and exploring multi-dimensional
data.

2.1 Dimension Relationship Inspection

Bertini et al. described the goal of multi-dimensional data analysis
as “the extraction of relevant and meaningful information” [4]. To
achieve this goal, a variety of techniques (quality metrics) have
been proposed to measure the relations among multiple dimensions.
Many solutions [8, 31, 32] have been proposed to measure the
quality in the image space, i.e., the projection of the underlying
data onto 2D planes. For instance, graph-theoretic scagnostics [32]
constructs convex hull, alpha hull, and minimal spanning tree with
the projected plots and defines the quality of data with shape-
based metrics, such as outlying, skewed, and clumpy. Alternatively,
Pixnostics [25] measures quality not only in the image space with
a jigsaw map and pixel bar chart but also in the data space with
correlation metrics and classification metrics. Once the quality
metrics are obtained, clustering can be applied to reduce visual
clutter [3], select features [26], and find relevant subspaces [11].

In addition to various quality metrics, a large body of visual-
ization techniques have been applied for interactive exploration of
dimensional relations. Parallel coordinates is a typical visualization
for multi-dimensional data and has been adopted in many quality
metrics studies [8, 17, 29]. Another scheme is the use of multiple
views for faceted inspection of dimensional relations, which can be
either automatically generated [7, 15] or dynamically created [16,
35]. A commonly adopted form is the matrix view, in which each
element encodes a visualization of a facet of the underlying data.
For instance, GPLOM [15] visualizes dimension-wise relations
with a generalized plot matrix. Recently developed dimension
projection matrix/tree [35] represents the exploration flow of
subspace projection with a tree structure, effectively favoring
dimension inspection of multi-level subspaces. TimeSeer [7] im-
plements the scagnostics measurements and characterizes relations
between time and other dimensions. Explates [16] is designed
to dynamically create customized visualization of user-selected
dimensions. Linkages between data dimensions and visualization
methods are explicitly displayed as chains to indicate view-wise
relations.

In this paper, we construct a categorization tree structure of the
data views based on quartet analysis and employ an information-
aware relation for characterizing correlations. The information-
aware relation differs from the above quality metrics by integrating
non-linear correlation. The categorization tree generated through
quartet analysis is superior to dimension projection methods which
suffer heavily from dimension evaluation and unreliable clustering
problems.

2.2 Multi-dimensional Data Exploration

Exploring multi-dimensional data relies heavily on user interaction-
s, such as semantic zooming, sorting, and highlighting. Specialized
techniques and toolkits have been well-studied for multivariate
tabular data. For instance, TableLens [24] can effectively support



the exploration of large multivariate tables with a semantic zooming
scheme. SimulSort [14] and ParallelTable [13] employ sorting and
highlighting techniques, respectively, to enhance the exploration
efficiency. Our scheme differs from the previous methods in that
ours presents the data with a tree-based structure whose nodes
encode 1D or 2D views of the input data.

Commercialized data exploration tools are available, such as the
business intelligence software Tableau3 and the visual statistical
software JMP4. The research community has also paid considerable
attention to the visualization of multi-dimensional datasets. Data
views can be configured with different layouts [23, 30, 34]. For
instance, Improvise [30] is a coordinated-view environment that
supports visualization of a multivariate dataset with orthogonal
view layout. MosaicJS [23] creates visual representations from
multivariate dataset with a mosaic view layout model. Voyager [34]
supports faceted browsing of multivariate data.

3 APPROACH OVERVIEW

The main goal of DimScanner is to provide an informative
relational structure of the data views, and thereby study the relations
and frequent patterns in the data space. Data analysts typically
explore the data space by identifying various relational patterns
between views [1]. One important relation pattern is the one-
to-one relationship that creates redundancy between two views:
if each value in one view corresponds to exactly one value in
the other, and vice versa (hence a one-to-one correspondence),
then one view can be considered redundant. For instance, the
view “city” is redundant with the presence of the view “city
(abbreviation)”. Other representative important relations in the data
space are one-to-many correspondences and frequent value pairs.
The former indicates a one-to-many correspondence between two
views, e.g., the view “category” and the view “subcategory”. The
latter indicates a strong co-occurrence between two values in two
views despite the co-occurrence of other values. An example is the
strong correlation between “18-years old” (in the “age” view) and
“student” (in the “occupation” view).

