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Abstract—Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often

comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is

important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to

scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including

properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system.

Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis

approach to reasoning and understanding the performance and behavior of cloud computing systems. Our design is based on

similarity measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of

behavioral lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system

provides multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at

different levels of detail. Our case studies using datasets collected from two different cloud systems show that this visual based

approach is effective in identifying trends and anomalies of the systems.

Index Terms—Cloud computing, multidimensional data, performance visualization, visual analytics.
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1 INTRODUCTION

B IG Data analytics and discovery relies on efficient cloud

computing facilities. Like many high-performance comput-

ing systems, a cloud computing service consists of a large number

of internetworked machines. But whereas most high-performance

computation is task-oriented (e.g. explicitly allocate n nodes to

task k exclusively for a time period), cloud computers are more

service-oriented (e.g. run an ongoing service continually and

add/remove compute nodes dynamically). In order to maximize

the efficiency of such a cloud service, it is important to monitor

the compute nodes’ usage and behavior, in order to identify ser-

vices that are over/under-allocated, potentially inefficient services

that could be optimized, or outlying services or nodes that are

misbehaving or failing. However, the privacy of the users should

also be respected.

For some goals, the objective is finding similar behavior at

differing points in time (e.g. two different runs of the same

application under different configurations). To this end, many

approaches focus on correlating particular behaviors, regardless

of when it occurred. However, similar to many other real-time or

streaming applications, cloud computer performance monitoring

needs to preserve synchronicity or chronology, as it is interested in

concurrent or subsequent behavior. Specifically, some of the main

objectives are to identify group behaviors or outlying behaviors

as quickly as possible, such as detecting compute node failures,

inefficient use of system resources, or even malicious or suspicious

behaviors.
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This can be done by tracking general usage metrics, such as

CPU load, network load, memory usage, disk read/write load,

etc. However, these individual metrics can all be very noisy (i.e.

has high variance), and the system is in constant flux. The high

frequency patterns make traditional line charts nigh unreadable

if all lines are plotted at once. Smoothing the data can alleviate

this problem, at the expense of sacrificing high variance patterns,

though high variance patterns are frequently important to the

analysts.

In time critical situations, it is important for a visual system to

very succinctly convey such overall trends whilst preserving time

as a dimension. In particular, it is more important to summarize

this than to present individual dimensions. While traditional line

charts generally suffice for a single dimension at a time, associa-

tions between different plots can be difficult or even impossible.

Here, we present an effective visual analytic design for char-

acterizing the evolution of cloud computing activities, based on

comparing entities’ behavioral similarity over time. We employ

windowed signal processing techniques to smooth and summarize

noisy behaviors. Then, we use these statistics to derive a force-

directed line chart, where lines corresponding to similarly behav-

ing compute nodes are bundled together, and differing behaviors

repel each other. This reduces the complex, multidimensional

time-series into a simple, intuitive representation of the evolution

of these behaviors over time. Since the tasks on such a system

are typically parallelized to be running identical code, nodes

that are working on the same task would generally exhibit very

similar behavior, and thus be bundled together in our similarity

line chart. On the other hand, outlying behaviors become quite

apparent, as a misbehaving node would separate itself from the

rest of the lines. The resulting picture gives the user a high level

summary of the system’s utilization. This view is combined with

several other more conventional views to manage and explore
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Fig. 1. The three main views of the visual analytics system. The timeline view at bottom summarizes the aggregate behavior of the entire cloud
computer per dimension over time. When a time range is selected, the system generates a behavioral similarity line plot (top left), where each line
is an individual compute node. These lines are bundled according to their similarity, so that similar nodes group together and anomalous nodes
seperate out. Individual line bundles can be selected via brushing, and their properties can be inspected in detail (top right). Color legends are
shown in Figure 2.
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Fig. 2. Color legends for the stacked graph and brushing selection.

the data, allowing for efficient exploration of large and complex

performance data sets. The result is an interactive visual analysis

tool that can effectively help maintain and optimize large-scale

cloud computing services.

2 RELATED WORK

The analysis of time-varying, multidimensional data [1] is an

important topic in many fields of research, including data min-

ing [2], visual analytics [3], and GIScience [4]. Most of these

focus on detecting trends in time varying trajectories, such as

stops or interactions between trajectories. Many of them also focus

on aggregating trajectories to produce summaries. The ability to

explore such datasets interactively at different resolutions is key

to gaining deep insight into them. Jaja et al. [5] develop indexing

techniques and search algorithms to efficiently handle temporal

range value querying of multidimensional time-varying data. An-

other proposed method to visualize multidimensional time-varying

data is through the estimation of symbolic sequences that are

based on both the spatial and temporal attributes of the data [6].

