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Fig. 1. Our utility-aware visual data-anonymizing process follows (a) a 5-step pipeline and is facilitated with two main visualization
components: (b) utility preservation degree matrix (UPD-Matrix) and (c) privacy exposure risk tree (PER-Tree). The PER-Tree helps our
users identify privacy issues in the underlying data and provides interactions to address the detected privacy issues. The UPD-Matrix
presents the difference between the processed data and the original data. Users can use the chart to examine how utility of data
changes during the anonymization process.

Abstract— Sharing data for public usage requires sanitization to prevent sensitive information from leaking. Previous studies have
presented methods for creating privacy preserving visualizations. However, few of them provide sufficient feedback to users on
how much utility is reduced (or preserved) during such a process. To address this, we design a visual interface along with a data
manipulation pipeline that allows users to gauge utility loss while interactively and iteratively handling privacy issues in their data.
Widely known and discussed types of privacy models, i.e., syntactic anonymity and differential privacy, are integrated and compared
under different use case scenarios. Case study results on a variety of examples demonstrate the effectiveness of our approach.

Index Terms—Privacy preserving visualization, utility aware anonymization, syntactic anonymity, differential privacy

1 INTRODUCTION

As technology advances, organizations and corporations can easily
collect vast amounts of data from their users/customers and store them
as multi-attribute tables. Finding correlations between data attributes
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is one fundamental analytics task for this type of data as it can lead to
better decision-making. For example, analyzing the medical records
from a group of patients may help improve the accuracy of diagnosis
and treatment. While making datasets publicly available or accessible
to external users, such as collaborators, certainly has its benefits, the
risk of potentially exposing sensitive information often deters a data
owner from sharing without restriction.

Traditionally, attributes in a dataset that can be used to directly or
uniquely specify an individual’s identity, such as a person’s name,
are anonymized or removed for the purpose of privacy protection.
Unfortunately, by utilizing side information and/or the categorical or
schematic information of the data, sometimes targeted individuals can
still be secluded or even re-identified from the data [35]. More advanced
techniques have thus been developed for handling privacy issues under
different types of assumptions.

In general, privacy preservation inevitably comes at the cost of data



utility. That is, when data is removed, obfuscated, or hidden, it becomes
less useful for analysis, exploration, and discovery. Prior studies (such
as [20, 24, 27, 31, 33]) have proposed various ways to measure utility.
In some cases, it is crucial to inform a data owner how to augment a
dataset because privacy affects its utility. That gives the motivation for
our work, designing a system for balancing these considerations.

Our solution is a visual interface and privacy preservation pipeline
which allows users to interactively and iteratively resolve the privacy
issues while still taking data utility into account. In particular, we
employ and incorporate commonly used syntactic anonymization
models, namely k-anonymity [36], l-diversity [26], and t-closeness [23],
as well as two differential privacy algorithms [6, 15], namely Laplace
mechanism [13] and exponential mechanism [28], for detecting and
handling the privacy issues in multi-attribute tabular datasets. In
order to assist users to not only identify the privacy exposure risk
in the data, but also address those issues with suitable techniques,
we integrate the essence of these models into a Privacy Exposure
Risk Tree (PER-Tree). Giving full play to the advantages of visual
approaches, the PER-Tree further expands the processing approaches
of the original models. In addition, we present a matching design
called the Utility Preservation Degree Matrix (UPD-Matrix), which
provides users with visual feedback on how utility is changed as privacy
preserving operations are applied. We demonstrate the effectiveness of
our system through several use case scenarios. Feedback from potential
users of our system with domain expertise is also discussed.

2 RELATED WORK

We review related work in the following aspects: (1) privacy preserving
models, (2) trade-off between privacy and utility, and (3) visualizations
that take privacy into consideration.

2.1 Privacy Models
Syntactic anonymity and differential privacy are two types of
commonly used privacy models that address privacy issues in different
perspectives.

k-anonymity [36] is one of the representative syntactic anonymity
models. To satisfy k-anonymity, each data record should have at
least k− 1 other records that share the same set of values in the
quasi-identifier fields [9], thus forming equivalence classes of at least
size k. The concept of k-anonymity is useful when applied as an
anonymization measure against identity disclosure. However, it does
not take the diversity of the sensitive attribute into account. An attacker
is still able to reveal certain individuals’ sensitive information if those
individuals who have the same quasi-identifier information also obtain
similar or even the same sensitive attribute values. The l-diversity [26]
model was then proposed to address such an issue. In l-diversity [26],
the data records in the same equivalence class are required to obtain l
different values in the sensitive attribute. t-closeness [23] is another
model designed to extend k-anonymity with a slightly different strategy.
Instead of enforcing the number of different sensitive values in an
equivalence class, it targets on maintaining the distribution of sensitive
values in each equivalence class to be similar enough (smaller than
a threshold t) as compared to the global distribution of the sensitive
attribute. There have been many other syntactic anonymity models,
such as p-sensitive [37] and β -likeness [5], developed based on the
three aforementioned models.