DimScanner is designed to achieve its goal by leveraging
two components: a structuring component that generates the
view relations and an exploration component that supports view
navigation. The structuring process starts by enumerating all 1D
and 2D views of the input dataset. We employ both 1D and
2D views because, in some situations, 2D views can provide
combinational perspectives to the data space. For example, a view
that combines “latitude” and “longitude” is often more reasonable
than two 1D views. The pair-wise relations [see the view matching
step in Figure 2 (a)] among views are computed by means of
an information-theoretic metric. A collection of quartets for all
views are then generated based on the relations of view pairs [see
the quartets construction step in Figure 2 (b)]. Subsequently, a
view categorization tree is constructed [see the structuring step in
Figure 2 (c)] such that views on the same branch are more likely to
be related.

The visualization and interaction design [see the exploration
component in Figure 3] favors fast validation of relations among
views, and progressive visual exploration. DimScanner presents the
categorization with two types of tree-based layouts: a dendrogram
or a force-directed layout. Analysts can select a single view to
observe distribution or two views to analyze their relation (via
relation constructing). Distinctive views and associated interactions
are designed for depicting time-oriented, geographical, numerical,
and categorical dimensions. For instance, analysts can aggregate
the data by a customized time level such as hour, month, or year
(via time aggregation), within a time-related view. In addition,

3http://www.tableau.com/
4http://www.jmp.com

analysts can convert a geo-related 2D view to a map with a drag-
and-drop interaction. Appropriate visualizations for numerical and
categorical dimensions are also supported (e.g., histograms and line
charts). The widely applied interaction brushing and linking is
supported in each view as well. To escape from the overwhelming
number of views, analysts can select, group, or filter views with
the view selector. Analysts can also summarize groups of views of
interest with the help of a summary snapshot list.

4 STRUCTURING COMPONENT

We now describe two key techniques of the structuring component:
view matching and view structuring. The view matching process
seeks to extract highly related view pairs, while the view structuring
process generates a relation-based organization within the view
pairs.

4.1 Information-aware view matching

Our system design needs a measure of the relationship between
pairs of views. In accordance with the relation patterns described
in Section 3, we need to define the relation appropriately so
that two views are highly related if data clusters in one view are
also clustered in the other. Formally, this relation measures the
discrepancy among the distributions of individual views and the
joint distributions of view pairs. Mutual information (MI) [22]
meets this requirement by measuring the mutual dependence among
variables. It can be used to characterize the relations among views.
We favor MI over the common Pearson’s correlation coefficient
because MI evaluates the statistical correlation that may present a
non-linear correlation.

We apply the definition of MI [22] to two views (A and B) as
I(A;B):

I(A;B) = ∑
a∈D(A)

∑
b∈D(B)

p(a,b)log(
p(a,b)

p(a)p(b)
). (1)

D(A) and D(B) denote the sets of values in view A and view B,
respectively. p(a,b) is the joint probability distribution of values
in view A and view B. p(a) and p(b) are the marginal probability
distributions of view A and view B, respectively. In practice, we
generate the probability from the input data instead of a normal
distribution. If the values of a dimension are non-categorical, then
this dimension is appropriately binned. For a 2D view C, D(C)
denotes the set of values from both dimensions.

MI can be expressed as I(A;B) =H(A)−H(A|B), where H(A) is
the marginal entropy and H(A|B) is the conditional entropy. When
values in views A and B are distributed independently, H(A|B) is
identical to H(A), and therefore MI I(A;B) is zero. Otherwise,
H(A) is greater than the conditional entropy H(A|B). Typically,
a large MI indicates a large co-occurrence of clusters in two views.

