
Automatic Shader Simplification using Surface Signal Approximation

Rui Wang∗ Xianjing Yang∗ Yazhen Yuan∗ Wei Chen∗ Kavita Bala† Hujun Bao∗∗

∗State Key Lab of CAD&CG, Zhejiang University †Cornell University

Abstract

In this paper, we present a new automatic shader simplification
method using surface signal approximation. We regard the entire
multi-stage rendering as a process that generates signals on sur-
face, and formulate the simplification of the fragment shader as
a global simplification problem across multi-shader stages. Three
new shader simplification rules are proposed to solve the problem.
First, the code transformation rule transforms fragment shader code
to other shader stages in order to redistribute computations on pix-
els up to on geometry primitives. Second, the surface-wise approx-
imation rule uses high-order polynomial basis functions to approx-
imate pixel-wise computations in the fragment shader on surfaces.
These approximations are pre-cached and simplify computations
at runtime. Third, the surface subdivision rule tessellates surfaces
into smaller patches. It combines with previous two rules to ap-
proximate pixel-wise signals on different tessellations with differ-
ent computation times and visual errors. To evaluate simplified
shaders with regard to these simplification rules, we introduce a
new cost model including the visual quality, the rendering time and
the memory consumption. With these simplification rules and the
cost model, we present an integrated shader simplification algo-
rithm that is capable of automatically generating variants of simpli-
fied shaders and selecting a sequence of preferable shaders. Results
show that the sequence of selected simplified shaders well balance
the performance, the accuracy and the memory consumption.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Rendering;

Keywords: GPU shader, real-time rendering, shader simplifica-
tion, surface signal approximation

1 Introduction

GPU shaders play a very important role in computer graphics [Se-
gal et al. 2013; Microsoft 2013a]. Time-critical applications like
video games, real-time shading, and high-fidelity visualizations
rely heavily on high-performance shader computations. In the lat-
est GPU pipeline, there are five shaders acting in three rendering
stages [Kessenich et al. 2013; Microsoft 2013b]. The vertex shader
processes vertices in vertex shader stage; the geometry shader and
tessellation shaders compute and output geometry primitives in the
geometry-processing shader stage; and the fragment shader inputs
interpolated geometry attributes and outputs shading values of pix-
els in the fragment shader stage. All of these shaders are fully pro-

∗e-mail:rwang, bao@cad.zju.edu.cn

Figure 1: One rendering result using the simplified shader gener-
ated by our approach (Top). We compare our result side by side
with the image rendered by the original shader (Bottom Left), and
provide the error image to visualize the difference (Bottom Right).
Compared with the original fragment shader, our simplified shader
raises the FPS from 61 to 229.
grammable, reproducible, and reusable, allowing for flexible per-
sonalization of real-time rendering effects.

However, the quality of shaders greatly depends on the experi-
ence of shader programmers. Even though there are some rules
and toolkits for interactive modulation and optimization of shader
programs, the entire process is time-consuming, tedious and some-
times inefficient. In general, the most time-consuming part is the
shading computation within the fragment shader. Thus, much ef-
forts have been made to automatize the simplification of fragment
shaders. Pellacini [2005] proposed a user-configurable shader sim-
plification method for pixel-wise procedural modeling. Nehab et
al. [2007] and Sitthi-amorn et al. [2008] presented a re-projection
based scheme to optimize the shading of pixels. Most recently,
Sitthi-amorn et al. [2011] used genetic programming to fully au-
tomatize the simplification process. However, all of these studies
only took simplifications within the fragment shader stage. If we
take a broader view of the entire rendering process, the fragment
shader is only one stage of the entire rendering pipeline, and other
shaders are also of great importance in computing shading values.
Foley and Hanrahan [Foley and Hanrahan 2011] presented a modu-
lar and composable shading language to cut across multiple pipeline
stages. But, its goal is not the simplification of shaders.

In this paper, we introduce a new view on representing and approxi-
mating shader computations. We regard the shader computations as
the generation, modulation and combination of signals on the sur-
face. In this way, the computations in the fragment shader can be
approximated and simplified by surface signal approximations, and
thereby be pre-cached or transformed to other shaders. This leads
to a novel shader simplification scheme that seeks to “bake” shader
computations on the surface in the viewpoint of surface signal pro-
cessing. Three new shader simplification rules are proposed: a)
transforming the shader computations from the fragment shader to

geometry-processing shaders in order to redistribute these compu-
tations; b) simplifying the shader computations by means of surface
signal approximations and caching them on the surface; c) subdi-
viding surfaces into smaller patches to provide different qualities
of signal approximations. All tasks bring new challenges for the
automatic shader simplification: allowing for across-shaders sim-
plification greatly complicates the simplification process; leverag-
ing surface signal simplifications requires a well-designed strategy
for signal representation, modeling and compensation; subdividing
surfaces at different levels greatly enlarges the exploration space
of simplified shaders. Additionally, besides the rendering time and
the visual error, incorporating the approximation on surfaces intro-
duces a new cost: the memory consumption. This paper presents a
new solution to address all of these problems with following con-
tributions:

• A new shader simplification scheme that allows for re-
organization of fragment shader code among different shader
stages by means of a novel code transformation rule;

• A surface signal approximation rule that replaces time-
consuming shading computations with signal reconstructions
of high-order polynomials on surfaces;

• A surface subdivision simplification rule that incorporates
programmable tessellators to balance the approximation qual-
ity and the tessellation of surfaces.

• An integrated shader simplification approach that balances the
performance, the accuracy, and the memory cost by leverag-
ing the code transformation, the surface signal approximation
and the surface subdivision rules.

2 Related Work

Shader Simplification The pioneering work of shader simplifi-
cation [Olano et al. 2003] was for procedural fragment shaders. It
gains significant speedup by replacing texture fetches with less ex-
pensive operations. Then, a more general algorithm proposed by
Pellacini [2005] automatically generates a sequence of simplified
fragment shaders based on the error analysis on a set of expres-
sion rules. Thereafter, to adapt to more changes in the input, Ne-
hab et al. [2007] proposed a reprojection-based shader optimiza-
tion method that uses a screen buffer to cache optimized values.
This method was extended to automatize the use of data repro-
jection as a general and practical tool for optimizing procedural
shaders [Sitthi-amorn et al. 2008]. More recently, a genetic pro-
gramming based shader simplification scheme was proposed to se-
lect optimal shaders that balance between performance and image
quality [Sitthi-Amorn et al. 2011]. Similarly, our approach lever-
ages code analysis techniques, but distinguishes itself from previ-
ous approaches in that ours seeks to not only optimize computa-
tional operations in the fragment shader, but also distribute com-
putations across different stages of shaders. Our method uses ad-
ditional buffers to store approximated surface signals, which bears
some similarity with those cache-based re-projection methods [Ne-
hab et al. 2007; Sitthi-amorn et al. 2008]. However, the representa-
tion and the way to use these buffers are totally different.

