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Big Data for Social Transportation
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Abstract—Big data for social transportation brings us
unprecedented opportunities for resolving transportation
problems that traditional approaches are not competent and
building the next generation intelligent transportation systems.
Despite that social data has been applied for transportation
analysis, there remains many challenges. First, social data
evolves with time and contains abundant information, posing
a crucial need for data collection and cleaning. Meanwhile,
each type of data has specific advantages and limitations
for social transportation, and one data type alone is not
capable of describing the overall state of a transportation
system. Systematic data fusing approaches or frameworks for
combining social signal data with different features, structures,
resolutions and precisions are needed. Second, data processing
and mining techniques, such as natural language processing
and analysis of streaming data, require further revolutions for
effectively utilizing real-time traffic information. Third, social
data is connected to cyber- and physical- spaces. To address
practical problems in social transportation, a suite of schemes
are demanded for realizing big data in social transportation
systems, like crowdsourcing, visual analysis and task-based
services. In this paper, we overview data sources, analytical
approaches, and application systems for social transportation,
and suggest a few future research directions for this new social
transportation field.

Index Terms—Big data; Social Transportation; Intelligent
Transportation System; Data Analytics; Crowdsourcing.

I. INTRODUCTION

W ITH the fast development of sensing, computing,
and networking techniques, social media and mobile

devices have recently experienced a rapid growth, generating
huge volumes of social signals almost in real-time. These
social signals, from drivers’ GPS coordinates, mobile phones’
billing records to messages post on social media, record
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spatial, temporal and emotional information and establish the
data foundation for social transportation research [1] - [2].

Social media and social networking platforms such as
Facebook, Twitter, Weibo, and WeChat, provide ubiquitous
chances for people to share ideas, emotion, and information
publicly or in specialized communities, generating tremendous
volumes of social signals in real-time [3]. Driven by the mobile
internet services, the socialized connections among persons are
made available anywhere and anytime. The collected social
signals not only record the human mobility information from
the mobile phones, but also encapsulate a large amount of
real-time traffic information. The information can be accessed
by wearable and portable devices (e.g., smart phones), and
thus facilitates the usage of social signals in designing and
implementing location-based services and platforms, e.g.,
Waze App application [4] and Uber [5]. In addition, the wide
spread of social media greatly encourages the users to share
location-related information online, and stimulates the wisdom
of crowd on sensing a transportation system in real-time.
The integrated usage of pervasive computing, social networks,
and mobile internet constructs a new world of connected
people, vehicles, infrastructures, and services, opening new
opportunities for custom-built traffic analytics and control,
data-driven intelligent transportation systems (ITS), as well
as social transportation.

Traffic analysis and forecasting using social signals from
mobile phones, wearable devices and social media are the
typical examples of the emerging field of social transportation
research [6]. Compared with works in the sociology of
transportation which are typically off-line and historical, social
transportation emphasizes real-time computing and embedded
applications for transportation problems with on-line and
interactive big data. At this earlier stage, we would suggest
that new social transportation field should mainly focus in
the five areas, 1) traffic or transportation analytics with big
data and social signals using data mining, machine learning,
and natural language processing methods; 2) crowdsourcing
mechanisms for transportation based social media, social
networking, and the Internet of Things (IoT) or even the
Internet of Everything, especially the coming V2X, that
is, vehicles to vehicles, websites, people, infrastructures
communication; 3) new services beyond location-based
services (LBS), such as transportation knowledge automation,
especially decision-based services (DBS) or task-based
services (TBS) that collecting required information in real
time for transportation decisions or tasks, and information or
intelligence-based services (IBS) or knowledge-based services
(KBS) that recommending agents or organizations who might
find the identified intelligence or knowledge useful for
solving their traffic problems or improving the transportation
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performance; 4) web-based agent technology for transportation
control and management, such as software robots, knowledge
robots or web surrogates for traffic monitoring, safe driving,
vehicular heath and energy management, at this point, the
effort should be directed in developing various smart apps
that collect social traffic data and link people to traffic and
cars in real time; and 5) real applications and feedback for
more research and development.