4.2 Data view structuring

For view structuring, we formulate the collection of relations of
pairs of data views as a relation matrix. This relation matrix
contains the pairwise relations subject to the chosen information-
aware relation measures described above, and can be regarded as
an abstraction of the original data. Consequently, structuring the
relations among views needs to reduce the complex information
to achieve a cognitively acceptable illustration (A similar situation
arises in hierarchical clustering [9], which extracts a hierarchy of
clusters from a distance matrix). The most natural and efficient
way to achieve this is to represent the relations in the form of a
dendrogram, which is a directed binary tree or undirected ternary
tree [6]. Inspired by prior work on phylogenetics [28] that achieves
hierarchical clustering by topologically arranging four-item tuples,
we choose to construct a categorization tree structure with view
quartets.
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Figure 2: The structuring component takes three steps: (a) the views are paired using an information measure; (b) a collection of quartets are
generated for all views based on this information-based relations of view pairs; (c) finally, a view categorization tree is constructed.
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Figure 3: The exploration component depicts the user controls that support interactive data investigation. Direct view controls include relation
constructing, brushing and linking, data aggregating and view changing. The view selector helps select and filter the views while the summary
snapshots helps summarize the groups.

Quartet analysis is a topology-based phylogenetic reconstruction
method in biology [33]. A quartet in this scope is a four-species
tuple in two sets where the species in the same sets are genetically
related and the species in different sets are not, denoted as AB|CD.
A quartet puzzling procedure [28] is conducted to generate a
categorization tree based on all the quartets.

With a data view regarded as a high-dimensional point, em-
bedding all data views in a 2D space is feasible using various
dimension projection approaches, including MDS [5], PCA [18],
and self-organizing maps [19]. However, our approach does not
employ dimension projection methods for two reasons. First,
the dimension of the embedding is a key parameter for manifold
projection methods [21]. Without a proper computation of
the intrinsic dimension of the underlying dataset, 2D projection
approaches may easily lead to mixed features in the 2D plane.
The subsequent clustering of the projected 2D points is not very
reliable. Second, a dimension projection process requires an
evaluation of the dimensional dissimilarity subject to specific
distance functions [10], which typically match some conditions
such as triangle inequality [20]. Instead, MI measures the
discrepancy of the data distributions in the two views (dimensions)
and is thus independent to other views (dimensions) by its
definition.

However, the quartet-based analysis is a qualitative method.
Quartets can be generated with heterogeneous dissimilarities or
even without quantitative measures as long as the four-tuple
structure is qualified [12]. In addition, the quartet-based analysis
is essentially a maximum-likelihood method that aims to construct
a tree structure that preserves as many qualified quartets as possi-
ble [28], thereby naturally producing a clustering representation of
the input data points. In this sense, the quartet-based analysis is
superior to dimension projection methods that suffer heavily from
dimension evaluation and unreliable clustering problems.

Construction of the views: The data view structuring process
seeks to construct a categorization tree structure with quartets. On
the basis of quartet analysis, a view quartet is a four-view tuple
(ab|cd) (see a quartet example in Figure 2) in which the views to
the same side (AB and CD) are related, whereas the views to the
different side (AC, AD, BC, and BD) are unrelated. We generate
the quartets based on the information-aware relations described

in Section 4.1 for all view pairs. According to the definition, a
quartet is qualified when the two most related view pairs are disjoint
and their relations are much more significant than the other four
relations.

Algorithm 1 explains the qualification process of a quar-
tet with four views A, B, C, and D. We first obtain the
first and second maximum relation values from the relation list
(I(A;B), I(A;C), I(A;D), I(B;C), I(B;D), I(C;D)). Assuming
that the quartet is qualified, the sum of the indexes of the two
values should be 5 in order to generate two disjoint view pairs. The
qualification does not hold if a more significant relation exists in the
other four relations. Alternatively, we can also sort six relations and
check whether the first two view pairs are disjoint. Our algorithm is
slightly faster than a conventional sorting scheme (of average time
complexity 6log6) because it traverses the relation list at most twice
(lines 1 and 5). For N views, N ∗ (N − 1) ∗ (N − 2) ∗ (N − 3)/24
quartets exist to determine their qualification. Therefore, this
difference is much more significant for the O(N4) quartets.