Foley and Hanrahan [2011] presented a modular and composable
shading language, Spark. It allows users to define shading effect
across different programmable stages by means of a global (inter-
stage) optimization for their shader class. However, the optimiza-
tion used in their method is designed to eliminate dead-code and
make preparations to generate HLSL shaders. Our shader simpli-
fication that generates a sequence of optimized shaders is beyond
their optimization scope.

Surface Signal Approximations Generating the visual appear-
ance of a surface is a process of signal generation, modeling and
reformulation. Many types of surface signals have been used: col-
ors, texture maps, bump maps, displacement maps, bidirectional
texture maps, etc. [Akenine-Möller et al. 2008]. To represent light-
ing signals on a surface, either triangle meshes are adapted to fit the
signal [Hanrahan et al. 1991; Hoppe 1996] or the signals are rep-
resented with nonlinear basis functions [Zatz 1993; Lehtinen et al.
2008; Sloan et al. 2003]. Remeshing is impractical for shader op-
timization, so we choose to approximate the surface signals with
basis functions. We specifically choose Bezier functions because
of their wide usage in graphics.

Recently, Kavan et al. [2011] proposed a vertex-based surface sig-
nal approximation technique, called vertex-baking. By taking linear
approximations of the ambient occlusion on surfaces and storing
them on vertices, their method is able to consume less memory and
achieve better performance than that directly using ambient occlu-
sion map. Alternatively, our method provides non-linear approx-
imations on surface signals, and targets a different problem: the
shader simplification.

Code Analysis In our paper, we use several code analysis tech-
niques to parse shader and take approximations. Abstract Syn-
tax Trees (ASTs) [Muchnick 1997] are used to construct the syn-
tactic structure of shader code, which has been widely used in
previous shader simplification approaches [Pellacini 2005; Sitthi-
amorn et al. 2008; Sitthi-Amorn et al. 2011]. Program Dependence
Graphs (PDGs) [Ferrante et al. 1987] that encode the data and con-
trol dependencies of shader code are used to construct program
slices [Weiser 1984] of shader code. The dependencies of code
have been used in specialization shaders [Guenter et al. 1995]. Un-
like their approach, our focus is an automatic shader simplification
method.

3 Overview

3.1 Global Shader Simplification Problem

Shaders are programs designed to compute shading on geometry
primitives. In the latest graphic rendering pipeline, five shaders at
different stages are used in an integrated rendering pipeline: the
vertex shader, the geometry shader, two tessellation shaders and
the fragment shader [Kessenich et al. 2013; Microsoft 2013b]. For
simplicity, the set of shaders used in a rendering pipeline is called
a shader configuration.

We represent the entire rendering pipeline as a function f , which
takes a set of geometry primitives with attributes, and generates
shading values for each pixel:

f((x, y), v) = p ◦ r(g ◦ h(v), (x, y)) (1)

where (x, y) is the screen position of one pixel, v is the set of ge-
ometry primitives, p denotes the fragment shader, g denotes shaders
in the geometry shader stage, h is the vertex shader, and r is a
fixed rasterization stage that converts geometry primitives into pix-
els with interpolated geometry attributes. Without loss of general-
ity, in the following text we assume that the geometry primitives
processed by shaders are triangles,

The goal of global shader simplification is to generate a sequence
of shader configurations, {p̃k, g̃k, h̃k, k = 1, 2, 3, ...}, such that
each triple of {p̃k, g̃k, h̃k} produces a rendered image with dif-
ferent rendering quality and different costs, such as different time
consumption and memory consumption. In particular, the render-
ing quality of each optimized shader configuration is measured by

the screen-space color difference:

ef =

∫
I

‖ p ◦ r(g ◦ v(v), (x, y))− p̃ ◦ r(g̃ ◦ ṽ(v), (x, y)) ‖ dxdy

(2)
where I denotes the entire screen space and ‖ · ‖ is the L2 norm of
pixelwise color differences. Similar to [Pellacini 2005] or [Sitthi-
Amorn et al. 2011], the difference metric can be employed subject
to additional uniform parameters, such as a set of lighting and cam-
era positions or a sequence of input frames, u, distributing on the
domain U :

ef =

∫
U

∫
I

‖ p◦r(g◦v(v), (x, y))−p̃◦r(g̃◦ṽ(v), (x, y)) ‖ dxdydu

(3)

3.2 Our Solution

Our shader simplification scheme is motivated by the following
observation: in general, the entire rendering process can be re-
garded as generating signals of the underlying surface, and different
shaders yield various surface signals. Thus, the simplification of
shaders can be regarded as an approximation of the produced sur-
face signals. Specifically, the screen position of one pixel, (x, y),
corresponds to a local point (si, ti) on certain object-space triangle
zi: (si, ti) = r−1(x, y), where r−1 denotes the inverse rasteriza-
tion function, and (si, ti) denotes the barycentric coordinates in zi.
In this way, the shading function on the image f can be approxi-
mated by summed surface signals defined on the triangle set of the
scene, {zi}, as

f(x, y) =

M∑
i

fzi(r
−1(x, y)) =

M∑
i

fzi(si, ti) (4)

fzi(si, ti) ≈
∑
j

αijbj(si, ti)

where M is the number of triangles, fzi is the approximation func-
tion only defined on the triangle zi, {bi} are basis functions and
{αij} are weights.

This equation links the fragment shader stage with other two shader
stages, the vertex-shader stage and the geometry-shader stage. By
approximating signals on the rendered image (defined in the screen
space) to on surface signals (defined on the surface), we are able to
obtain a sequence of surface signal approximations with different
errors. This introduces a new strategy of shader simplification: op-
timizing shaders by approximating them on the surface, and redis-
tributing computations across multi-shader stages. Given the fact
that modern fragment shaders usually dominate the computational
budget per frame [Sitthi-amorn et al. 2008], in this paper, we only
focus on the simplification of fragment shaders. Below, we describe
three rules following this strategy, and the cost model used in our
approach.

3.2.1 Simplification Rules

Transform Code between Shaders. One basic rule is to cut across
the boundaries between the fragment shader stage and other two
shader stages, and allow for transforming code between them. This
rule converts the pixel-wise computations to a combination of com-
putations on vertices and interpolations on pixels. In this sense, the
code transformation can be regarded as using a suite of linear basis
functions to approximate surface signals. For a triangle z, it can be

represented as

fz(s, t) ≈
3∑
j

bj(s, t)f̃(v
z
j) (5)

= f̃(vz0)s+ f̃(vz1)t+ f̃(vz2)(1− s− t)

where {vzj , j = 0, 1, 2} are vertices of z, and f̃ is the function
similar to f but computed at vertices instead of pixels. When the
object-space complexity is smaller than the screen-space complex-
ity (usually it is true in many real-time rendering applications), re-
distributing computations from the pixel-wise to the vertex-wise is
effective in reducing the computational consumption.