Unlike syntactic anonymity models, which are usually used for
privacy preserving data publishing, differential privacy models are
mainly applied to anonymize query responses [34]. In accordance
with the definition of differential privacy, a function K is said to
be differentially private if any subject’s participation or absence
of a dataset would not significantly affect the result of the output.
Essentially, a differential privacy mechanism is achieved by adding
random noise chosen from an appropriately determined distribution to
the true query result.

2.2 Trade-off between Privacy and Utility
As performing privacy preserving operations to the data inevitably leads
to some loss of utility, how to effectively maintain and measure the

utility of data has been a challenging and widely studied problem.
Calculating the sum [38] or the average [22] of the interval size in

the equivalence classes, reflecting the loss of information, is commonly
adopted for measuring utility when syntactic anonymity models are
applied. Using average interval size as the utility metric, Loukides and
Shao [25] proposed a clustering algorithm of data records that finds
an optimal trade-off between privacy and utility within the predefined
parameter space. In some other cases [4, 32], utility is interpreted as
how accurate/precise the results of the intended computation or data
analysis algorithms can be carried out after data being anonymized.

In differential privacy, a majority of research considers utility as the
distance between the queried results and their real values. Alvim et
al. [2] proposed an information-theoretic framework to quantify both
information leakage and utility. In [17], Ghosh et al. presented an
approach of how an optimal (utility-maximizing) geometric mechanism
can be found for answering fixed counting queries. In order to
adapt to mathematical analysis, Kifer and Lin [21] presented formally
defined axioms, called “Generality Axiom”, for measuring the privacy
and utility in the context of applying differential privacy. More
recently, Hong et al. [18] proposed a framework that allows for
collaborative search log generation while satisfying differential privacy
and maintaining reasonable output utility.

2.3 Privacy-aware Visualizations
The concept of privacy preserving has been considered in the
visualization community. In [11], Dasgupta and Kosara discuss
the strategies of applying syntactic anonymization approaches, i.e.,
k-anonymity and l-diversity, when multi-dimensional data is presented
with parallel coordinates. Particularly, their privacy preserving
approach is called “Screen-Space Sanitization”, which essentially
introduces visual uncertainty to the parts of the visualization where
privacy issues exist. While adding visual uncertainty can affect
both privacy and utility, Dasgupta et al. [10] summarized a series
of quantification methods for assessing the change of privacy and
utility from the resulting visualizations. In contrast to addressing
privacy issues in the visual space, our approach aims at providing
greater flexibility and transparency in the process of balancing between
privacy and utility at the data-level with the help of visualization. One
other important difference of our method is that the resultant dataset
processed by the tool can be exported and used for further analysis.

There also have been visualization studies considering privacy in
various other types of applications/data. Oksanen et al. [30] developed
a method for generating a privacy preserving heat map, which takes into
account the diversity of users in the collected mobile sports tracking
data. Andrienko et al. [3] devised a visual analytics approach for
supporting privacy preserving analysis of mobility diaries collected
from a massive population. In [7, 8], Chou et al. designed interactive
visual interfaces for addressing privacy issues in different types of
data, such as event sequence data [8] and graph [7]. Their systems
provide users with necessary visualization assistance and the ability to
not only examine privacy issues, but also to decide how to apply the
desired privacy preserving operations under different circumstances.
Our approach focuses on bridging the gap for users who need more
awareness of how much data utility has been compromised while certain
level of data privacy is guaranteed.

3 PRIVACY MODELS AND UTILITY METRICS

We introduce the privacy models and utility quantification approaches
employed in our system.

3.1 Privacy Models
Syntactic anonymity and differential privacy are two types of models
that address privacy issues in a different perspective.

3.1.1 Syntactic Anonymity models

We employ three common syntactic anonymity models for the purposes
of detecting privacy issues and serving as quantifiers to indicate the
degree of privacy exposure in each equivalence class.



k-anonymity [36] An equivalence class satisfies k-anonymity if it
contains at least k data records. Conversely, an equivalence class
is considered privacy-exposing if the number of data records
it contains, n, is smaller than the user-defined threshold, k. The
value of k−n indicates its degree of privacy exposure with respect
to k-anonymity.

l-diversity [26] An equivalence class satisfies l-diversity if it contains
at least l different values for the sensitive attribute. Conversely, an
equivalence class is considered privacy-exposing if the number of
different sensitive values it has, s, is smaller than the user-defined
threshold, l. The value of l− s indicates its degree of privacy
exposure with respect to l-diversity.

t-closeness [23] An equivalence class satisfies t-closeness if its
distribution of the sensitive attribute is close to the distribution
of the sensitive attribute in the entire dataset, i.e., the absolute
distance between the two distributions is smaller than t.
Conversely, an equivalence class is considered privacy-exposing
if the absolute distance between the two distributions, d, is larger
than the user-defined threshold, t. The value of d− t indicates its
degree of privacy exposure with respect to t-closeness.

While privacy issues are identified by the above syntactic anonymity
models, we also employ common privacy preserving operations, such
as aggregation or generalization, applied in these models.

3.1.2 Differential Privacy Models
Differential privacy models do not assume what the attacker’s
background knowledge is, thus making it not that suitable to be used
as a means for privacy detection. We utilize their privacy preserving
mechanisms to provide alternatives for addressing privacy needs.