These symbolic sequences reduce the loss of data and at the same

time are used for various supervised and unsupervised data-mining

tasks. [7] aims at efficient analysis of similar trajectories based

on the Longest Common Subsequence (LCSS) model. This in

turn increases the robustness of the systems against noisy data

making it applicable to real world data like GPS tracking, wireless

applications, video tracking [8] and motion capture [9]. Franciosi

and Menconi [10] use entropy and statistical linguistic techniques

to analyse multi-dimensional time-varying data. Similar to [6], the

data is first translated into a multi dimensional symbolic sequence

and markers are then defined to encode the characteristics of the

time series. The trend of the data is then derived from its entropy

with respect to a moving window analysis.

There are several other papers that have contributed towards

temporal pattern search. Fail et al. [3] design a visual interface

for finding temporal patterns in multivariate temporal data. This

approach was employed in [11] for searching similar temporal

patterns in clinical history. While [3] and [11] did not have

automated methodologies for the mining procedure, [12] em-

ployed automated FPM algorithms to the sequences returned by a

visual query to automatically view the mined results. Mining of

multidimensional time-series helps to understand causal relation-

ships in time-varying data. Mohammad and Nishida [13] propose

that causal relations in time-varying data can be unearthed by

analyzing meaningful events in time series rather than the raw

data itself. In order to do this, they use the RSST (Robust Singular

Spectrum Transform) algorithm to identify these points in the time

series. The Granger-causality test is then applied to validate the

occurrences of the basic events. When the proposed model was
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applied to mine records of a real world application, the causality

graphs proved very helpful in representing underlying relations

between the cause and effect of the dataset.

Many tools exist that can collect low-level trace data from

large parallel systems, recording event-level details of parallel pro-

cesses [14], [15], [16]. A number of visualization techniques have

been developed for analysis of such trace data. Often, they employ

interactive timelines with line or point plots [17], [18]. Others

use animation to represent time [19]. And others use network

representations to summarize communication patterns/trends [20].

But these approaches primarily rely on trace-level data, which is

unfeasible to collect constantly for an entire system.

Profile level data on the other hand, summarizes the data at a

higher level, such as per-process or per-function values averaged

over timesteps. ParaProf [21] is an example of a visual system

that is designed to study such profile information. Real-time

dashboards and other monitoring systems have to rely on profile

data because the low level information would be overwhelming.

Virtue [22] is one such real-time visualization system which uses

immersive 3D techniques to monitor the current state of a system

geographically. But these approaches generally only look at one

data dimension at a time.

The idea of plotting dimensionless lines over time to exhibit

behavior has also been explored in the past. Storylines [23], [24],

[25], [26] are a popular discrete form of this, where cluster mem-

bership is shown directly by line bundling. However, for the kind

of data we are discussing, such a discrete representation of group

membership could reduce the fidelity of the input data, as the

results would depend on a clustering algorithm. Analog variants

of this kind of approach have also been shown to be effective for

movement trace data [27]. In this work, the authors employed a

dimensional reduction projection to generate the behavioral line

summary. However, this approach only works well if the whole

dataset range is available at once, and is rigid with its layout,

making it less suitable for noisy, highly dynamic, or streaming

data.

A force-directed layout [28], [29] of data is adopted in many

visualization designs. Besides offering an aesthetically pleasing

visualization of the data, the force-direct layout may bring out

essential structures in the data. In [30], network data is derived

from high dimensional data and visualized with a force-directed

layout to guide the following parallel coordinate visualization for

assessing the correlation in the data. In [31], multidimensional

weather data is first represented as a weighted complete graph and

then visualized by laying out the graph based on a force model to

reveal the overall relationship between the dimensions, from which

the user can further explore the details using other visualization

techniques. Our approach also offers an overview of the data

based on a force-directed method to guide the following visual

exploration of selected data subsets. Unlike most visualization

works which employ 2D layouts, our work uses 1D layout.