Approximate Shader Functions on Surface. Second rule is to
approximate shader functions by non-linear basis functions defined
on surfaces, i.e., Bezier triangles in this paper. This yields:

fz(s, t) ≈
n∑

i+j+l=n

Bn
ijl(s, t)cijl (6)

whereBn
ijl(s, t) are the Bernstein polynomials defined on triangles:

Bn
ijl(s, t) = n!

i!j!l!
sitj(1 − s − t)l,i + j + l = n, and {cijl} are

control points. It implies that the original surface signal on a trian-
gle zi can be approximated by a set of Bezier functions with several
control points, cijl. With the form of the error metric in Eq.(3), we
can compute these control points by minimizing the error defined
on the entire surface of object as:

min
Gijl

∫
T
‖ f(s, t)− f̃(s, t)) ‖2 dµ(s, t) (7)

where T denotes the entire triangle set, and µ(s, t) denotes the as-
sociated surface measure. By storing these control points, we are
able to simplify the runtime computations in shaders by interpolat-
ing pre-cached approximations on surface.

Subdivide Surface. In Eq.(4), the original signal is approximated
by basis functions defined on discrete domains, i.e., piecewise tri-
angles. This enables an alternative way to improve the approxima-
tion by partitioning the discrete domain into a denser tessellation.
In our application, it indicates to increase the number of triangles.
With the geometry shader or the tessellation shaders, new geome-
try primitives (vertices or triangles) can be generated in the render-
ing pipeline at runtime and thereby be combined with previous two
simplification rules to provide better approximations. Therefore,
the code transformation approximation can be further represented
as,

fz(x, y) ≈
K∑
k

3∑
j

bj(sk, tk)f̃(v
zk
j) (8)

where K denotes the number of new generated triangle set {zk},
and {vzkj } are vertices on new tessellated triangles. Similarly, the
Bezier triangle approximation is changed to

fz(x, y) ≈
K∑
k

n∑
i+j+l=n

Bn
i,j,l(sk, tk)c

zk
ijl (9)

where czkijl are control points on the new tessellated triangle zk. To
guarantee that the approximation domains remain unchanged after
the subdivision, positions of new geometry primitives are all kept
on the original triangles.

Select shaders on Pareto
Surface

Evaluate simplified
shaders

Simplify Shaders

 Apply three simplification rules to simplify shaders:

1. Transform code across shaders stages

2. Approximate shaders on surface

3. Tessellate surfaces

Parse shaders to construct
ASTs and PDGs

Preprocess Shaders

Extract all shader slices from
ASTs and PDGs

Shaders

A sequence of simplified shaders

Uniform parameters

Figure 2: Algorithm overview

3.2.2 Cost Model

The visual error and the rendering time are two common cost func-
tions that have been used in previous cost models [Pellacini 2005;
Sitthi-Amorn et al. 2011] to evaluate simplified shaders. In this
work, we introduce the third cost function: memory consumption.
When we approximate shader functions on surfaces, control points
of fitted Beizer triangles are stored as extra textures for accessing at
runtime. According to different types of signals, the memory con-
sumption varies. That is, if these Bezier triangles approximate in-
termediate variables, the simplified shader may require more mem-
ory storage. If original textures are approximated, the overall mem-
ory consumption may be reduced.

Given the importance of memory consumption in our shader simpli-
fication scheme, we define a triple, (t, e,m), to evaluate simplified
shaders, where t is the shader computation time, e is the visual er-
ror and m is the memory cost. Specifically, we count the rendering
clocks of shaders on GPU as the time cost, compute average per-
pixel L2 distance in the RGB space over all representative frames
as the visual cost, and measure the overall memory usage as the
memory cost.

We extend the partial order defined in [Sitthi-Amorn et al. 2011]
to three dimensions: one simplified shader with (t1, e1,m1) domi-
nates another simplified shader with (t2, e2,m2), if t1 ≤ t2∧e1 ≤
e2 ∧ m1 ≤ m2, and t1 < t2 ∨ e1 < e2 ∨ m1 < m2. That
is, one simplified shader dominates another if it improves in ren-
dering time, visual error or memory consumption, and is at least as
good in the other. Based on the partial order of triples, the preferred
simplified shaders are selected from a Pareto surface in the three di-
mensional cost space. The actual distribution of simplified shaders
in the cost space is plotted for every example shader in the result
section.

4 Shader Simplification using Surface Ap-
proximation

4.1 Algorithm Overview

The flowchart of our algorithm is illustrated in Figure 2. The input
includes one shader configuration with shaders and a set of uniform
parameters sampled from their domains. As a preprocess, we first

parse these shaders, and convert shader code into Abstract Syntax
Trees (ASTs) [Muchnick 1997] and Program Dependent Graphs
(PDGs) [Ferrante et al. 1987]. AST is a tree representation of
the abstract syntactic structure of shader code, and PDG records
the data and control dependencies of each variable and operation.
Then, for each variable and operation in the shader, we compute
a program slice [Weiser 1984], called a shader slice in our paper.
A shader slice is a shader program that is taken with respect to a
certain program point and a variable x; a slice consists of all state-
ments of the program that might affect the value of x at certain pro-
gram point. One shader slice is regarded as one basic simplification
primitive for our shader simplification.

Simplifying a shader configuration is performed with three simplifi-
cation rules. The first rule transforms shader slices in the fragment
shader to shaders in other stages. The second rule optimizes the
original shaders by approximating the surface signals generated by
shader slices with different orders of Bezier basis functions. The
final one is to employ tessellation shaders or geometry shaders to
generate new vertices and triangles. For each new generated trian-
gle, we iteratively apply previous two rules, namely, either trans-
form code from fragment shader to new vertices or fit a new Bezier
approximation on the new triangle. Every possible variation of ap-
plying these rules to the selected shader slice will generate a new
shader configuration. Each new shader configuration is evaluated
with costs concerning rendering time, memory consumption and
the difference of rendered image. A Genetic Programming based
optimization [Sitthi-Amorn et al. 2011] with our specific modifi-
cations is used to select potentially preferable shaders from Pareto
surface in the three dimension cost space and drive the optimization
iteratively.

4.2 Parsing Shaders

Beginning from given shaders in the original shader configuration,
we parse these shaders and construct ASTs and PDGs for each
shader. In Figure 3, we show an example case where a geometry
shader and a fragment shader are given as the original shader con-
figuration.

To extract shader slice, we take several operations in addition to
the standard program slicing techniques [Tip 1995]. First, we take
the input uniform parameters into consideration in computing the
shader slices from the PDGs, so as to omit some dependencies that
do not occur in the execution of the particular shade code with
these parameters. Second, for loops with fixed iterations or iter-
ations determined by uniform parameters, we unfold the loop and
encapsulate each iteration into a shader slice so that these iterations
can be optimized individually using the code transformation or the
Bezier surface approximation scheme. All extracted shader slices
are stored in a list in orders of their locations in the original shader
and are processed in the shader optimization step one by one.