The desires for smart cities and smart living also provide a
unique opportunity for realizing true intelligent transportation
with new intelligent and mobile applications. However, to
achieve the transformation of mobility and transportation
for smart living in smart communities or smart cities, we
need more than just technology, we need to consider and
include dynamics of social organizations and cultures, and
we need a comprehensive system engineering approach that
accommodates and embraces diversified disciplines, fields,
thinking, behaviors, and social norms. With big data and
social transportation, we should be able to build a world
of seamlessly connected people, infrastructures, vehicles, and
services in a new era of Intelligent Transportation Systems
(ITS).

In this paper, we focus on two aspects of the significance
of big data in intelligent transportation systems through
introducing social transportation. First, we survey the sources,
types and concrete analysis approaches of social signals
for transportation. Second, we investigate the crowdsourcing
services, the Internet of smart vehicles and web-based
agent technology in the future transportation and mobility
transformation.

II. DATA FOR SOCIAL TRANSPORTATION

In terms of data contents, social transportation data
record Time, GPS coordinates, Velocity, Accelerated Velocity,
Address, Texts, Video etc. For each type of social
transportation data, the recorded contents are specific to one or
several aspects of human mobility, and specific to information
of a person or a community. The specific features, structures,
resolutions and precisions of social transportation data
inherently define their advantages, limitations and application
scopes. In another word, different social transportation data
are suitable for solving different problems.

For examples, taxi GPS data (floating car data) have been
widely used to estimate real-time travel time on roads, given
that taxi GPS data have both high spatial resolution (10m
coordinate errors) and temporal resolution (less than 30s). Yet,
taxi GPS data are not used for estimating urban travel demand,
because they only represent the origins and destinations of
taxi users. Another example is the mobile phone data, which
have been used for estimating travel demand. The wide spatial
coverage and long observational period (months to years) of
mobile phone data offer us opportunities to accurately locate
the home, work, entertainment locations for a large fraction
of residents. However, mobile phone data are not suitable for
estimating travel time on roads, because the records are too
spare (several hours a record) and temporally irregular.

The advantages and limitations of different social
transportation data call for the data fusing approaches and

techniques. By fusing different social signal data, predictions
based on one type of data can be cross validated by another
type of data, new knowledge can be mutually speculated,
and the prediction accuracy, the prediction precision and
the algorithm performance can be improved. However, data
fusion, especially for social transportation data is still in its
preliminary stage for both scientific and engineering fields.
Future data fusing technologies will not only require the
communication and share of data from different departments,
but also need a systematical methodology on organizing and
analyzing data.

Table I lists potential data sources and characteristics of
available social signal data.

TABLE I
SOURCES AND CHARACTERISTICS OF AVAILABLE SOCIAL DATA.

Data Properties and Data Types Examples
Vehicle
trajectories

Numerical: Time, GPS coordinates,
Velocity, Accelerated velocity;
Categorical: Vehicle ID, Object
type, Direction, Change of direction;
Textual: Name, Origin, Destination,
Station; Social media: Bayonet
images, sound, surveillance video;

Ships, Aircraft,
Automobile,
Train/Metro,
Mixed, e.g., [7]

Incident
report

Numerical: Time, coordinates;
Categorical: Stateful events, stateless
events, weather conditions, incident
types; Image/Video: images,
surveillance video;

Tunnel, Highway,
Road, e.g., [8]

Human
mobility

Numerical: Time, GPS coordinates,
Wifi coordinates, Velocity,
Accelerated velocity, Gravity;
Categorical: Cell tower ID, Service
types; Textual: Address;

Cell phones, Wifi,
e.g., [9]

Social
Networking

Numerical: Time, GPS coordinates;
Categorical: User ID , Address;
Textual: posts (Twitter, Weibo,
WeChat etc), SMS, IP Social media:
posts (MMS, Voice, Twitter, Weibo,
WeChat etc);

Facebook, Twitter,
Weibo, Flickr,
Uber, Waze, Baidu
bicycle,
e.g., [4][10]

Web logs Numerical: Time; Categorical: User
ID, Check-in address; Textual:
comments;