By definition [12], a function K is ε-differentially private, if:

Pr[K(D) ∈ S]≤ exp(ε)×Pr[K(D′) ∈ S]

, where D and D′, are two datasets differing in at most one row, and all
S⊆ Range(K). As differential privacy models are normally designed
to obfuscate query responses, we adaptively apply it to a static table by
treating every involved attribute value as a response separately.

Numerous differential privacy approaches have been developed.
Among them, the Laplace mechanism adds a random noise generated
from a Laplace distribution Lap(∆ fD(x)/ε) to the data, is particularly
effective for protecting privacy of numerical query responses [15]. The
term fD(x) represents the attribute value of a data point in the original
dataset D while ∆ fD(x) is the range of the corresponding attribute. In
our system, we define ∆ fD(x) as the range of the attribute values that
are among the top 10% closest to fD(x). For each attribute value fD(x),
we transform it to fD′(x) as follow:

ML( fD(x)) = fD(x)+Y,whereY ∼ Lap(∆ fD(x)/ε).

For categorical data, the exponential mechanism [28] is considered.
A function ME( fD(x),q,R) is ε-differentially private under the
exponential mechanism if it outputs an element fD′(x) ⊆ R (R
represents the range of categorical attribute values) with the probability
proportional to exp(εq( fD(x), fD′(x))/2∆q), where q is a function
defined as:

q( fD(x), fD′(x)) = pD( fD(x))

, with ∆q as the largest possible change in q [14, 28].

3.2 Utility Quantification
To evaluate the utility of an anonymized multi-attribute dataset, we
measure the distance between the distribution of each data attribute
in the original data and the sanitized data. For any of the attribute
values, fD(x), from the original dataset, we first find its corresponding
value, fD′(x), from the sanitized dataset, and exploit a variant of the
Earth Movers Distance metric applied in [23] to decide the distance
between them. In our approach, numerical data and categorical data are
treated differently. In addition, categorical data can be further classified

into two sub-categories depending on the presence or absence of the
hierarchical structure.

Let P and Q denote the distributions of a numerical attribute in the
original dataset and the sanitized dataset, respectively. If the attribute
is sanitized by aggregating values into bins, we first transform each
attribute value to the mean of its associated bin. Then, we combine all
attribute values in P and Q together and sort them by ascending order:
{v1,v2, · · · ,vm}. After that, we calculate the utility for each attribute
value as follows:

u( fD(x), fD′(x)) = 1− |i− j|
m−1

, where i and j refer to the sorted index of fD(x) and fD′(x),
respectively.

For a categorical attribute that does not have a pre-defined hierarchy,
the utility of an attribute value is defined as a binary:

u( fD(x), fD′(x))noIn f o =

{
1 fD(x) = fD′(x)
0 fD(x) 6= fD′(x)

.

If the hierarchy is provided, we apply the following metric:

u( fD(x), fD′(x))In f o = level( fD(x), fD′(x))/H

, where level( fD(x), fD′(x)) represents the lowest common ancestor of
fD(x) and fD′(x) and H is the height of the hierarchical tree.

The utility score of the entire dataset (or a subset of data such as a
specific subset of attributes or values) is then calculated as the average
utility value of the data records involved:

U(D,D′) =
∑

n
i=1 u∗( fD(x), fD′(x))

n

, where u∗ refers to the utility metric for the corresponding attribute
type and n is the number of records.

4 SYSTEM OVERVIEW AND PRIVACY PRESERVING PIPELINE

The primary goal of our system is to help users balance between privacy
protection and utility of data. Our target users are data owners who
want to keep the sensitive information of their data private while still
obtaining the need to share data with others. For example, a senior
marketing manager in a company may want a junior data analyst to
help conduct analysis on data collected from customers. Due to privacy
concern, the data has to be anonymized before handed to the data
analyst. In addition, the manager would want that the distortion of
data introduced during the anonymization process does not make the
resultant data useless. We design a 5-step pipeline, as shown in Fig. 2,
that allows users to iteratively and interactively realize their desired
trade-off between privacy and utility.

(1) Load Data
Upon loading a dataset, users first decide two things for each attribute
in the dataset: 1) should it be involved in the analysis? 2) is it a sensitive
attribute that requires privacy protection?

(2) Construct Privacy Exposure Risk Tree (PER-Tree)
Once data loading is completed, users can then go through three
sub-steps to construct a Privacy Exposure Risk Tree (PER-Tree). First,
users can decide how each dimension of the data should be categorized
or aggregated for further analysis or exploration. The system provides
assistance by displaying the distribution of each dimension from the
original data on the diagonal of the Utility Preservation Degree Matrix
(UPD-Matrix). Users can also make the decision based on his/her
domain knowledge. While a finer granularity of aggregation is more
likely to lead to a more precise analysis later, the possibility of revealing
privacy information might also increase. This is a factor that users have
to consider.