Once all quartets are obtained, we construct a tree structure
that contains as many quartets as possible. We adopt the Quartet
MaxCut (QMC) algorithm [27], which recursively takes two steps
to generate the tree. QMC first parses the quartets and generates a
graph, whose nodes represent the views and whose edges encode
the relations between view pairs. An edge is regarded as good if
the associated views are related, and vice versa. The weight of
each edge is also derived from quartets, as NUM(good edges)−
NUM(bad edges). Good edges indicate two related views and vice
versa. The algorithm then partitions the graph into two subgraphs
with the standard graph-cut algorithm to maintain as many good
edges as possible. Once the subgraphs are obtained, the weights
of edges are updated based on the remaining quartets, and the
partitioning step is recalled. The recursion stops when the graph
is fully subdivided or when no more bad edges exist.

As discussed in [12], a reliable categorization tree can be
constructed by O(m2) quartets (m being the number of views).
Algorithm 1 generates qualified quartets for tree construction by
adjusting the weight k in line 6. A small k results in fewer qualified
quartets.



Algorithm 1 Determine if there exits a qualified quartet with four
views.

Input: Four views A, B, C, D and their correspondence relations
relations = [I(A;B), I(A;C), I(A;D), I(B;C), I(B;D), I(C;D)],
a threshold weight k.

Output: A qualified quartet if one exists.
1: Get the max value of relations and its index respectively, as

MaxRelation and MaxIndex.
2: SecondMaxIndex = 5−MaxIndex
3: SecondMaxRelation = relations[SecondMaxIndex]
4: quali f ied = T RUE
5: for Each relation other than the largest and the second largest

do
6: if There exists a relation larger than k ∗SecondMaxRelation

then
7: quali f ied = FALSE
8: Break
9: end if

10: end for
11: return The corresponding quartet if quali f ied = T RUE still

holds

5 EXPLORATION COMPONENT

The exploration component visualizes layouts of the structured
categorization tree, and enables data analysts to interactively
compare and explore data views and their relations. It also
affords rich assistance widgets for flexible investigation and
summarization.

5.1 Data view layout

Theoretically, the categorization tree can be represented as a
dendrogram (Figure 10), which presents a clear tree structure with
a limited number of data views, or a flexible force-directed layout
[Figure 1 (a)] exists, which can compactly encode a tree with many
nodes. Analysts can switch to an appropriate layout based on the
given data configuration. In either case, the leaf nodes encode
all data views. The thickness of the branches is defined by its
depth such that the thickness increases with greater proximity to
the root. To avoid an overwhelming information display, we use a
view thumbnail in place of a leaf node, whose shape indicates the
overall distribution of the view.

The view thumbnails can be triggered to complete charts to
show details, such as the data values and the value counts. We
apply different visualizations to data views based on dimension data
types. Examples include bar charts for categorical views, line charts
for numerical views, calendars for time-related views, and scatter
plots for 2D views. We change the thumbnail of a line chart to a
stacked graph [see view (a) and its thumbnail in Figure 10] because
lines are difficult to recognize in a small display area. When we
hover over a view thumbnail, it is enlarged, and a path from the
node to the root is highlighted in green. When we hover over a
non-leaf node, all its leaf thumbnails and the paths are highlighted.

5.2 Direct view controls

Rich controls over the views are supported.

Relation construction - Although the layout is based on
information-aware relations among views, data analysts are
not convinced unless they explicitly see how two views on the
same branch are related. When analysts select two views, a
parallel coordinate view is shown for dimensional inspection
and comparison [Figure 4 (c)]. The data count is encoded
with opacity, thereby easing the inspection of data clusters
and relation patterns.