4.3 Transforming Code across Shaders

We take shader slices as basic primitives to perform code trans-
formation. Three types of code transformations are supported in
our approach: from the fragment shader to the vertex shader, to the
geometry shader, and to the domain shader (the tessellation evalua-
tion shader). In practice, the shader model version of the graphics
hardware determines the type of the code transformation.

Though destinations are different, operations of different types of
code transformations commonly take three main steps. They are
statements relocation, repetition removal, and output merge. First,
the statements of one shader slice are appended in the target shader,
and are removed from the fragment shader. If the target is a vertex

Geometry
Shader

AST PDG

...

Fragment
Shader

+

+
=

Simplified Shader’s AST

Code
transformation

Simplified Geometry
Shader

Simplified Fragment
Shader

...

Bezier surface
approximation

Surface
subdivision

Shader SlicesAST PDG Simplified Shader’s AST

Figure 3: Illustration of our shader simplification process. At first, shader code are converted into ASTs and PDGs. Then, shader slices are
extracted from fragment shader’s PDG. Three illustrative cases of applying our simplification rules on shader slices are illustrated. Resultant
modifications on ASTs are shown and highlighted in dashed boxes for different cases. In the red dashed box, the shader slice in red box is
transformed from the fragment shader to the geometry shader. In the green dashed box, the shader slice in green box is approximated by
Bezier functions. In the orange dashed box, the surface subdivision is triggered in the geometry shader, where new inserted tessellation code
are shown in orange. After all simplification rules are applied, new shader code is generated from these ASTs of shaders, and is used to
render scenes.

shader or a domain shader, it is directly appended at the end of all
computations. If the target is a geometry shader, these statements
are added before the vertex emission statements. Thereafter, a code
scan is performed to eliminate all repetitive statements. The output
variables of the transformed shader slice are added into the output
list of the vertex shader and domain shader, or the emitted vertex
attributes of the geometry shader. One shader slice transformation
produces a new shader configuration (a simplified fragment shader
and an enlarged vertex, geometry or domain shader).

In Figure 3, we illustrate a code transformation for one shader slice,
of which the statement is marked in red box. Such a shader slice is
transformed from the fragment shader to the geometry shader. The
resultant changes on ASTs of simplified shaders are highlighted in
the red dashed box. After such a code transformation, the compu-
tation of shader slice in red box is taken in the geometry shader.
Only their interpolations are input in the fragment shader and taken
part in following computations. Please refer to the supplementary
document for more details and code examples.

4.4 Approximating Shader Slices on Surface

Our approach allows for computing the output of each pixel and ap-
proximating them on the projected surface. The key idea is to fit the
distribution of each output variable (a kind of surface signal) with
Bezier triangles. The approximation is performed for each shader
slice with three steps: sampling the surface signal discretely; fitting
discrete samples with Bezier triangles; integrating the computed
Bezier triangles to generate simplified shaders. An illustrative ex-
ample case applying this rule is given in the supplementary docu-
ment.

4.4.1 Sampling Surface Signals

The signal of one shader slice on the surface can be modeled by
discretely sampling its output variables. For a shader slice in a frag-
ment shader, we first extract all triangles shaded by this fragment
shader, and then uniformly generate samples on each triangle and
compute signal values on these samples. In practice, to compute
these output values, we interpolate required geometry attributes and
evaluate the values using a shader simulator.

4.4.2 Fitting Surface Signals

Fitting sample points generated by one shader slice with Bezier
triangles is performed globally on the entire sampled surface. To
compute the optimal control points of triangle, zi, with certain or-
ders, a discrete least square optimization equation can be formed
by substituting Eq.(6) into Eq.(7), and formulating it into a matrix
formation:

AT
ziAziczi = AT

zi fzi (10)

where Azi is the observation matrix, each element of which is the
value of the Bernstein polynomials at sample points. czi are control
points, and fzi denote the variable values at sample points.

In many situations, the surface signals are continuous at a large
scale. Accordingly, a smooth constraint on the boundaries among
surface triangles is demanded, yielding a global least square equa-
tion: [

AT A HT

H 0

] [
x
α

]
=

[
AT b
0

]
(11)

where A = [Az0 , ..., Azi , ...] is a diagonal matrix composed from
all triangles, H denotes the smooth constraints on boundaries, and
α is the Lagrange multiplier. Our approach employs an open source
software [Guennebaud et al. 2010] to solve the linear equation.

4.4.3 Simplifying Shaders with Fitted Functions

Note that the motivation of a signal fitting is to replace the orig-
inal shader slice with fitted Bezier triangles, and thereby reduce
computations. To allow the fitted Bezier triangles be correctly ac-
cessed by pixels in the fragment shader, we first store all control
points in an additional buffer, and index each set of control points
of Bezier traingles by the triangle ID. Then, we bind the buffer to
a texture and pass the texture ID and triangle ID to the fragment
shader through the vertex shader. To let pixels be correctly interpo-
lated, we explicitly pass the barycentric coordinates to the fragment
shader as well. This is done with the geometry shader by creating
the barycenteric coordinates of vertices and interpolating within the
raterization process [Bæentzen et al. 2008].

wchen
高亮

wchen
附注
为什么全文全部都用斜体。没必要吧

4.5 Subdividing Surfaces

The runtime surface subdivision relies on the hardware implemen-
tation of programmable tessellations. To make it adaptable to dif-
ferent hardware, we implement two versions of surface subdivi-
sion with geometry shader or tessellation shaders, respectively. For
hardware compatible with shader model 5, we perform the subdi-
vision in tessellation shaders. For those compatible with shader
model 4, we use geometry shader to subdivide surfaces. The imple-
mentation details vary for the tessellation shaders and the geometry
shader, but mainly take two steps.

First, to generate one simplified shader, we choose a certain tes-
sellation factor to control the number of sub-triangles. In the hull
shaders, we use different inner and outer tessellation factors to con-
trol the subdivision level and the pattern of sub-triangles. In the
geometry shader, we use a number of iterations to generate sub-
triangles in different subdivision levels. For simplicity, in the ge-
ometry shader, we always partition one triangle into triangular grids
with a uniform tessellation factor on each edge.

Second, we apply two different simplification rules on these new
generated sub-triangles. For the code transformation rule, we ap-
pend transformed shader slice code into the domain shader or in-
sert the code before the vertex emission statements in the geometry
shader. For the Bezier triangle approximation, we assign each sub-
triangle a unique triangle ID using the original triangle ID with the
tessellation pattern. Then, we use the signal fitting method pro-
posed in the previous section to compute the control points for each
sub-triangle. To let each fragment shader correctly index the sub-
triangle ID and access corresponding control points, we use the ge-
ometry shader to compute the unique ID of each sub-triangle, where
the original triangle ID, the local sub-triangle ID and the tessella-
tion pattern are input as parameters. More details and the example
code are provided in the supplementary document.