Next, users can freely switch the order of the attributes to be
presented in the PER-Tree. Placing an attribute to a higher level of the
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Fig. 2. Our 5-step privacy preserving pipeline: (1) load dataset, then select attributes of interest and define which ones are sensitive; (2) construct the
PER-Tree via three sub-steps; (3) review the UPD-Matrix to observe patterns in the data and see the change of utility as data being processed, and
make necessary data manipulation for privacy preserving purposes, including merging nodes and adding noise, using the PER-tree; (4) compare and
examine the difference of attribute values between the original data and the processed data; (5) export visualization result and/or its underlying data.

tree reduces the number of edges linked to it, and thus leading to less
clutter. As a result, users can see more clearly that in what range or
for which category does the attribute bear the most privacy issues. We
recommend to always put the sensitive attributes to the lowest levels
of the tree to avoid further confusion. Detailed explanation will be
described in Section 5.1.2.

The last step to construct the PER-Tree is to set the criteria values for
the syntactic privacy models so that privacy issues in each dimension
and each level of the tree can be detected.

We use an example dataset, shown in Fig. 3(a), to demonstrate
how to build up a PER-Tree. Assume the dataset has two attributes:
gender and occupation, and their attribute values are [male, female]
and [teacher, student, others], respectively. Then, we set the attribute
order as gender followed by occupation. As can be seen in Fig. 3(b),
the top level of the tree contains two nodes: male (M) and female (F).
Each of the top level nodes has three edges link to the nodes at the
second level because the second attribute has three different values:
teacher (T), student (S), and other (O). Each node is further split into
two type of sub-nodes. One is called “Prop-node”, which stores the
propagated privacy information from its parent node. The other one
is “Attr-node”, which stores attribute-specific privacy information. In
Fig. 3(c), we use the “teacher” node as an example and highlight its
associated Prop-nodes and Attr-node. The details on the color encoding
of the nodes and interactions will be discussed in Section 5.1.2.

(3) Observe & Adjust
After the PER-Tree is constructed, the next step is to look at the data
and make necessary adjustments to reach a better balance between
the data privacy and utility. To do so, users can start by viewing the
UPD-Matrix to find correlation between attributes. Users can also apply
different aggregations on certain attributes through interactions on the
PER-Tree. Changing the aggregation of attributes in the PER-Tree
might result in the following effects: 1) patterns or correlation of the
data might vary; 2) privacy and utility might change as well. Another
possible interaction can be done on the PER-Tree is to apply differential
privacy to address certain privacy issues if aggregation is not desired.

Our system provides a “rollback” function to revoke previously
applied operation(s). With such a functionality, users can interactively
and iteratively examine how different operations affect privacy and
utility, thus obtaining the flexibility and transparency for pursing the
most desired balance between privacy and utility.
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Fig. 3. Generating the hierarchy of the PER-Tree. (a) An example
dataset containing two attributes: gender and occupation. (b) Forming
the hierarchy of the tree by setting the attribute order as gender first, then
followed by occupation. (c) Each node is split into two types of sub-nodes,
“Prop-node” and “Attr-node”. “Prop-node” stores the propagated privacy
information from its parent node and “Attr-node” stores attribute-specific
privacy information. Details on the color encoding of the nodes are
provided in Section 5.1.2.

(4) Examine Utility

Our metric introduced in Section 3.2 measures the utility at a
data-aggregated level, it sometimes may not reflect to the exact change
of information that users are interested in. We provide a detailed
utility comparison view for one user-selected attribute at a time. In this
view, users can examine the difference between the distributions of an
attribute before and after data manipulation at the data level.



(5) Export Data
The last step of the pipeline is to export the generated visualization
and/or its underlying anonymized data for future use.

5 VISUALIZATION AND INTERACTION DESIGN DETAILS

We provide details on the visualization design and interaction of our
system, which consists of two main components: a PER-Tree (Fig. 1(c))
and a UPD-Matrix (Fig. 1(b)).

5.1 Privacy Exposure Risk Tree (PER-Tree)
PER-Tree shows the privacy concerns in the data regarding the
privacy criteria set by users and allows interactions to manipulate and
anonymize the underlying data.

5.1.1 Tree Construction (Fig. 2(2))
The system initializes the PER-Tree by listing out all user-selected
attributes and all possible values for each attribute. Then, operations
can be applied to help gradually build up the tree. Users can start by
deciding how the attributes should be organized and ordered. For
a categorical attribute, users can perform operations, like filtering
and aggregation, to organize the data. If needed, users can also
aggregate attribute values with customized rules. For example, one
can select several cities and aggregate them into one single province.
For a numerical attribute, the system by default displays its maximum
and minimum values. Users can create new splitting points to form
multiple numerical ranges as bins by left clicking on any position
of the representing bar/node or by right clicking on the bar/node to
enter the exact number in a pop-up text box. Adjusting and deleting a
splitting point can be done through mouse dragging and right clicking,
respectively. To change the order of the attributes, a drag-and-drop
interaction method is supported.

To finalize the construction of PER-Tree, users define the desired
threshold values for the three syntactic anonymization models to detect
privacy issues in the data. While satisfying k-anonymity limits the
number of data records contained in an equivalence class, we treat
it as a universal indicator. That is, the same k value is assigned to
all sensitive attributes. On the other hand, l-diversity and t-closeness
look at the variety of sensitive values in an equivalence class, we give
users the flexibility to decide whether to set and how to set these two
criteria for each individual sensitive attribute separately. In summary, if
there are nsen sensitive attributes, the maximum number of configurable
threshold values is (2nsen +1).