3 SYSTEM DESIGN & METHODOLOGY

At most cloud computing facilities, the state and performance of

devices and computing are typically monitored through simple

dashboards which small multiples of individual metrics, or a Gantt

chart, which plots one metric over time for all processing units’

activities as rectangles or as a heat map over a chosen time

period. For large-scale computing, neither of these approaches are

visually scalable to large numbers of process or multiple metrics,

Fig. 3. The overall process of computing behavioral similarity lines for a
collection of entities with time-varying metrics. A time range is selected
from the timeline view, which depicts overall aggregates over all entities.
Each node’s time series could traditionally be rendered as individual
lines per dimension. These plots can be very noisy, but windowed signal
processing metrics map the entities to a 2D statistical space, where sim-
ilarly behaving entities are consistantly placed. By considering distances
in this statistical space, we can compute forces between entities at each
time step, and use these forces to lay out a smooth line plot over time.

(a) Outlier (b) Bundle (c) Join (d) Leave

(e) Shift (f) Corner (g) Split (h) Anomaly

Fig. 4. Example behavioral line patterns. The y axis is dimensionless,
so understanding of the plot comes from observing the lines positioning
and interaction relative to each other. While the meaning of the patterns
that these lines form can be domain dependant, there are a number of
common patterns that are fairly general. Lines can either be indepen-
dent or in a group of other lines. They can join, leave, or switch between
groups dynamically. Large groups of lines can change behavior together.
And odd or anomalous behavior stands out.

hampering analysts’ ability to explore and find connections among

all nodes. Rather than trying to present all the low level data

directly, we found it better to visually organize nodes according

to higher level behaviors of interest, which allows the analysts

to comprehensively group processes of a similar behavior, and

more quickly identify, then track down and understand the cause

or impact of anomalous behavior.

To analyze large complex data, our system is comprised of

multiple, tightly linked views as shown in Figure 1. The core

technique of our approach is a behavioral plot, which plots simi-

larity between entities as closeness between the lines, comparable

to storyline visualizations [26]. There is an underlying analytic

process required to generate this plot, as summarized in Figure 3.

The user selects a range of time to load, which is pulled from a

database. The underlying data can be represented per dimension as

sets of 1D time series. These time series are then transformed into

2D traces in a statistical space, consisting of the windowed mean
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and standard deviation of each series over time. The traces in this

space are now smooth enough to be compared against each other,

so for each time step, we use a Euclidean metric to summarize the

distance between entities, and compute 1D forces between entities

at each time step to lay out lines in a new, behavioral plot.

The vertical axis of this behavioral plot is thus dimensionless,

and the horizontal axis is time. Reading this plot is not a matter

of reading individual lines on their own, but rather observing

their interactions in the context of the other lines. For instance,

a single line distinct from the rest of the lines is exhibiting

outlier behavior (Figure 4(a)), whereas a bundle of lines would

be an example of a cluster of very similar behavior (Figure 4(b)).

As entities behaviors change, they often join existing bundles

(Figure 4(c)), leave them (Figure 4(d)), or even shift immediately

between two groups of behaviors (Figure 4(e)). Sometimes an

entire bundle of entities change behavior suddenly, resulting in a

sharp corner in the plot (Figure 4(f)). Sometimes entire bundles

split in half (Figure 4(g)). This could be indicative of one job

finishing only to be replaced by two smaller jobs. And lastly, some

behaviors are just unpredictable(Figure 4(h)), which could indicate

an anomalous event that affected a particular entity.

We also expose each step in the transformation process as

auxilliary views, so that the user can investigate the provenance of

an observed behavioral pattern. Each view focuses on a different

aspect of the data, at different levels of detail. Selection or

brushing in any view is linked to the display of data in the

other views, allowing for dataset exploration. As each timestep

is transformed and layed out incrementally using temporally local

data, the approach is also apt for supporting streaming data.

3.1 Stacked Graph Timeline

The stacked graph timeline (shown in Figure 5) is a broad

overview of the data, and the first visualization the user sees upon

loading a data set. It shows metrics aggregated accorss the entier

cloud machine over time. Each layer of the graph represents one

metric, which is normalized and colored according to Figure 2.

From this graph, the user can perceive some macro patterns

over time such as a spike or a valley, which may indicate anomalies

or bottlenecks within the cloud computing system. While this view

is relatively simple, it effectively brings attention to interesting

time ranges in the dataset, suggesting the user to conduct further

analyses together with other linked views.

3.2 Traditional Scatter/Line Plots

At the other extreme is a detailed view of one dimension over time.