Baidu, Foursquare,
e.g., [11]

III. ANALYZING SOCIAL TRANSPORTATION DATA

Data analytics in social transportation play a crucial role
in ITS from three main aspects [12]. First, analyzing social
transportation data can help improve the performance of ITS,
discover user sentiments, and model user behavior at different
scales [13]. Second, government administration, transportation
departments, transit agencies, driver’s licensing agencies and
other departments have been increasingly taking social media
as an essential platform for announcing schedule irregularities,
waiting times and alarms. In this sense, a proactive information
pushing mode is enabled. Third, by analyzing online social
conversation data, government and transportation agencies
can better understand the needs of citizens, identify trends,
and ultimately resolve problems. Data analytics also allows
transportation agencies to focus on critical issues by filtering
out peripheral information.

From the viewpoint of information science, approaches for
analyzing big data in social transportation can be roughly
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Fig. 1. A visual reasoning approach for transport assessment based on taxi trajectories [14]. The interface consists of two parts: a sketch-based query and
multiple coordinated views.

classified into three categories, statistical analysis, data mining,
and visual analytics.

First, statistical analysis is an analytical body of statistics
that pertains to the collection, analysis, interpretation or
explanation, and presentation of data. Statistical analysis
methods can be not only employed to describe the statistical
properties, distribution, parameters (descriptive statistics), but
also employed to mine patterns in the sample data to draw
inferences about the population, randomness and relationships
(inferring statistics). One important branch of the statistical
analysis methods is statistical physics, which uses methods of
probability theory and statistics for studying large populations
and approximations in solving physical problems [15][16].

Second, data mining is an interdisciplinary subfield of
computer science, which denotes the computational process
of discovering patterns in large data sets. Data mining lies
in the intersection of artificial intelligence, machine learning,
statistics, and database systems. Representative methods of
data mining include clustering, classification, summarization,
abnormality detection and regression analysis [17][18]. While
data mining is relevant to statistical analysis, its main goal is
to discover unknown and even unexpected models from data
and compute the model parameters [19].

Third, visual analytics [20] is the science of analytical
reasoning supported by interactive visual interfaces. In
the kernel of visual analytics is data visualization, which
transforms various types of data into appropriate visual
representations, and greatly improves the efficiency of data
understanding and analysis. Compared with statistical analysis
and data mining methods, visual analytics methods allow

decision makers to combine their human flexibility, creativity,
and background knowledge with the enormous storage and
processing capacities of high performance computing facilities
to gain insight into complex problems [21]. Visual analytics
can be seen as a task-driven integral approach combining
visualization, human factors, and data analysis. There have
been many approaches and systems that verify the values
of visual analysis for social transportation. Representative
systems can be found in [22][7] [23] [24] [25] [14]. Figure 1
and Figure 2 illustrate two examples of visual analysis of
social transportation.

IV. TRAFFIC AND TRANSPORTATION ANALYTICS IN SOCIAL
TRANSPORTATION

Social signal data are normally characterized with big
volume, wide spatial coverage, long observational period,
and real-time features. The emergence of social signal data
tremendously promotes our understanding of human mobility.
For examples, using data collected from an online bill-tracking
website, Brockmann et al. [15] analyzed the trajectories of
464,670 dollar bills to understand human mobility laws. They
further used a CTRW (continuous time random walk) model
to simulate human movements. González et al. [16] analyzed
the trajectories of one hundred thousand mobile phone users
through their billing records to uncover universal human
mobility laws. Using mobile phone data, Song et al. [26]
discovered that people are highly predictable regardless of
their travel distance, age and sex. This finding establishes
the theoretical foundation for developing accurate predictive
models of human mobility.
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Fig. 2. Visual analysis of human mobility based on cell phone location data [23]. (a) The sunburst views for three different days; (b) The sunburst view for
a ferry area and the corresponding image.

The huge developments in the area of human mobility
provide us useful tools for employing social signal data
in transportation analytics. Using human mobility models,
origin-destination matrix (OD) can be inferred. Consequently,
traffic flow can be predicted with existing traffic assignment
approaches. Here, we introduce a few works on the
applications of social signal data in traffic and transportation
analytics.