5.1.2 Tree Encoding
We encode each node of the PER-Tree with the information of privacy
leaks measured by the syntactic privacy models. As demonstrated in
Fig. 3, each node represents an attribute value and is split into two types
of sub-nodes: “Attr-node” and “Prop-node”.

An Attr-node comprises three types of colored bars while the hue of
a bar corresponds to one of the syntactic models: blue for k-anonymity,
green for l-diversity, and orange for t-closeness. Because k-anonymity
is a universal privacy indicator, every Attr-node contains exactly one
blue bar. The number of green bars and orange bars, however, is
dependent on how the privacy criteria are defined in each sensitive
attribute. A l-diversity or t-closeness criterion set for a sensitive
attribute creates one green or orange bar. The opacity of a bar indicates
the maximum degree of privacy exposure considering all possible
equivalence classes that involves the attribute value and the all its
parent attributes.

Sensitive attributes, assumed to be unknown to the attackers in
syntactic models, are not used to form equivalence classes. Applying
l-diversity and t-closeness based on a sensitive attribute thus defies
the assumption. However, we consider that exposing the value in one
sensitive attribute may contribute to the exposure to other sensitive
attributes. As a result, we derive at most (2(nsen−m)+ 1) privacy
indicators, depending on how l and t are set in other sensitive attributes,
for the m-th sensitive attribute.

On the other hand, a Prop-node is colored by gray. Its opacity shows
the total amount of privacy risk that is propagated from its immediate

parent and is caused by accounting for the current attribute value. The
privacy risk that is caused by involving the current attribute value is
also encoded on the edge that links to the Prop-node. By looking at
the edges helps users more easily identify certain attribute values that
contribute to significant privacy increase.

We consistently present the opacity of the nodes and the edges as the
amount of privacy risk it represents: the more opaque, the more privacy
risk involved. The opacity mappings are done by linearly normalizing
the ranges of k, l, and t values between 0.1 and 1. To be more specific,
the user-defined threshold values are assigned to 0.1. Values that are
larger (for k-anonymity and l-diversity) or are smaller (for t-closeness)
than the corresponding threshold values are truncated to 0.1, because
they are considered satisfying the privacy criteria. For the values that are
within the minimum (or maximum) possible value and the user-defined
thresholds, we then linearly scaled them into the range between 0.1 and
1. The design choice made here to set the minimum opacity to 0.1 is to
prevent the nodes from becoming not visible.

Fig. 4 shows how privacy are encoded in the PER-Tree using a
4-attribute dataset (with “Expense” being the sensitive attribute). When
considering the first two attributes (Gender and Occupation), there is
a small amount of privacy issues with respect to t-closeness observed
on the “S” occupation node, while the privacy concern mostly has to
do with the gender “M”. If we include one more attribute (Age), the
tree tells us that age group “6∼30” bears larger privacy leaks than age
group “30∼60” as occupations “O” and “T” are the major contributors.
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Fig. 4. Different ways to collapse a node. (a) Collapse a node to show
only information contained in the Attr-node. (b) Collapse a Prop-node
and transform it into a circle filled with dotted texture after differential
privacy is applied. (c) Collapse a Prop-node and transform it into a plain
circle if it satisfies all privacy criteria set by users. A collapsed node no
longer propagates its carried privacy information to its child nodes.

As the number of hierarchies grows, the number of Prop-nodes
and edges in each tree level increases in a geometric progression.
Our system provides two methods to tackle this potentially
information-overload and visual clutter problem:
Collapse nodes Our system automatically collapses a Prop-node under
two conditions: 1) if differential privacy is applied to the Prop-node,
then the shape of the node is transformed into a circle filled with
dotted texture, as shown in Fig. 4(b); 2) if the Prop-node and its
associated child nodes satisfy all privacy criteria defined by users, then
it is transformed into a plain circle, as shown in Fig. 4(c). Users can
also manually collapse a node to present only information contained
in the Attr-node (see Fig. 4(a) for example). A collapsed node will
not propagate its carried privacy information to its child nodes, thus
reducing the number of edges displayed in the following tree levels.
Toggle display options Users can toggle to hide the Prop-nodes and/or
the edges temporarily so the focus can be put on the Attr-nodes.
Prop-nodes and/or edges can be recalled back whenever users need to
see the details or interact with them.



5.1.3 Tree Adjustment
The PER-Tree supports two operations for addressing privacy issues.
The first operation is node merging. Users can choose to merge either
two Attr-nodes or two Prop-nodes. Attr-nodes can only be merged if
they are at the same tree level, while Prop-nodes can only be merged
if they have the same parent node. Merging two Attr-nodes reduces
the number of attribute values by 1. On other hand, merging two
Prop-nodes may create a new attribute value depending on whether
the combination of the associated attribute values is pre-existed or not.
Fig. 5 illustrates users’ interaction of merging two Prop-nodes that
leads to the creation of a new node in the PER-Tree.

Occupation

New Node

Gender Occupation
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O
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T

Fig. 5. The node merging operation. When users drag a node, a
Prop-node here for example, candidate nodes that can be merged with
are highlighted with purple color. After dropping the dragged node on
any of the purple nodes, the structure of the tree will be changed and the
privacy information will be updated accordingly.