While traditionally, such time varying data is represented as line

plots, the temporal resolution of the data we were investigating

do not scale well in line plot representations, particularly when

there are lines with high variance. For example, in Figure 6(a),

the selected entity’s line is relatively stable, but in Figure 6(b),

the selected entity exhibits a large amount of variance, and simply

drawing the one line obscures most of the plot. Because of this,

our system does not render all the lines at once. Rather, we

render the data points in a scatter plot fashion, and only connect

the points of a user-selected entity. That, combined with the

limitation that such a plot only shows one dimension at a time,

makes this representation only acceptable for detailed inspection.

Various lensing and interactive fish-eye distortion techniques are

also utilized, but they were not found to be sufficient to handle

such convoluted data alone. However, even in data entities with

Fig. 5. The stacked graph timeline. The x axis is time, and the height of
each layer is the average value of the represented metric over a period
of time. This particular data set contains 4 hours of logs.

(a) Stable (b) Noisy

Fig. 6. Even plotting one dimension of the data over time can be prob-
lematic when the data is noisy. In some cases, the data is fairly stable
and traditional line plots would work (a). However, in many cases, the
lines themselves are quite noisy (b). While drawing all the lines would be
useless, rendering as points can provide context, and individual traces
drawn on top for detailed analysis.

high variance, regular cyclic patterns were observable, which led

us to investigate the applicability of signal processing techniques.

3.3 Statistical Plots

One common technique in signal processing for dealing with

noisy, but trending, data is to smooth it out by sampling local

means or medians. However, smoothing the data sufficiently

enough to show trends sacrifices the information pertaining to

the noisiness itself. To counter this, we consider not only local

means but also local standard deviations. That is, for each entity

i, dimension d, and time t we consider a sliding window of t ±a.

In order to avoid sharp jumps as data points enter or exit the

window, we compute a gaussian kernel, as is generally considered

appropriate for temporal sampling [32]. That is, for a set of

data Di,d, t we compute the weighted mean µi,d(t) and standard

deviation σi,d(t) as:

µi,d(t) =
∑a

k=−a Di,d,t+k ∗w(t,k)

∑a
k=−a w(t,k)

σi,d(t) =

√

∑a
k=−a(D

2
i,d,t+k −µ2

i,x(t))∗w(t,k)

∑a
k=−a w(t,k)

where

w(t,k) = e
−(t−k)2

k2

Once these values are computed, it is possible to plot µ versus

σ as a line plot (Figure 7) and clusters readily become apparent.

However, such a representation loses the context of time, as it

becomes impossible to differentiate if two entities actually crossed

paths or not. Such a view is also still limited to one input

dimension at a time.
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3.4 Behavioral Similarity Plots

While the statistical process can clean up one dimension at a time,

our objective is to handle multiple dimensions. In order to combine

all the desired dimensions, we compute a similarity metric S as:

Si j =





n

∑
m=1

√

(

µm,i −µm, j

µm,max −µm,min

)2

+

(

σm,i −σm, j

σm,max −σm,min

)2





−1

between every two nodes i, j over time via the aforementioned

localised statistics for each timestep. n is the number of user-

selected dimensions. The user can control which dimensions to

include or exclude. Currently, we normalize the data in each

dimension, and employ a standard Euclidean metric. This is

appropriate because we want to group entities with both similar µ
and σ , and separate nodes that differer in either. We accumulate

Euclidean distance of all the selected metrics m to derive the

overall similarity. We then use this similarity matrix as input to

a force directed calculation:

Fa = k1 ×Si j ×d

Fr =
k2 × (1−Si j)

d

in order to generate a behavioral similarity timeline plot. Here, Fa

is the attractive force (Hooke’s law), and Fr is the repulsive force

(Coulomb’s law). Coefficients k1 and k2 are chosen to guarantee

that two nodes have very similar Fa and Fr when they reach the

minimum distance dmin.

We compute a 1D force-directed layout for each time-step,

and use this to lay out a behavioral line for each compute node.

Similar behaviors bundle together, while outliers diverge. Like

many force-directed approaches, we employ an iterative calcula-

tion based on Fruchterman-Reingold [29]. For the first timestep,

the initial line heights are randomized. While this means the plots

are not necessarily deterministic, the end results tend to look

similar enough, without the need for more complex initialization.