With high spatiotemporal resolution, GPS data were widely
used to estimate travel time and detect traffic congestion on
roads. Using the Beijing taxi GPS data, Wang et al. [27]
modeled different drivers’ travel times on different road
segments in different time slots with a three dimension
tensor and proposed a real-time model for estimating
the travel time of any path. For prototypical systems,
researchers from University of California Berkeley developed
a proof-of-concept traffic monitoring system in the Mobile
Century project [28]. The prototype system included vehicles
carrying GPS-enabled phones driving loops on a 10-mile
stretch of I-880 near Union City, California. The group
validated that a 2-3% penetration of GPS-enabled cell phones
in the driver population is sufficient for accurately measuring
the velocity of traffic flow [28]. For practical applications,
the real-time traffic flow information displayed on traffic
information boards were normally inferred from taxi GPS data.

Taxi GPS data were also used for detecting traffic
anomalies, building taxi sharing platforms and developing
taxi calling software. Pan et al. [29] employed three months’
taxi GPS data and a dataset of tweets collected from WeiBo
to build a system for crowd sensing of traffic anomalies.
Different from former methods, they identify anomalies
according to taxi drivers’ route selection behaviors. Using

New York taxi GPS data, Santi et al. [30] developed a
mathematical framework to understand the tradeoff between
collective benefits of taxi sharing and individual passenger
discomfort. They found that with increasing but still relatively
low passenger discomfort, cumulative trip length can be cut by
more than 40%. Now, taxi calling software have been widely
adopted and made huge impacts. Examples include “UBER”
in US, and “Didi Taxi”, “Kuaidi Taxi” in China. These taxi
calling software was all built upon real-time taxi GPS data.

The relatively low spatiotemporal resolution of mobile
phone data make them not good candidates for estimating
travel time on roads, but their high penetration rates and long
recording periods make them good datasets for estimating
OD. For examples, using mobile phone data during a long
observational period, Calabrese et al. [31] proposed a method
to estimate people’s daily commuting OD by locating phone
users’ home and work locations. Wang et al. [32] employed
mobile phone data for estimating the transient ODs in San
Francisco Bay Area and Boston Area. There are also practical
transportation applications developed with mobile phone data.
In the 2010 Shanghai World Expo, a traffic prediction system
based on mobile phone data was developed to infer traffic
flow on roads, passenger flow on subway, and real-time
congestion in Shanghai [33]. Real-time traffic information was
then distributed through websites, TVs, radios, and portable
devices such as mobile phones and vehicular-navigators to help
travelers organize their routes in the big event.

In the public transportation system, millions of passengers
keep generating huge volumes of social signals in real-time
with the public transportation cards they hold. These social
signals record spatiotemporal information of passengers,
and have already been used to study and improve public
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transportation systems. Roth et al. [34] used the “Oyster”
card data that record individual person movements in the
London subway. They observed that intra urban movements
are strongly heterogeneous in terms of volume, but not in
terms of trip distance. Yeung et al. [35] developed a simple,
principled, generic, and distributed routing algorithm capable
of considering all individual path choices simultaneously. The
efficacy of the proposed algorithm was tested by the “Oyster”
card data. Based on the subway card data which record more
than 5 million passenger trips in a typical weekday of 2013,
He et al. [36] analyzed the passenger flows distributions in the
Beijing subway network and proposed a congestion avoidance
routing model that can considerably reduce congestion in the
subway by adjusting the routes of only a small fraction of
targeted passengers.

With mobile communication devices, people can report
traffic situations around them (traffic jams, traffic accidents) on
ubiquitous social networking websites, such as Tweeter, Weibo
and WeChat. Hence, these social networking services have
became new channels for collecting traffic state information.
Furthermore, the massive messages from these websites may
contain information to help us understand how a traffic event
is formed. Many works have recently employed social media
messages in traffic and transportation analytics. For examples,
Wanichayapong et al. [2] detected and classified tweets related
to location and traffic information. The authors extracted
traffic information from microblogs using natural language
processing (NLP) methods and syntactic analysis. Schulz et
al. [37] used semantic web technologies, NLP and machine
learning techniques, and messages from Twitter to detect
small-scale car incidents. Using online chatting messages
from Tianya.cn, Wang et al. [38] used NLP approach and
data mining techniques to detect traffic jams. The authors
discovered people’s talking point when meeting traffic jams,
which can offer data support for relevant authorities to make
effective decisions.