4.6 Selecting Simplified Shaders

For each shader slice, there are tens of potential simplified variants
by means of three simplification rules. Given hundreds or thou-
sands of lines of shader code, the size of all variants of simpli-
fied shaders is the combination of simplified variants of all shader
slices. Such a shader space is too large to be fully explored. To
better select simplified shaders, we adapt the Genetic Programming
(GP) proposed in [Deb et al. 2002; ?] with several modifications.

First, in our approach, the element of the population is a combina-
tion of shader slices applied our simplification rules. The mutation
in our optimization is to change the simplification rules applied on
shader slices that have been simplified. The crossover is to ex-
change simplified shader slices for two variants. Second, given
the observation that for one shader slice, its simplified variants can
be sorted by their partial orders. Thus, before taking the GP op-
timization, we first compute all simplified variants for one shader
slice and select local preferred shader variants lying on the Pareto
surface. Only those local preferred shader variants are regarded as
candidates of this shader slice to be mutated by itself or crossover
with other shader slices. These local preferred shader variants are
also used to initialize the population. Third, we order all shader
slices according to their locations in the original shader code, and
use the order to help in mutation and crossover to generate new
variants. Since the shader slices usually have dependencies to their
previous shader slices, in code transformation, the location order of
shader slice is very helpful to reduce the number of variants.

After the final iteration, all variants ever produced and evaluated
are used to compute a single unified Pareto surface. The variants on
that surface are output as preferred shaders.

GPU Importance
Marble TF2 Imrod

Sampling
Scene
Triangles # 20 K 10 K 7.2K 26 K
Vertices # 39.7 K 8.6 K 5.1K 13.3 K
Memory # 2.0 MB 62.5 KB 2.0 MB 5.38 MB

Line of Code
Source 120 99 157 194
Shader slices 180 66 129 272

Shader Simplification
Generated variants 896 1501 1296 7597
Pareto variants 68 59 34 75
Time (hours) 1.2 7.1 1.4 6.8
Code transform 90% 76.08% 81.7% 78.9%
Bezier fit 51.3% 74.7% 55.9% 61.5%
Subdivision 36.4% 70.0% 61.0% 28.9%

Results
Speedup

2.12 3.67 1.77 3.76
@ 0.075L2 error

Table 1: Configurations and statistics of example shaders. From
top to bottom: the scene complexity; the code complexity; the statis-
tics in the shader simplification section including the number of all
generated variants, the number of variants on the Pareto Surface,
the computation time, and usages of different simplification rules;
and the speedup ratio given a visual error threshold.

5 Results

We implement the approach with Visual C++ and HLSL (Di-
rectX3D). Our shader parser is built on Lex and Bison, and the
Genetic Programming-based shader selection algorithm is modified
from NSGA-II [Deb et al. 2002; Sitthi-Amorn et al. 2011]. Exper-
iments are conducted on a PC with an Intel CoreTM i7 3770 CPU
and different graphics cards. All images were rendered at a res-
olution of 1920 × 1080. In some figures, images are cropped to
1080 × 1080 for comparison. Please refer to supplementary files
for full resolution images. The supplementary video is downsam-
pled to 720P for a smaller file size. We use the hardware counters,
gpu time, provided by the NVidia PerfSDK to measure rendering
times.

5.1 Example Shaders

We test our approach on four example shaders: the GPU-based Im-
portance Sampling shader on the Buddha model, the Marble shader
on the Dragon model, the NPR shader on the Heavy model and a
complex lighting shader on the Imrod model. Table 1 summarizes
configurations and statistics of these example shaders, including the
scene complexity, the shader complexity, details of the shader sim-
plification, and the speedup with 0.075 L2 visual error. For each
example, we also plot out the distribution of variants in the 3D cost
space. Each shader variant is plotted as a sphere. Variants on Pareto
surface are marked in orange. Three hightlighted shaders are col-
ored in blue, green and red respectively. Other variants are plotted
in purple. To better understand the distribution of variants in the
space, we projected each sphere on three planes, i.e., the time-error
plane, the error-memory plane and the time-memory plane. These
projections provides a good hint on how these variants distribute
in the space. The source code of all simplified shader variants on
Pareto surfaces are provided as supplementary files.

5.1.1 GPU-based Importance Sampling Shader

The GPU-based Importance Sampling Shader is adapted from [Col-
bert and Krivánek 2007] and runs on an NVIDIA GTX 760 graphic
card. This shader enables real-time relighting of glossy objects un-

Figure 4: The Importance Sampling Shader on the Buddha model.

der environment maps. The importance sampling guides the sam-
pling of a number of directions from the material function of ob-
ject. For these directions, a set of mipmap filters with different sizes
given by PDF values are used to filter the environment map. In our
implementation, we generate 40 samples, leading to 40 looped iter-
ations in the fragment shader. The performance of each simplified
shader is measured by 64 image frames with varying lighting di-
rections and viewpoints. A total of 896 variants are generated, and
68 variants on the Pareto surface are finally selected as preferable
shaders. The code transformation rule is the most used rule, and the
subdivision rule is the least used one. This is mainly because the
base mesh of the Buddha model is dense. Shader variants with low
level tessellations are able to provide good balance between render-
ing time and visual quality. The distribution of these shaders in the
cost space is plotted in Figure4(Top). Rendering results of the orig-
inal shader and three variants are highlighted in Figure4 (Bottom).

The first highlighted shader, shown in blue, is simplified by both of
the code transformation rule and the Bezier triangle approximation
rule. 21 of 40 sampling iterations are transformed to vertex shader,
and an intermediate variable is fitted by the Bezier functions. These
two simplifications yield a 1.33 times speedup, a slightly loss in
visual quality, and an extra buffer to store control points. The
second highlighted shader, shown in green, is only simplified by
the code transformation rule. All 40 sampling iterations are trans-
formed to the vertex shader. That is, the relighting computations
are all taken on vertices instead of on pixels. It brings some loss
of pixel-wise glossy reflections but has 2.12 times speedup. The
final shader, shown in red, is highlighted to show an extreme case

Figure 5: The Marble shader on the Dragon model.

resulting from our simplifications. This shader is simplified by an
aggressive Bezier triangle approximation, where the final color of
pixels computing from different lighting directions and view posi-
tions are all approximated by an 1-order Bezier functions. It yields
3.62 times speedup, and reduces the memory consumption to 0.172
MB. It uses a smaller memory because the environment lighting
has been baked on surface, and only control points are stored for
runtime rendering.