Figure 4 shows the comparison between view “distric-
t or sector” [Figure 4 (a)] and view “zone or beat” [Figure 4
(b)]. One value in “district or sector” corresponds to three
values in “zone or beat” (highlighted in red). To be specific,
the correspondence is a one-to-three pattern as seen in the
parallel coordinate plot [Figure 4 (c)]. For example, district N
covers beat N1, N2 and N3. It indicates that “zone or beat” is
a subdivision of “district or sector”. Noticing the similarity,
data analysts can hide either view to reduce the workload.

(a)

(b)

(c)

Figure 4: A comparison between view “district or sector” and view
“zone or beat” (some labels of “zone or beat” are not shown), which
indicates that “zone or beat” is a subdivision of “district or sector”.

Data aggregation - In a time-related view, analysts can interac-
tively aggregate records by various time levels such as year,
month, day, hour, and minute. The aggregation results in a
simplified view that may reveal a periodical pattern, which is
useful for hourly/daily/weekly/monthly pattern identification.

Brushing and linking - Brushing-and-linking is implemented to
highlight values in other views. If analysts highlight a subset
of data in one view, then corresponding data in other views
are highlighted. Analysts can compare highlighted parts
with non-highlighted parts for combinational distribution
exploration.

View changing - A histogram, a line chart or a calendar is applied
for a categorical dimension, a numeric dimension and a time
dimension respectively. A scatter plot is adopted for 2D data
views. Specifying a different visual form is also allowed by
dragging the thumbnail that represents a visual form onto the
underlying view. Available alternatives include a map for
geospatial views, a parallel coordinate view and a matrix view.

With the structured layouts and user interactions, data analysts
are able to discover important data views and highly related views.
For time-related views, analysts can explore the patterns with
different aggregation levels. They can also select a reasonable
visualization for a specific view.

5.3 Assistance widgets

Aside from the direct controls, several assistance widgets are
provided for flexible data exploration.

Dimension summary widget - The dimension summary widget
(Figure 5) lists all dimensions of the dataset, their data types,
and basic statistical values. The data types are indicated
by small thumbnails. When we hover over a dimension,
the statistical information of the dimension is automatically
shown, i.e., quartile values for numerical dimensions, time
duration for time-related dimensions, and counts of identical
values for categorical dimensions.



Figure 5: The dimension summary column summarizes the data
types (by icons) and the basic statistical attributes (the tooltip) of
dimension “longitude”.

View selector widget - The view selector widget allows analysts
to select or deselect one or multiple views with pre-defined
colors (Figure 6) by clicking the entries of the matrix. All
entries have three configurations indicated by different colors:
white for regular views, black for hidden views, and other
colors for highlighted views.

Figure 6: The view selector widget displays a matrix of all views.
All entries have three configurations indicated by different colors:
white for regular views, black for hidden views and other colors for
highlighted views.

Data analysts may select a 1D view by clicking the diagonal
entries or select a 2D view by clicking non-diagonal entries.
All views related to one dimension can be selected by clicking
the rectangle entries in the right of the matrix. Analysts can
also choose to highlight views with a specific color. Analysts
may choose to assign a new color automatically whenever
they click an entry or to pick a color manually from the color
scheme list. Manual color selection is particularly useful
when analysts want to assign a single color to multiple entries.
When analysts specify the colors to be black, views in the
categorization tree will be filtered. The view selector also
supports immediate filtering of 1D and 2D views with each
individual check box.

Summary snapshots - The summary snapshots (Figure 7) capture
local tree structures of the categorization tree. The organi-
zation of a summarized subset is copied from the global tree,

thereby making it easy to recognize. When multiple snapshots
are created, only one snapshot, either the latest created one or
the one unlocked by analysts, is activated.

Figure 7: The three view summary snapshots keep track of analysts’
observation and extract two of the highlighted groups individually.

5.4 Implementation

The DimScanner system is based on a browser/server architecture,
where the server is responsible for the structuring component and
the browser is responsible for the navigating component. We
utilized Django5, a lightweight Python web framework, as the
server, and D3.js and jQuery UI for front-end implementation. The
python data analysis tool Pandas6 is adopted for back-end data
computation. The architecture enables a feasible system on all
platforms (Windows, Mac OS, and Linux). To provide smooth
interactions, a set of preprocesses are employed, including mutual
information computations, quartet generation, and categorization
tree construction.