The second operation is noise addition (by applying differential
privacy). Users first need to identify which data records represented
by a Prop-node or an Attr-node to apply differential privacy on. Then,
by right clicking on the node-of-interest, a menu will pop out to let
users input the value of ε for controlling the noise level. Next, users
can decide to add noise to which attribute(s). This will allow users to
achieve a better utility preservation for certain attribute(s).

After a privacy preserving operation is applied on the PER-Tree,
the privacy information of the entire tree will be recalculated. The
UPD-Matrix will also be updated accordingly to reflect the change on
data aggregation or on individual data values.

5.2 Utility Preservation Degree Matrix (UPD-Matrix)
A UPD-Matrix, as an example shown in Fig. 1(b), consists of three parts:
the diagonal, the lower triangle, and the upper triangle. The diagonal
cells present the distribution of each user-selected attribute. The cells
in the upper triangle and the lower triangle display the pairwise joint
distribution of the user-selected attributes derived from the original data
and the processed data, respectively.

When any of the operation is applied to the data, i.e., filtering,
aggregation, node merging, or noise addition, the cells in the lower
triangle are also updated to reflect the change. In addition, at the top
of each column, we display the utility value of each attribute in the
processed data comparing to the original data as well as the amount of
utility change caused by latest operation performed to that attribute. In
this way, our users are able to keep track of the data utility more easily
while trying to manipulate and anonymize data.

5.2.1 Joint Distribution Representation
Kay and Heer [19] proposed a model that considers both predictive
accuracy and generalization. A conclusion was drawn that scatterplots
yield unparalleled performance in identifying correlation of data. We
therefore choose a scatterplot-based representation for presenting the
joint distributions of data.

Fig. 6(a) to (c) show how we visualize scatterplots for different
combinations of attribute-type pairs: (a) numerical-numerical, (b)

categorical-categorical, and (c) categorical-numerical. Radius of
a circle and height of a bar represent the data record count
in a categorical-categorical scatterplot and a categorical-numerical
scatterplot, respectively.

We treat an aggregated attribute as a variant of categorical data
because the data values are transformed from exact values into fuzzy
ranges/categories. We then employ a matrix representation, as seen in
Fig. 6(d), for showing the joint distribution if at least one of the two
attributes is aggregated. The opacity of a cell indicates the amount of
data records contained in that cell. In addition, if both aggregation and
noise addition are applied to an attribute, we overlay a dotted-texture,
as in Fig. 4(b), onto the matrix cell for indication purpose.
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Fig. 6. Examples of scatterplots for different combinations of
attribute-type pairs.

5.2.2 Brush and Highlight

Users can hover over or brush through any dot, circle, bar, or matrix cell
in the UPD-Matrix to highlight data records with certain attribute values.
It allows users to quickly identify correlation among multiple attributes.
For example, assume there is a dataset containing 100 teachers, in
which 20 are males, 80 are females. Among those female teachers, 20
of them are 35 years old and 60 of them are 55 years old. Brushing the
“female-teacher” circle not only allows users to see the age distribution
within female teachers, but also to reveal the proportion of female
teachers in different ages comparing to male teachers.

5.2.3 Comparisons

To compare the joint distributions of the original data and the processed
data, users can double-click on a cell to open a comparison pane. An
example can be seen in Fig. 2(4). With the comparison pane, users can
view the pair of related charts in more detail. In addition, we provide
a “delta chart” which essentially shows the value differences between
the original data and the processed data in each matrix cell. It offers a
direct and intuitive visual comparison by encoding the value of “delta”
using a red-to-green gradient color map, where green maps to positive
values and red means negative values.

In order to be able to compare and to unify the visual expression,
we transform all the data representation to be compared in a matrix
form. In addition, all the matrices should be of the same granularity.
Users can scroll the “Step” slider bar, shown in Fig. 2(4), to control
the desired granularity. The smaller the “Step” value is, the finer the
granularity to compare.



6 EVALUATION

We present three possible use case scenarios of our system and
summarize feedback collected from three potential expert users.

6.1 Household Income and Insurance Census Data
We sampled a subset of the Public Use Microdata Samples (PUMS)
survey data [1] from Wyoming, USA in 2015. 1,233 records remain
for our use after removing records with missing values in any of our
interested attributes. With this dataset, we assume that an insurance
company located in Wyoming, USA wants probe the potential of
developing a local business in this area.

To conduct the analysis, we look at four attributes:
INSP–fire/hazard/flood insurance (yearly amount), FINCP–family
income (past 12 months), R18–presence of persons under 18 years
old in household, and R65–presence of persons over 65 years old in
household. FINCP is the sensitive attribute that requires protection.

With a very rough attribute value aggregation on each dimension, as
shown in Fig. 1(b), we find that the household income has a positive
correlation with the amount of money spent on insurance. We further
aggregate FINCP based on distribution of the class division provided
by [16], and display the joint distribution between FINCP and R18 in
Fig. 8(a). One interesting pattern is that families with more children
(one+) tend to spend more on their insurance (majority of them spend
$900 - $1300 per year) as compared to those families without any child
(majority of them spend $500 - $900 per year).