Figure 4 summarizes features, analytical approaches and
applications of commonly used social data. Different types
of features can be extracted from the data sources listed in
Table I.

V. CROWDSOURCING IN SOCIAL TRANSPORTATION

Crowdsourcing is the process of solving a problem
through obtaining contributions from a large group of people
via online communities [39][40]. Crowdsourcing has been
applied to a variety of tasks, like the DARPA Network
Challenge, essay editing, biomolecule design, asteroid
detection, crowd-powered search, and healthcare [41][42][43].
These tasks are usually very complicate, and cost-, time- and
space-critical, which could not be achieved by a computer
program, or a single person. With the wide use of smart phones
and devices by people, crowdsourcing becomes a promising
alternative approach to data collection and analysis. Due to its
nature of the participation of large-scale people, crowdsourcing
is also very suitable to be applied to the planning process
of transportation systems to improve the effectiveness and
feasibility [44].

As one of the most important and complicated systems
in modern society, a transportation system is composed
of fundamental infrastructures, transported objects, central
or distributed communication, control, and computing units,
as well as a human-in-the-loop feedback cycle. The main
challenge for building such a complex system is how to sense
the full spectrum information in a situation-aware fashion.
This requirement elicits the incorporation of a crowdsourcing
mechanism into ITS, for the purposes of empowering the
users capabilities of sensing and controlling the transportation
system and fulfilling time-critical tasks that are incompetent
by traditional approaches.

Prior to the formal definition of crowdsourcing in 2006, a
number of applications targeted to intelligent transportation
have been successfully deployed by crowdsourcing
approaches. One famous example is the OpenStreetMap [45],
which is an open data project to collaboratively create an
editable map of the world [46]. Traditionally, geographical
information was collected by skilled, equipped, organized,
and paid individuals or groups. With the availability of
precise and inexpensive GPS signal receivers, a number of
geographical mapping projects oriented by user participations
emerged, among which OpenStreetMap is the most extensive
and successful one. OpenStreetMap relies on voluntary users
to contribute personally collected data for public usage (in
particular, for transportation). It has been proven reliable and
economic, and became an important data source other than
conventional proprietary datasets [47].

Collecting and analyzing real-time or near real-time
traffic information (traffic conditions, accidents, route
suggestions, etc.) are equally crucial for the operations of
intelligent transportation systems. Although vehicle mounted
sensing and communicating devices (for Vehicle to Vehicle
cooperation (V2V), Vehicle to Infrastructure cooperation (V2I)
communication) are still impractical due to the cost and
reliability issues, the wide adoptions of smart phones by
drivers and passengers have enabled crowdsourcing as an
alternative way for efficient data collection and analysis.
In principle, there are two types of crowdsourcing in ITS:
crowdsourcing for collecting sparse data on facilities (i.e. bike
routes), and crowdsourcing for soliciting feedback on quality
of transit services [44].

Crowdsourcing is a novel means for ITS, and many
approaches are still in early stages for verification.
Nevertheless, many pioneered works that are dedicated on
crowdsourcing-based ITS have shown its great potential on
revolutionizing the ITS research and developments. With the
wide participating feature, crowdsourcing can be used in
transportation planning, in which collective wisdom helps
design efficient and user-friendly transportation systems.
For instance, Waze is a GPS-based geographical navigation
application which provides real-time route guide and traffic
monitoring based on user-generated or shared information.
The crowdsourcing mechanism makes the data collection
and dynamic update ease. Another crowdsourcing service
provided by Uber [5] is committed to sharing location
data and transportation needs in a manner that protects the
privacy of riders and drivers. The CrowdITS [48] system
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utilizes information from smart phone users for effective ITS
applications. One application provides real-time traffic routing
to avoid congestions by integrating the input information
of drivers and selectively disseminating routing information
based on geo-locations of drivers.