6 CASE STUDY

We evaluate the usability of DimScanner with two cases.

6.1 Seattle 911 calls and responses dataset

We gathered more than 60K Seattle 911 calls and responses dataset
with time ranging from October 28, 2013 to February 14, 2014.
The categorization tree (Figure 1) is constructed with 136 1D and
2D views generated by 16 dimensions of the data.

Without prior knowledge of the dataset, we start the exploration
by filtering all 1D views. Partitioned by the categorization tree,
four groups of views become clear, indicating that the dimensions
may be divided into four groups in the data space. To verify our
hypothesis, we highlight four groups in different colors (Figure 8)
and check them individually.

Starting with the group in green [Figure 8 (a)], by highlighting
the 2D views of those 1D variables, we find that all 2D views
belong to the same partition of the tree, which confirms that all four
dimensions are closely related. We further investigate the relation
view of the dimensions because the 2D views do not reveal the
relation pattern clearly. By sliding across the “district or sector”
dimension, we discover the mapping pattern such that one district
corresponds to three or four beats that are closely located on map
(the view “latitude×longitude”). In terms of the group in blue
[Figure 8 (b)], we apply a similar exploration process and realize
that these views contain many null values. And the dark line in the
relation view indicates that null values have strong co-occurrences
among dimensions (as shown in the relation view in the blue box),
namely data with null values in one dimension usually contain
null values in others. The group in orange [Figure 8 (c)] shares
a similar relation pattern with the group in green: one value in one
dimension corresponds to several values in the other, which can

5https://www.djangoproject.com/
6http://pandas.pydata.org
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Figure 8: Four groups of data views are extracted from the categorization tree of the Seattle 911 calls and response dataset. Left: The
categorization tree of 1D views reveals four groups. Right: 2D views that correspond to the dimensions of the 1D views are added. The pattern
of views in green is described in Figure 4. No explicit relation patterns can be uncovered from views in gray. The colored highlights are generated
manually just in the paper, not in the system.
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Figure 9: The views of dimension “at scene time”, “event date” and “zone or beat”. (a, b) Aggregating view “event date” (a) by hour (b), we can
infer that the least amount of 911 calls were made in the early morning. (c) The police response time, namely the time difference, ranges from
less than one hour to 8 hours. (d, f) More police should staff to district K1, K2 and M2, M3 while less police are needed in district E; more patrols
are also needed in the evening and less police from 4 am. to 10 am.. (e) The 2D “latitude×longitude” view indicates the most “dangerous” district
in Seattle as downtown Seattle.

also be revealed from the name of the dimensions (see the relation
view in the orange box). We state that although some patterns are
common sense for domain experts given the dimension names, our
method can help analysts discover the patterns even without the
names. It can also help show groups of errors/empty records in the
data as seen in this example. The group in light gray [Figure 8 (d)]

also contains three 1D views, in which no explicit relation pattern
is uncovered.

Based on the above observations, we keep the two time-
related dimensions, the geo-related dimensions and one dimension
in each group, and filter out other dimensions as well as the
dimensions related to IDs. We utilize our system to suggest a police



dispatching policy in terms of time and beat. The time-related view
“event date” concerns the time of the reports being responded. We
aggregate the view by hour and realize that the least amount of 911
calls were made in the early morning [Figure 9 (b)] when citizens
are asleep. The view “at scene time” concerns the time that the
calls were made. By observing the corresponding 2D view of the
two time-related views [Figure 9 (c)], we can infer that the police
response time, namely the time difference, ranges from less than
one hour to 8 hours. Most of the events can be cleared in less than
3 hours. The 2D view “zone or beat×event date” (aggregated by
hour) can be an indicator for police dispatching. After exploring
this view [Figure 9 (f)], we recommend more police should staff to
district K1, K2 and M2, M3 while less police are needed in district
E; more patrols are also needed in the evening and less police from
4 am. to 10 am. By studying the 2D “latitude×longitude” view
[Figure 9 (e)], we locate the most crime ridden district in Seattle
as downtown Seattle. By highlighting the district K, we discover
which type of events were mostly reported in view “event group”:
“liquor violations”.