By observing the PER-Tree displayed in Fig. 1(c), we quickly
identify that families with more than one elder (65+) adults are more
vulnerable to privacy exposure. By collapsing the two R65 nodes:
“one” and “two+”, shown in Fig. 7(a), we find that families with two
or more elder adults are actually having a relatively higher privacy
risk than the families with only one elder adults. To address this, we
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Fig. 7. (a) Collapsing the two 65 nodes (“one” and “two+”) which cause
the most privacy issues in the data. (b) Merging the two collapsed nodes
resolves most privacy issues originally shown in Fig. 1.
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Fig. 8. (a) - (c): joint distribution matrices between R18 and INSP for (a)
before applying privacy preserving operations, (b) privacy preservation
by merging, and (c) privacy preservation by noise addition. (d): the
distribution chart of the original, non-processed data. (d) and (f): the
delta charts for comparing the utility change of applying aggregation and
noise addition.

simply merge the two nodes. Fig. 7(b) presents the resulting PER-Tree
which suggests that subsequent operations should be made to protect
the privacy of those elder adults’ families that spend more $500 on
insurance (especially for those who spend 500 - 900 per year).

One strategy is to keep merging nodes for privacy preservation.
However, as suggested by the resultant joint distribution view, Fig. 8(b),
and the delta chart, Fig. 8(e), the utility of data seems reduced quite a lot.
Therefore, we decide to rollback to the previous step, and instead apply
differential privacy techniques. Fig. 8(c) presents the corresponding
joint distribution while Fig. 8(f) demonstrates its detailed distribution
comparison with Fig. 8(a). We can see that this time the utility loss has
been controlled at a more acceptable level.

6.2 Graduate Transition Data
This dataset is about 712 teenage students’ career transition within
a six-year span after graduation [29]. Analysts may wish to learn
about how living environments can affect a student’s development.
We select attributes including gen (gender), cat (whether a Catholic
believer or not), res (place of residence), f ue (whether the student’s
father is unemployed), and jol (how many months have the student
been jobless). The last two attributes are defined as sensitive. As
longer period of unemployment may be referred as unsuccessful career
development, using the UPD-Matirx we find that females, Catholic
believers, residents of Belfast, and those whose father is unemployment
are less likely to undergo a smooth transition, as shown in Fig. 9.

In accordance with the distribution of jol, we find that most of
the students are employed within two months after graduation. The
proportion of unemployment even dropped more significantly in the
following 10 months. Based on this finding, we set the splitting points
of the jol attribute as two months, one year, and two years. We set “l”
and “t” for jol and only “l” for f ue as their privacy indicators. The
PER-Tree in Fig. 10 shows that the students who live in S.Eastern and
the students whose father is unemployed are particularly of high privacy
risks. Meanwhile, for students whose fathers are employed, we find
that most of their Prop-nodes are not that privacy sensitive, therefore we
consider noise addition as a better option in this case. After addressing
privacy with noise addition, the total utility score drops from 94% to
71%. Nevertheless, as highlighted by the black box in Fig. 11, the
pattern of students who live in Belfast are more likely to experience a
negative career development is still well-preserved.

Adding noise to the “S.Eastern” (of the res attribute) and the “yes”
(of the fue attribute) nodes resolves most of the privacy risks of the
dataset, as shown in Fig. 12. There are still a few privacy risks remain
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Fig. 9. The UPD-Matrix of the Graduate Transition Data after
pre-aggregation. We highlight the graduates who had been unemployed
for longer than a year by brushing.
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in the “jol” attribute even we further merge all Attr-nodes that represent
student who had been unemployed for more than two month (see the
rightmost, lowest level of the PER-Tree in Fig. 12). If users wish
to remove all the privacy concerns and still keep the “jol” attribute
meaningful. More differential privacy operations are needed.

6.3 Garment Industry Data
We extract 740 data records on garment processing enterprises from
the enterprise survey data of 2004 provided by National Bureau of
Statistics of China. We are particularly interested in understanding the
typical wage and profit level of small-scale enterprises in East China.
We thus select the following attributes: reg (region of China), TA (total
asset of company), TPR (total profit, and AWP (average wage paid).
AWP is set as the sensitive attribute and is pre-aggregated by adding
split points at 4 and 6 so that the records can be equally divided into
three groups. To focus only on the East China (EC) region, we collapse
all other reg nodes and resolve all privacy issues in the intermediate
levels, so that the PER-Tree can only shows the k-anonymity criteria
involving the AWP attribute. As shown in Fig. 13, most privacy issues
remain in the “0 ˜ 4” AWP node, while some others in “4 ˜ 6”.

We opt to merge the two Attr-nodes, which then does not affect the
utility much (approximately 1%). By viewing the delta chart, displayed
in Fig. 14, however, we do see a change of distribution. We look at the

data values closely and find that most East China companies offer AWP
in the range of 3 ˜ 5, while their total assets (TA) and profit level (TPR)
are also similar to each other. As utility values are calculated based on
the aggregated data instead of reflecting the change of individual data
values. In situations like this case, one single utility value itself may
not a precise indicator. Other information, such as the delta chart, is
needed for further confirmation.
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utility value of jol decreases from 94% to 71%, the pattern we concerned
about Belfast is still well-maintained.
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6.4 Domain User Reviews
Our system was reviewed by three domain experts who constitute
potential users. Each works in a field of study where, after sensitive data
is analyzed, the results (and/or datasets) must be sanitized before release
or publication. Each user also has a basic understanding of the syntactic
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models introduced in this paper, for example, two users regularly
perform data anonymization via aggregation and generalization.