With the rapid growth of location-based services, wearable
devices, and various types of user-generated data, we
believe that crowdsourcing-enabled services will cover every
component of ITS.

VI. DATA-BASED AGENTS

Agent technology has been widely used in transportation
control and management for a long time [49]. Examples
include agent-based traffic signal control, agent-based
transportation simulation, etc. However, there is still lack
of exploration on agent technology for human-oriented

transportation applications. With the development of the
mobile Internet, the Internet of Vehicles and the Internet
of Things, more information technologies and Artificial
Intelligence technologies are used in cars to improve drivers’
driving experience. For examples, Apple released Carplay to
provide drivers a smarter, safer way to use iPhone during
driving, and Google released Android Auto to make an android
mobile device serve as a dashboard’s head unit. Jaguar
developed a game-like head-up display system [50] to offer
drivers better driving experience. Pioneer develops Telematics
to replace the rearview mirror with a display panel [51],
where a built-in wide-angle camera is equipped to provide safe
driving support service. Specifically, Telematics can analyze
the movements of the cars in front, detect potential accidents,
and provide audio and visual warnings. Under this background,
web-based agent technology for transportation control and
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management is believed to be an important research direction,
especially in the field of traffic monitoring, safe driving,
vehicular health, and energy management. In particular, the
effort should be dedicated to develop various smart mobile
applications that collect social traffic data and link people to
traffic and cars in real-time, like Waze and Uber.

The pioneered work in 2003 proposed a distributed
framework for control and management of advanced driver
assistance systems (ADAS) based on mobile agents that
connect cars, homes, offices, and service centers [1].
Thereafter, there have been dramatic advances in mobile
communication, robotics, and artificial intelligence, as well
as the increasing public awareness and excitement on smart
cars over Google’s autonomous vehicles. The progress in agent
technology can now be seamlessly incorporated into vehicles
and auto service centers. We advocate developing task-specific
agents for various driving and maintenance functions that can
be hosted and executed by local platforms inside a vehicle in
real-time. These agents could also move to complex remote
yet powerful environments outside the vehicle, where they
can be enhanced in terms of performance through further
training and learning with human or computer programs.
Similar ideas have been applied and verified in traffic signal
control systems, where mobile-agent technology is adopted
to take advantages of different algorithms to deal with
dynamical changes and uncertainty in traffic and transportation
environments, and achieves excellent performance beyond
traditional methods [52] [53].

It is also the right time to rethink and redefine many
existing vehicular hardware and software systems, such as
ABS (Anti-lock Braking System), ACC (Adaptive Cruise
Control), ESP (Electronic Stability Program), lane departure
warning, pedestrian detection, obstacle avoidance, fatigue
detection and warning, smart speed adaptation. We can
consider them as vehicular robots, and enable them work in
parallel with human operators and learn from driving behaviors
and local environments by cloud computing. In this way, these
systems can be refined over time and optimized for the best
performance. Operators can effectively keep their attention on
roads and enjoy a safe, smooth, and smart driving experience.
Existing agent-based studies on human driving behaviors will
contribute to this goal directly and significantly. Chong et
al. [54] proposed an agent-based neural network model to
analyze individual driver characteristics. Their experimental
results show that at less than 10Hz data resolution the neural
agent approach outperforms the GHR model significantly and
captures individual driver behavior with 95% accuracy. Abbas
et al. [55] use agent based modeling techniques to model
normal and safety-critical driving behaviors. For those studies
that do not use the concept of agent, their findings can also
be encapsulated with agents. Since agent has flexible structure
and strong describing capability.

Of course, we need a more open platform and many more
specified protocols in order to develop more software robots
to perform diversified tasks, such as monitoring the state of
drivers, checking the condition of cars, evaluating the safety
of environments, and identifying available services during
driving. We also need to establish reputable and reliable test

beds that can thoroughly evaluate, verify, and certify these
vehicular robots, so that people can create, test, and use them
with confidence. Related research is now in progress. For
example, a task-specific performance evaluation model has
been proposed to evaluate unmanned ground vehicle (UGV)
and applied in the Intelligent Vehicle Future Challenge (IVFC)
annual competitions [56]. At last but not the least, security and
privacy could still be a big issue for such scenarios of parallel
driving. Making strict laws and policies to restrict the usage
of private information could alleviate public concerns on this
aspect.