6.2 The mobile user profile dataset

Our second case study uses mobile user profiles from a data
modeling challenge7. The dataset contains 380,000 user profiles
(15D). The categorization tree is structured with 120 1D and 2D
views generated by the 15 dimensions of the data.

To our surprise, many 1D views in this dataset are placed on
one branch (Figure 10). After inspecting each view, we draw the
conclusion that the values of some dimensions are distributed non-
uniformly (as peaks) and values at the peaks co-occurred across
dimensions. First, some views contain unreasonable values, e.g.,
some values in the “age” dimension are greater than 1000 or below
0 [Figure 10 (a)]. Second, we notice that the value distributions of
numeric dimensions are often heavily influenced by some outliers,
e.g., the “terminal price” dimension [Figure 10 (b)] (the price of
the mobile phone) are distributed non-uniformly because the price
of some mobile phones can be up to 8000.

Therefore, we perform data cleaning operations before the
structuring component. First, we filter missing values and
unreasonable values. Second, for a dimension with outliers, we
transform the dimension with a non-linear scaling to make sure
that outliers gather together in one or two ranges. The new
categorization tree (Figure 11) reveals some clustered structures.
The structure (a) in orange shows a local branch of four views
(“prob level”, “age”, “cust level”, and “is VIP”) as well as their
2D views. We can infer that “cust level” is more or less equivalent
to “is VIP” and positively related to “prob level” (the level of
service plan). The structure (b) in green depicts the relation
between “value added fee”, “web fee” and “terminal price”. We
can infer that “total consumption” is independent of “web fee” or
“value added fee”. In addition, according to the distribution of
“web fee”, very few users will spend much money on “web fee”.
It covers a discount package of web service and better web user
experience to encourage more web usage. The structure (c) in
blue describes the major contents of the total consumption, which
includes call fees, roam call fees, long distance call fees, and SMS
fees. It indicates that the total consumption mostly relates to call fee
and SMS fee. Additionally, “long call fee” is most closely related
to “roam call fee”, both regarding calls between two cities.

7 DISCUSSION

Our discussion contains four aspects: the choice of data views,
comparisons with other relation measures and layouts, system
scalability and limitations.

7http://www.mcm.edu.cn/html cn/node/a4e8393c0d57cf879520183520b-

34a9f.html

7.1 Data Views

Our approach employs 1D and 2D views for two reasons. First,
1D views alone are insufficient for a detailed exploration of
multivariate datasets. In many situations, a 2D view indicates a
specific context. For instance, the view “latitude × longitude” is
much more relevant to “district or sector” and “zone or beat” than
the view “latitude” or the view “longitude”. Second, presenting
views of arbitrary dimensions is time-consuming and unnecessary.

For either 1D or 2D views, both the structuring component
and the exploration component can be adapted to nonorthogonal
projected facets or other customized facets. The adaption does
not affect the information-aware relation computation nor to view
structuring and visualization. With nonorthogonal projections and
user-defined facets, data analysts can randomly explore and dissect
the data in combination with the semantic properties. Taking the
police dispatching issue in 911 calls dataset as an example, a
customized facet view of time difference can easily reveal the high
variation in the service time for calls.

7.2 Comparisons

The DimScanner approach is a hierarchical clustering approach
of data views based on dimensional relations. As a qualitative
approach, the quartet-based analysis constructs the categorization
(clustering) tree by maintaining as many close MI relations as
possible.

Compared with techniques based on quality metrics [4], Dim-
Scanner can better reveal dimension-wise relationships in the
data space. Scagnostics [32] is an image space technique that
focuses on the “shape” of the plotted relations between dimensions.
However, plots of similar shape do not reveal the relations
between the underlying dimensions unless the plots all share a
common dimension, as demonstrated in the case of TimeSeer [7].
Pixnostics [25] measures dimension-wise relation in the data space
with Pearson’s correlation or the normalized Euclidean distance
alternatively. It also employs the standard K-means method as
the clustering approach. Unlike Pixnostics and other data space
approaches, the relation metric MI can effectively characterize both
linear and non-linear relations, which can be further presented in a
2D plane with the proximity-preserving quartet analysis approach.