5.1.2 Marble Shader

The Marble shader renders a model of four octaves (generated with
a standard procedural 3D noise function [Perlin 1985]) with the
Phong BRDF shading model [Phong 1975]. It runs on an NVIDIA
GTX 680 graphics card. The representative image sequence con-
sists of 64 frames that depict the model at different spatial positions
and with different lighting directions. A total of 1501 variants are
generated by our approach, where 50 of them are on Pareto Surface.
It takes the longest time to simplify this shader. This is mainly be-
cause 70% and 74.7% of shader variants are simplified by the sub-
division rule or the Bezier approximation rule, or the both. While
many sub-triangles are tessellated and approximated on surfaces,
fitting signals on these sub-triangles occupies a large amount of
time. The distribution of these shader variants in the cost space
is plotted in Figure 5(Top). Three variants on the Pareto surface are
highlighted and shown in Figure 5(Bottom).

The first highlighted shader, shown in blue, is simplified by all three
simplification rules. It contains a code transformation, a 2-order

wchen
高亮

Figure 6: The NPR shader on the Heavy model.

Bezier triangle approximation and a two levels triangle subdivision
(tess factor=3). A total of 13 sub-triangles are generated to approx-
imate the original noise signal from pixel-wise to vertex-wise. Ad-
ditionally, a portion of shading computation that computes specular
per-pixel is moved to the domain shader to compute on per-vertex.
After applying these three simplifications, this shader variant runs
1.76 times faster than the original shader with a 0.025 L2 visual
error and an extra 0.681 MB memory consumption. The second
highlighted shader, shown in green, is also simplified by a combi-
nation of rules. In this shader variant, one triangle is subdivided into
6 sub-triangles, and some portion of specular reflections are com-
puted on vertices. These simplifications make this shader variant
1.88 times faster and with a 0.026 L2 error. The final highlighted
shader, shown in red, moves all shading computations from pixels
to vertices, and only fits the noise signal on original triangles by an
1-order Bezier triangle functions. As expected, it heavily speedups
the rendering time but produces a large visual error.

We also simplify this shader on an NVIDIA GTX 280 graphic card,
which only supports shader model 4.0. On this hardware, we use
geometry shader instead of tessellation shader to perform surface
subdivision rule. These simplified shaders on Pareto surface are
provided in the supplementary shader files.

5.1.3 NPR Shader

We adapt the real-time Non-Photorealistic Rendering (NPR) shader
used in game “Team Fortress 2 (TF2)” [Mitchell et al. 2007] to test
our method. This NPR shader combines a variety of view indepen-

Figure 7: The complex lighting shader on the Imrod Model.

dent and view dependent terms. The view independent terms con-
sist of a spatially-varying directional ambient term plus modified
Lambertian lighting terms. The view dependent terms are a combi-
nation of Phong highlights and customized rim lighting terms. All
lighting terms are computed per pixel with an albedo map. We ap-
ply this shader on the Heavy character model with 9 point lights.
The simplification is taken on 54 image frames with respect to an
animated sequence. A total of 1296 variants are generated, and 34
variants are selected from the Pareto surface. Figure6 shows the dis-
tributions of shader variants (Top) with several highlighted shader
variants (Bottom).

The first highlighted shader, shown in blue, is simplified by a code
transformation rule and a surface subdivision rule. 8 of 9 point
lights lighten on vertices instead of on pixels. To compensate the
error brought by this simplification, 6 sub-triangles (tess factor=2)
are subdivided per triangle to capture the shading signal on smaller
patches. This shader variant reduces rendering time to 0.53 ms
and only generates a relatively low visual error, 0.009 L2 error.
This is mainly due to the low frequency of the NPR shading signal
on pixels. The interpolation of shading values from vertices pro-
duces good approxiamtions. The next highlighted shader, shown
in green, is simplified by the same code transformation of the first
highlighted shader, but skips the subdivision. It leads to a better per-
formance, 1.76 times speedup comparing to the original shader, but
has a larger error than the first shader variant. Without the subdi-
vision, some loss of specular reflections on the character’s arm can
be noticed. The final shader in red is a shader with Bezier triangle
approximations. Two shader slices are approximated in this shader.

(a) Original shader:
Diffuse + AO Texture

(b) Gradient-based const.
[Kavan et al. 2011]

(c) Edge-based const.
[Kavan et al. 2011]]

(d) 2-order Bezier approx.
Our simplification

(e) 3-order Bezier approx.
Our simplification

Figure 8: Comparisons with the vertex-baking [Kavan et al. 2011]. The texture and ambient occlusion are applied on the Lion head model
with 3.5K triangles. (a) the ground truth shading effect of the Lion head model. (b-c) show results of the vertex-baking technique using a
gradient-based and an edge-based regularization respectively. (d-e) show our results with a 2- and 3-order approximations respectively.

First, the shading of 7 point lights is linearly approximated on tri-
angles, while the remaining two lights are still computed indepen-
dently. Second, the computation of specular lighting effects at rims
and with other textures are approximated on triangles. Though the
overall error and rendering time of this shader variant are larger than
previous shader variants, its total memory consumption reduces to
1.1 MB by baking some textures and the specular lighting effects at
rims on the surface.

5.1.4 Complex Lighting Shader

We test our approach on a complex lighting shader on the Imrod
model using an NVIDIA GTX 760 card. We adapt the GPU im-
portance sampling shader to this scene, and add a complex shading
model using shadow map (which is computed in a previous pass)
and several material textures, including albedo, specular, normal,
emissive and ambient occlusion maps. Environment lighting and
one point light lighten the model. We use 64 representative frames
with different view positions as input uniform paramters. A total of
7597 variants are generated, and 75 of them are on the Pareto sur-
face. This example shader has the largest number of variants, but
only 28.9% of them use the surface subdivision rule. This makes the
simplification process take less time than that of the Marble shader.
The resultant distribution of shader variants with three highlight re-
sults are shown in Figure 7.

The first highlighted shader, shown in blue, is simplified by a code
transformation. 37 iterations that sample the environment light-
ing are transformed from the fragment shader to the vertex shader.
From the rendered image, it can be seen that though some shading
details are smoothed, it still leaves main details on the surface. The
second highlighted shader, shown in green, is simplified by a code
transformation and a Bezier triangle approximation. First, the tex-
ture fetch of ambient occlusion map is moved from the fragment
shader to the vertex shader. It converts the pixel-wise ambient oc-
clusion signal to a vertex-wise surface signal. For a low frequency
signal like the ambient occlusion, such an approximation only oc-
curs a slightly visual loss but reduces some texture reads. The sec-
ond simplification is to approximate the shading from environment
lighting by a Bezier triangle approximation. This simplification
sacrifices some memory but has a big performance improvement,
3.75 times speedup, and only produces a small visual error, 0.009
L2 error. The insight behind such a big improvement is that even a
model has complex material and is lightened by complex lighting,
not all interactions between the lights and materials produce high
frequency signals. Some resultant signals might be relatively low-
frequency. In these cases, our method automatically approximate
signals on surfaces and select variants that have good approxima-
tions on those low frequency signals. The final highlighted shader,
shown in red, is simplified by transforming two computations to

the vertex shader. One is the texture fetch of normal map and some
portion of specular computations using the normal map. It smooths
the shading details on the surface. As can be seen in the image,
the detailed glossy reflections on the character’s belly and back are
dimmed. The other code transformation is taken on the sampling
of environment lighting. All environment lighting is computed at
vertices. Such simplifications produce 0.073 L2 visual error, but
achieve 3 times speedup of rendering time. Compared with the sec-
ond highlighted shader, this shader consumes less memory.