VII. DATA-DRIVEN SOCIAL TRANSPORTATION SYSTEMS

In designing and developing next generations of ITS,
many new theories, technologies and systems are needed for
improving traffic safety and efficiency. The key technologies
for ITS are Vehicular Ad Hoc Networks (VANETs), V2I
communications, traffic signal control, smart infrastructure,
and intelligent vehicles. In particular, intelligent vehicles
denote the ones that emerge from autonomous vehicles, such
as passive or active safety systems, and driver assistance
systems (e.g., lane keeping assist systems (LKAS) and
stop-and-go systems).

By accessing the transportation cloud services with V2I
and V2V communications, a vehicle has new expanded
functions. Many studies have contributed to this direction.
For instance, the cloud computing assisted ACP systems
offer a cyberspace-enabled parallelism that supports a wide
range of new application scenarios, such as driving in
intelligent transportation spaces for integrated and traffic
management, as well as vehicular safety. As a part of Parallel
Transportation Management & Control System (PtMS), a
Cyber-Physical-Social Systems (CPSSs) based parallel driving
system incorporates technologies of intelligent vehicles, traffic
management and control, artificial transportation, and cloud
computing by leveraging information from cyber-, physical-,
and social-spaces, as indicated in Fig. 5.

It should be noted that human factors, human driving
experiments, and behavioral analysis and modeling are critical
for CPSS-based transportation systems. Special cares have to
be paid on the social signals that relate to human mobility,
point of interests (POIs), frequent visited destinations, and
other information from mobile-based navigation devices.

A CPSS-based parallel driving system employs a layered
structure, as shown in Fig. 6. In this framework, driver agents
run on the controlled vehicles, and road section manager
agents are installed on the roadsides or intersections. Personal
agents with travel needs are included. The driver agents and
personal agents can call ahead and reserve a space-time block
in a road section. The transportation related CPSS conducts
data fusion, computation, simulation and communication, and
provides information to the Traffic Managers. The traffic
managers decide whether the requested reservations are
granted or rejected according to the traffic simulation results.
When a request is granted, the traffic managers send the driver
agents a special file for travel guidance. Otherwise, they will
negotiate until the travel is arranged.
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Fig. 5. Social Information for CPSS-based Transportation Systems.

Fig. 6. Overview of CPSS-based Parallel Driving System.

The traffic managers simulate a travel with cloud
computing and send driving guidance to the vehicles. This
request-and-answer mechanism ensures the active control
of traffic, and improves traffic safety and efficiency in
complicated situations such as congested road sections and
intersections. Meanwhile, there are several benefits of the
communication-enabled cooperative safety applications over
purely autonomous safety systems. Representative examples
include: a line-of-sight detection is not required; the vehicle
status can be shared to others rather than estimated by
expensive vehicle mounted sensors; the cost of positioning
and communication is significantly less than the autonomous
sensing equipment; vehicles can coordinate maneuvers for
safety goals; the movements of personal agents in critical
sections like intersections are simulated to ensure the safeties.

As indicated in Fig. 6, the indispensable interface between
traffic managers and driver agents as well as personal
agents is the V2I/P2I link through roadside infrastructures.
In CPSS-based transportation systems, to facilitate the new
roles of intelligent vehicles, a key aspect is the interaction
between transportation intelligent vehicles and the road
management and communication infrastructures. Intelligent

vehicles need to collaborate with smart roadside infrastructures
[57] in order to optimize transportation related tasks, where
transportation flow and communication flow are synchronized.
An important trend is the massive expansion of a wireless
roadside infrastructure that will establish a close interaction
between data centers, mobile devices, transportation vehicles,
traffic managers and the communication backbone, making the
roadside infrastructures smarter.