For each user, we introduced our system and explained the available
functionalities as well as demonstrating some exemplar use cases. We
then asked each to fill out a questionnaire about our system and how it
would help their workflow. Each session took between 30-60 minutes.

Users had positive feedback for several system aspects. First, they
liked the fact that we consider multiple privacy models and preservation
actions. This provides flexibility in dealing with different dataset types
and with different privacy scenarios. Providing real-time feedback on
how data utility changes with respect to anonymization actions was
an important feature. In comparison, their current practices typically
consider data utility only after the entire anonymization process is
complete. This makes it difficult (and inefficient) to identify which
particular actions cause significant changes to utility.

Users also gave several comments about system design
considerations, namely, dataset scalability. For example, as companies
work with larger datasets, both in terms of number of records and data
dimensions, efficiently detecting privacy leaks, fixing privacy leaks,
and assessing data utility are high priority, non-trivial tasks. For our
system to handle larger dataset, specifically time-complexity optimized
privacy models and utility metrics may need to be considered to further
improve the system performance. In addition, all three users suggested
that a recommendation scheme can be designed to help them examine
and then decide the appropriate actions to take in different scenarios.

7 DISCUSSIONS

We discuss aspects worth considering when designing privacy
preserving solutions.

7.1 Aggregation or Noise Addition?
While noise addition and data aggregation are both effective for privacy
preservation, each comes with its own shortcomings. Aggregating
numerical types of attributes unavoidably causes varying degrees of
loss on granularity, which is decided by the split points. So the
question is what the best split point is–there is no one-size-fits-all
standard. It largely depends on user requirements as the underlying
topology (i.e., sensitivity) of the data. Another problem is the curse
of dimensionality. As attribute numbers scale up, the potential for
aggregation does likewise at an exponential rate.

On the other hand, the addition of noise causes the uncertainty
bounds in the data to become less exact and more probabilistic. As a
result, correlations between attributes may be distorted or may produce
patterns that do not actually exist. Boundary conditions are another
concern–these have to take into account data type restrictions. For

example, naively adding noise to an “age” attribute might change the
value to a negative number.

7.2 Flexibility of our Visual Approach
Each of the privacy preserving techniques affects the users’
understanding of the data (and the visualization) in a different way.
We thus let users make their own decisions about which operations
to apply on specifically assigned and/or chosen subsets of the data.
The advantage of a flexible user-centered design like ours is that
it allows for a more fine-grained and precise sanitization process
as opposed to being a purely automated approach. One can easily
introduce different amounts of noise or aggregate attributes at different
granularities and then quickly observe and compare the pros and cons
for each option before making a final decision. The main disadvantage
of a visualization-assisted approach against a data-centric method is
that it requires more time and engagement from users. It is thus not
particularly suitable for batch processing. One potential and worth
exploring direction, as also mentioned in our expert review, is to design
a recommendation mechanism to help users quickly perform necessary
privacy preserving operations without losing too much flexibility.

7.3 Potential limitations
While we consider our design effective for its purposes, there are still
potential limitations that should be addressed. One limitation has to do
with how utility is derived for a dataset. Normally, utility for individual
points is calculated, however we need to present these at an aggregated
level (either visually or literally), since displaying or releasing the utility
at an individual level may greatly increase the possibility of revealing
privacy. Given this constraint, utility metrics cannot always guarantee
they will yield results that reflect the real situation comprehensively.
Optimum ways to visually indicate and encode this uncertainty (for
raising user awareness) is a topic suited for future research.

Another limitation is that our PER-Tree design may be restrained by
the curse of dimensionality. As the number of attributes increases,
the number of possible combinations in the lower level increases
significantly. Although our tree pruning design can to some extent
alleviate this issue, the loss of detailed information may cause certain
important privacy leaks being neglected. One possible solution would
be to allow further interactions to manipulate the display of the edges,
such as bundle or filter edges based on their opacity values. Another
alternative could be to provide some auxiliary view that organizes and
presents the information in a different way. For example, a list-based
table presentation with sorting and searching functionality can allow
quicker identification of the most interested edges.

8 CONCLUSION

We have presented a visual system for interactively detecting and
addressing privacy issues and subsequently inspecting the operational
change in data utility. The underlying data manipulation pipeline guides
users in iteratively finding the best balance between privacy and utility.
Our system integrates several commonly used syntactic anonymization
and differential privacy models, allowing greater flexibility in fulfilling
the various privacy needs that different users may have.

As part of the interface, we introduce the PER-Tree representation.
Its space-compact design and effective pruning scheme help users
navigate through the high dimensional data space to quickly locate
privacy issues. The UPD-Matrix provides additional necessary visual
feedback, giving reference to how much utility is affected by the
applied privacy preserving operations. We demonstrate how to
emphasize privacy considerations in a multi-attribute tabular dataset in
a utility-aware manner.
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