5.2 Discussions

Approximation Errors. Given these simplification rules, our ap-
proach tends to perform a low-order approximation on the underly-
ing surface signals. Apparently, it works well when such signals are
low-frequency. Figure 8 illustrates the comparison between our ap-
proach and the vertex-baking technique [Kavan et al. 2011]. It can
be observed that with the increasing of orders of Bezier functions,
our approach is able to better reconstruct the original surface sig-
nals, and yields to a more accurate approximation when the surface
contains coarse details. However, not all signals are low-frequency
and can be approximated well by our low-order approximations. for
example, the generation of all four octaves noises on the Dragon
model and the specular reflections from the bump mapping on the
Imrod model. These approximation errors may be large. In these
cases, our GP-based optimization always tends to select variants
that produce smaller visual errors, or produce large errors but re-
duce the time or memory consumption, i.e., the variants around
Pareto surface. These variants approximating high frequency signal
and producing large errors will be automatically omitted because
they are far away the Pareto surface. In this way, without any fre-
quency analysis or knowledge on frequency of surface signals, our
method is still able to automatically explore in the shader variant
space and produce a set of preferable simplified shaders. It will
be an interesting topic to conduct specific frequency analysis on
signals generated by the fragment shader and derive better approxi-
mations for the shader simplification. We will regard it as our future
direction.

Other Simplification Rules. Compared with previous shader sim-
plification methods, our approach does not simplify within the frag-
ment shader but takes the simplification across multi-shader stages.
Thus, it can be regarded as an orthogonal approach to previous
methods. In Figure 9, we give two examples showing that our
shader simplification can be combined with simplification rules in
previous methods and achieve better results. We use two expression
simplification rules proposed in [Pellacini 2005] and [Sitthi-Amorn
et al. 2011] to simplify the NPR shader respectively. From [Pel-
lacini 2005], we use an expression aggregation rule, a+b→ a, and
from [Sitthi-Amorn et al. 2011], we use a random operation swap.

wchen
高亮

(a) e = 0, t = 1.42ms,
Original shader

(b) e = 0.043, t = 1.35 ms,
[Pellacini 2005]

(c) e = 0.048, t = 1.15 ms,
Our simplification on (b)

(d) e = 0.035, t = 1.25 ms,
[Sitthi-Amorn et al. 2011]

(e) e = 0.035, t = 1.1 ms,
Our simplification on (d)

Figure 9: Results of combined simplification rules from previous methods and our approach. (a) The original shader. (b) The shader
simplified by rules proposed in [Pellacini 2005] (c) The simplified shader in (b) is further simplified by our approach. (d) The shader
simplified by rules proposed in [Sitthi-Amorn et al. 2011]. (e) The simplified shader in (d) is further simplified by our approach. As can be
seen, with a similar visual error, our approach further reduces the rendering time.

Tess_factor = 5

Tess_factor = 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 200 400 600 800

T
im

e
(m

s)

V
is

u
a

l
er

ro
r

Number of trianlge (K)

View1 (near) VS error View2 (middle) VS error View3 (far) VS error
View1 (near) VS time View2 (middle) VS time View3 (far) VS time
View1 (near) PS time View2 (middle) PS time View3 (far) PS time

Figure 10: Shader simplification on the Dragon scene with differ-
ent views. View 1 (near) is the default view used in Figure 5 with
660K shading pixels. View 2 (middle) is a zoomed out view with
400K shading pixels. View 3 (far) is a further zoomed out view with
260K shading pixels.
Results simplified by these two rules are shown in Figure 9(b) and
Figure 9(d). Then we take these two simplified shaders as input
shaders to further simplify them by our rules. Results are shown
in Figure 9(c) and Figure 9(e). After applying our simplification,
results are generated with similar visual qualities but with addition-
ally reduced rendering times.

Pixel-wise Computation vs. Geometry-wise Computation. The
basic idea of our solution is the approximation of pixel-wise compu-
tations by geometry-wise computations. Triangles are used as basic
primitives to store and reconstruct pixel-wise surface signals. Once
the number of geometry primitives is much less than the number of
pixels, our approach will bring benefits on reducing computational
time, but have some loss on visual quality. To better understand our
method, we conduct two experiments on the Marble shader. One
experiment uses a fixed view and three Dragon models with differ-
ent triangles. The other one uses one Dragon model but with dif-
ferent views, i.e. different shading pixels. For each experiment, we
first employ code transformations to move all computations from
pixels to vertices. Thereafter, we apply the tessellation rule to sub-
divide triangles into different number of sub-triangles. Supposedly,
with more sub-triangles, the rendering time increases but the vi-
sual error decreases. Detailed rendering times and visual errors are
plotted in Figure 10 and Figure 11 for these two experiments re-
spectively.

In Figure 10, three different views are tested. One is the default
view used in Figure 5 with 660K shading pixels, and the other two
are views zooming out with 400K and 260K shading pixels, re-
spectively. Because the geometry-wise computation only depends
on geometry primitives, the relative visual errors and the rendering
times under three views are similar. From the chart, it can seen
that with the increase of tessellation levels, the visual errors fast
drop below the 0.075 L2 error threshold, but at the same time, the

Tess_factor = 9

Tess_factor = 6

Tess_factor = 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 200 400 600 800

T
im

e
(m

s)

V
is

u
a
l

er
ro

r
Number of trianlge (K)

5K Mesh VS error 10K Mesh VS error 20K Mesh VS error
5K Mesh VS time 10K Mesh VS time 20K Mesh VS time
5K Mesh PS time 10K Mesh PS time 20K Mesh PS time

Figure 11: Shader simplification on the Dragon scene with differ-
ent base models.

rendering time of simplified shaders is still much less than the orig-
inal shader. It indicates that there is a much space to apply our
simplification rules. Even under the furthest view, the vertex-wise
computations on a level 5 tessellation (tess factor=5) are still faster
than the original shader with pixel-wise computations. But it also
can be seen that while the number of shading pixels decreases, the
simplification gain decreases. For example, with the same tessella-
tion factor, tess factor=5, the approximation brings a 0.80 ms, 0.45
ms and 0.15 ms faster on different views.

In Figure 11, three base models with 5K, 10K and 20K triangles
are tested. We highlight the spots where simplified shaders are
just faster than the original shader. From the chart, it can seen that
there also has a big range of triangle numbers to apply our simpli-
fication rules before the vertex-wise computations finally become
slower than pixel-wise computations. Another interesting thing is
that from the time statistics, different base mesh has different per-
formance in tessellations. For example, compared with other two
meshes, the mesh with 20K base triangle has the best performance
at a tessellation of 750K triangles, but the mesh with 10K base tri-
angles performs worst around 600K triangles. It indicates that for a
model with certain shader, there exists a potential best base tessel-
lation to apply simplified shaders. Though such a tessellation may
depend on many factors, such as the hardware, the computation in
shaders, etc., it will be an interesting future work to find those tes-
sellations for one shader.