A vehicle can access the transportation cloud services by
the V2I communication channel, and extend its functions
with the knowledge obtained by the parallel execution of
the artificial transportation system and its real counterparts.
For example, till now it is still complicated for autonomous
vehicles to navigate through complex traffic environments like
a crowded intersection. The transportation cloud service can
be used to model and analyze the situation with previous
sampling or other UGV perceptions. The result can be
used to help other vehicles pass through the intersection.
In this example, the problem of unknown road disturbance
is addressed by means of a practical technique that utilizes
a cloud-based system and the smart roadside infrastructure
to get the updated information about the road. Meanwhile,
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communications with other vehicles via V2V protocols help
gathering local information of the road.

The vehicles are connected to each other through V2V
communication channels, and meanwhile they communicate
with the cloud database. This hybrid cyber-physical platform
improves ride metrics of vehicles by equipping and updating
an accessible database of road-profiles. In this way, the road
disturbance is no longer unknown, for which simple and fast
algorithms with low computation cost are sufficient.

In the physical space, reliable and efficient communications
and networking among intelligent vehicles and smart roadside
infrastructures is a key enabler for the various ITS
applications. As described above, CPSS-based transportation
systems demand frequent and accurate information exchange
for data collection and traffic management, like real-time
driving guidance in CPSS-based parallel driving systems.
Improved communications and networking designs are needed
to guarantee the system performance with real-time, high
mobility, high fidelity, and extensive information sharing
features in CPSS-based transportation systems. In order to
achieve improved network performance in vehicular networks,
more researchers have started to consider joint V2V and V2I
communications [58], [59], [60]. It has been demonstrated
that vehicular networks exploiting both V2V and V2I
communications provide considerably better performance than
the ones based on either of them individually. Communication
and networking architectures properly integrating V2V and
V2I communications will be the key to solve the physical
space challenges in CPSS-based transportation systems.
Similar to Device-to-Device (D2D) communications in cellular
networks, in vehicular networks, V2V communications can
also perform as an underlay to V2I communications (which
is connected to smart roadside infrastructure as a central
scheduling controller). This heterogeneous architecture can
significantly improve the network throughput and system
capacity with effective interference management protocols
[58]. Simultaneous V2V and V2V communications can also
guarantee the real-time and fast information exchange among
vehicles and infrastructures [61].

As a result, the objective of developing a CPSS-supported
intelligent vehicle can be achieved by leveraging signals from
both the physical and social spaces. This provides a continuum
of options between driver in total control of the vehicle
and autonomous drive, consequently guaranteeing the safety
of drivers, passengers, vehicles, and infrastructures that are
statistically dangerous.

VIII. FUTURE OF SOCIAL TRANSPORTATION

CPSS-based Transportation 5.0 [62], more specifically, an
implementation of software-defined transportation systems,
O2O (online to offline and vice verse) computational
transportation experiments, and parallel transportation
with knowledge automation for closed-loop control and
management with society-wide feedback, will be realized
for real-world applications. With the help of social signals,
CPSS-based Transportation 5.0 can take complete control of
the traffic in both physical and cyber spaces. This vision, we
believe, is the future of social transportation.

The comprehensive traffic control will provide a realistic
mechanism for rapid implementation of new and exciting
methods and techniques in communication and control for
traffic management, especially the concept from emerging new
network technology, so-called software-defined networking
(SDN) and named data networks (NDN), as well as the
ACP-based parallel control and management of complex
systems [1][62][6][63]. In SDN, network administrators are
able to manage network services through abstraction or
virtualization of lower level communication functionality by
decoupling the system that makes decisions about where traffic
is sent (the control plane) from the underlying systems that
forward traffic to the selected destination (the data plane) [64].
We believe that the complete traffic control constructs a basis
for software-defined traffic networking (SDTN), which is a
direct implementation of artificial transportation systems in
the ACP approach. This combination greatly benefits traffic
network users or customers similarly or even more than those
offered by SDN for communication. As a matter of fact,
SDN provides a portion of the AC functionality and does
not involve steps in P, which could lead to a closed-loop
network management for better performance, as described in
the ACP-based parallel systems [63].
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