Coordinated views and parallel coordinate plots (PCPs) are
two common techniques for multi-dimensional data exploration.
GPLOM [15] places 2D data views in a lower-triangle matrix and
integrates exploratory interactions, such as linking (highlighting)
and filtering. By contrast, DimScanner reveals the clustering
pattern of the dimensions with a categorization tree structure
instead of a view matrix. PCPs depict distributions of all individual
dimensions and selective selected dimension pairs. Meanwhile,
with the increasing number of dimensions, the axis order in PCPs
is crucial to discover dimension-wise correlations or clustering
patterns. DimScanner avoids this problem by restricting the
dimensions only to those that are highly related.

7.3 System scalability

The system scalability is mainly related to the number of dimen-
sions, which determines not only the number of data views, but also
the number of MI relations and the quartets. The number of quartets
determines the computation complexity of the QMC algorithm. For
an N-dimensional data, O(N2) data views are generated, thereby

requiring O(N4) computations of MI relations for both 1D and 2D

data views. To obtain a reliable categorization tree, O(N4) quartets
are required for the QMC algorithm. With much larger dimension
sizes, speed up techniques may be required to compute quartets.
The number of data records has little influence on the computation
complexity because a binning process is applied to data points as
preprocessing. The tree layouts also restrict the number of data



(b)

(a)

Figure 10: The categorization tree of the mobile user dataset before data cleaning. Some 1D views are grouped on one branch because
they commonly contain one or two peaks (valleys) and the peak values co-occurred across dimensions. This implies that the values of some
dimensions are distributed non-uniformly. (a) The “terminal price” view indicates a non-uniform distribution. (b) The “age” view exhibits a sharp
and narrow peak. The colored highlights are generated manually just in the paper, not in the system.

(a)

(c)

(b)

Figure 11: The categorization tree of the mobile user dataset after data cleaning. (c) The group in blue indicates the major components of the
consumptions, which contains “long call fee”, “call fee”, “roam call fee”, and “SMS fee”.

views to a few hundred. In the two cases presented in this paper,
the number of dimensions is limited to less than 20.

7.4 Limitations

Our system has some limitations.

Data preprocessing From the experiences of examining the mo-
bile service dataset, we learn that the understanding of the cat-
egorization tree varies greatly with data quality. Nevertheless,
the performance of data preprocessing (e.g., data cleaning)
for improving data quality is proportional to the data size.
Sampling might be a solution to address this problem, that
is, a sample of raw data can be cleaned and categorized for an
initial inspection. One of our future plans is to design more
efficient solutions that allow for dynamic addition of data
views. In this way, the categorization tree can be iteratively
updated with the addition of new views.

Enhanced view representations DimScanner can be utilized to

display random projection views. To calculate the relations
between randomly projected views, one solution is to compute
the relation in the image space, and integrate the distributions
of data in the image space into computing MI. For categorical
dimensions, we maintain their original orders in the dataset.
Bertin stated the importance of ordering [2] and suggested
that a better order may reveal cluster patterns of the dataset
immediately. We aim to implement a reordering algorithm
with multi-dimensional view/relation representation. Other
reordering controls, such as ordering by the number of values,
can also be implemented.

8 CONCLUSION

We have presented a novel data dissection scheme that constructs
multiple data views and structures an information-aware data
categorization tree. We demonstrate that a fair incorporation of
quartet analysis effectively reduces cognitive load by focusing



attention on the highly related dimensions.Our system offers rich
user controls, and enables data analysts to get the contexts of an
unfamiliar dataset.

In the future we plan to enable user-defined data views and
nonorthogonal projection data views. We also expect to improve
the computation efficiency by using in-memory databases and
parallelizing the scanning process.
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