6 Conclusion

This paper introduces a novel and practical scheme for automat-
ically simplifying fragment shaders. The key idea is to solve a
global shader simplification problem using a surface signal approx-
imation and distributing computations in multiple rendering stages.
Three simplification rules are proposed: the code transformation,
the shader function approximation and the surface subdivision. We
provide an integrated simplification scheme to automatically select

simplified shaders, and demonstrate its effectiveness and efficiency
with a suite of examples. Our approach offers an orthogonal method
to existing fragment shader simplification solutions, and can be
combined with them to further simplify fragment shaders.

As future work is concerned, we want to continue exploring some
problems that have been discussed in the discussion section, such
as other surface signal approximations, the potential best tessella-
tion for one mesh, etc.. We also would like to explore and study a
more sophisticated cross-shader optimization scheme that not only
simplify fragment shaders but optimize all shaders in all stages.

Acknowledgements

We would like to thank all reviewers for their thoughtful com-
ments. We also want to thank Dmitriy Parkin (the Imrod model),
Jing Wang (the Imrod shader), Jason L. Mitchell, Moby Francke,
Dhabih Eng, and the Valve Corporation (the Heavy model) for
permission to use their models and shaders. This work was
partially supported by NSFC (No.61472350), the 863 program
of China (No.2012AA011902), the Specialized Research Fund
for the Doctoral Program of Higher Education of China (No.
20110101130011), and the Fundamental Research Funds for the
Central Universities (No. 2014FZA5017).

References

AKENINE-MÖLLER, T., HAINES, E., AND HOFFMAN, N. 2008.
Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick,
MA, USA.

BÆENTZEN, J., NIELSEN, S., GJØL, M., AND LARSEN, B. 2008.
Shader-based wireframe drawing. Computer Graphics and Ge-
ometry 10, 2, 66–79. Invited paper. Extended version of previous
conference paper.

COLBERT, M., AND KRIVÁNEK, J. 2007. Gpu-based importance
sampling. GPU Gems 3, 459–476.

DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T.
2002. A fast and elitist multiobjective genetic algorithm: Nsga-
ii. Trans. Evol. Comp 6, 2 (Apr.), 182–197.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. 1987.
The program dependence graph and its use in optimization. ACM
Trans. Program. Lang. Syst. 9, 3 (July), 319–349.

FOLEY, T., AND HANRAHAN, P. 2011. Spark: Modular, compos-
able shaders for graphics hardware. ACM Trans. Graph. 30, 4
(July), 107:1–107:12.

GUENNEBAUD, G., JACOB, B., ET AL., 2010. Eigen v3.
http://eigen.tuxfamily.org.

GUENTER, B., KNOBLOCK, T. B., AND RUF, E. 1995. Special-
izing shaders. In Proceedings of the 22Nd Annual Conference
on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, SIGGRAPH ’95, 343–350.

HANRAHAN, P., SALZMAN, D., AND AUPPERLE, L. 1991. A
rapid hierarchical radiosity algorithm. SIGGRAPH Comput.
Graph. 25, 4 (July), 197–206.

HOPPE, H. 1996. Progressive meshes. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Tech-
niques, ACM, New York, NY, USA, SIGGRAPH ’96, 99–108.

KAVAN, L., BARGTEIL, A. W., AND SLOAN, P.-P. 2011. Least
squares vertex baking. In Proceedings of Eurographics Confer-
ence on Rendering, 1319–1326.

KESSENICH, J., BALDWIN, D., AND ROST, R.
2013. OpenGL Shading Language Specification.
http://www.opengl.org/documentation/glsl/.

LEHTINEN, J., ZWICKER, M., TURQUIN, E., KONTKANEN, J.,
DURAND, F., SILLION, F. X., AND AILA, T. 2008. A mesh-
less hierarchical representation for light transport. ACM Trans.
Graph. 27, 3 (Aug.), 1–9.

MICROSOFT. 2013. Direct3D 11 reference.
http://msdn.microsoft.com.

MICROSOFT. 2013. Shader model 5 (DirectX HLSL).
http://msdn.microsoft.com.

MITCHELL, J. L., FRANCKE, M., AND ENG, D. 2007. Illustrative
rendering in team fortress 2. In ACM SIGGRAPH 2007 Courses,
ACM, New York, NY, USA, SIGGRAPH ’07, 19–32.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann.

NEHAB, D., SANDER, P. V., LAWRENCE, J., TATARCHUK, N.,
AND ISIDORO, J. R. 2007. Accelerating real-time shading
with reverse reprojection caching. In Proceedings of ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware.

OLANO, M., KUEHNE, B., AND SIMMONS, M. 2003. Automatic
shader level of detail. In Proceedings of Graphics Hardware,
7–14.

PELLACINI, F. 2005. User-configurable automatic shader simplifi-
cation. ACM Trans. Graph. 24, 3, 445–452.

PERLIN, K. 1985. An image synthesizer. In Proceedings of ACM
SIGGRAPH, 287–296.

PHONG, B. T. 1975. Illumination for computer generated pictures.
Commun. ACM 18, 6 (June), 311–317.

SEGAL, M., AKELEY, K., FRAZIER, C., LEECH, J., AND
BROWN, P. 2013. The OpenGL Graphics System: A
Specification (Version 4.4 (Core Profile) - October 18, 2013).
http://www.opengl.org/registry/doc/glspec44.core.pdf.

SITTHI-AMORN, P., LAWRENCE, J., YANG, L., SANDER, P. V.,
NEHAB, D., AND XI, J. 2008. Automated reprojection-based
pixel shader optimization. ACM Trans. Graph. 27, 5 (Dec.),
127:1–127:11.

SITTHI-AMORN, P., MODLY, N., WEIMER, W., AND
LAWRENCE, J. 2011. Genetic programming for shader
simplification. ACM Trans. Graph. 30, 6, 1–12.

SLOAN, P.-P., HALL, J., HART, J., AND SNYDER, J. 2003. Clus-
tered principal components for precomputed radiance transfer.
ACM Trans. Graph. 22, 3 (July), 382–391.

TIP, F. 1995. A survey of program slicing techniques. Journal of
programming languages 3, 3, 121–189.

WEISER, M. 1984. Program slicing. IEEE Transactions on Soft-
ware Engineering 10, 4, 352–357.

ZATZ, H. R. 1993. Galerkin radiosity: A higher order solution
method for global illumination. In Proceedings of the 20th An-
nual Conference on Computer Graphics and Interactive Tech-
niques, ACM, New York, NY, USA, SIGGRAPH ’93, 213–220.