However, subsequent time-steps are initialized by reusing the

previous time-steps’ layout. This offers a good amount of stability

to the layout, and also reduces the number of iterations that are

needed. In order to further increase stability and account for

gradual differences between the timesteps, we found it helpful to

apply standardization to scale each time step, which is defined

by subtracting the mean value and dividing by the standard

deviation. This primarily helps keep the plot centered over time,

and compensates for the drift due to extra iterations of force

directed computation in later time steps. Excessively iterating the

initial timestep could also potentially solve this drift problem, but

would require greatly increased computation time.

The upper left view in Figure 1 is an example of such a plot.

The same view appears in Figure 11. The y axis in this view

is computed according to the similarity of the entities in each

timestep. Thus, in this view, lines that run close together indicate

entities that were similar in behavior over a certain period of time,

such as compute nodes running identical code and working on the

same task. Lines that branch off indicate anomalous entities, such

as compute nodes that may be under/over-utilized for instance.

In this manner, this view provides a succinct summary of the

behavioral patterns across the whole system for a range of time.

It can also indicate regions of the data that warrant further

investigation in the detailed views.

Fig. 7. Signal processing techniques can extract structure from the
noisy data. Here we plot the windowed mean (on y) versus a windowed
standard deviation (on x) of one data dimension as a line for each entity.
Very clear clusters are visible along the left of the plot (low variance),
while noisier clusters and outliers are to the right. Colors used here
encode nothing but are used to distinguish lines.

As the number of lines grows, such behavioral line plots often

create visual clutter, i.e., lines tend to overlap with one another. In

order to improve the scalability and usability of such visualization,

we provide a magnifying lens for the user to untangle the clutter.

As shown in Figure 8(a), we can hardly see any detail inside

the line bundle. With the magnifying lens(Figure 8(b)), lines are

spread out and thus can be better distinguished, also making it

possible to select lines from a bundle.

3.5 Detail Plots

The behavioral lines abstract away all the original dimensional

information. However, when the user finds interesting patterns or

outliers in the behavioral lines, the system should enable investi-

gation into the detailed data. While naı̈vely rendering the raw data

is not that effective, we can plot the smoothed statistical lines over

time to depict the underlying multidimensional time series. To

this effect, we implemented a small multiples view that plots the

smoothed mean curve in each dimension for each selected group

of compute nodes. That is, for each selection in the behavioral

lines view, we populate a column of detail views, plotting the

statistics over time for the corresponding row’s dimension.

In order to visualize these statistics, we borrow techniques

from uncertainty visualization [33]. Rather than just plotting the

raw data or the smoothed mean curve, we plot the semitransparent

range [µi,d(t)−σi,d(t),µi,d(t)−σi,d(t)] over time for each selected

node i. This can be seen in Figure 9, where one of these plots is

blown up for closer view.

4 CASE STUDIES

Here, we demonstrate visual analysis of performance profile data

collected from two live cloud systems. One set of data is collected

from a system with 476 nodes over a period of 2 weeks, at a 10

second resolution. And the other data is a high-resolution datasets

are of a system of around 70 compute nodes, sampled at 2 second

resolution for 2 periods of time: a 4 hour period and a 24 hour

period. The metrics used in these datasets are shown in Table 1,

and are colored according to the color map in Figure 2.
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(a) (b) (c)

Fig. 8. magnifying lens (Cartesian distortion) applied to behavioral lines. Overlapping is severe in (a), we can not see any detail of the bundle. After
applying the magnifying lens (b), individual lines are spread out for viewing and selection. The two red lines in (c) would normally be impossible to
isolated.

Metric 476 node system 70 node system

CPU Utilization
√ √

Memory Idle
√ √

Network Lo
√

Network Download
√ √

Network Upload
√ √

Disk Read
√

Disk Write
√

Disk Utilization
√

Load
√

TABLE 1
Metrics collected from the two cloud systems for case studies.

Figure 10(a) shows the full time range of the same collected

dataset used in Figure 1. In this dataset, there are a number of

interesting behaviors. The system is quite uniform at first, then the

lines are split into 2 main behavioral clusters (the red one and the

yellow one). From the detailed view, it is found that the strong

split is because the compute nodes corresponding to the red lines

surge in CPU, I/O, and memory usage about 10 hours before the

yellow ones. Once the nodes corresponding to the yellow lines join

in, there is a point where the two clusters almost rejoin, before

remaining mostly distinct. This could indicate that the yellow

nodes have a different system configuration, which allowed them

to catch up and then surpass the red nodes. Also, we can easily find

out two abnormal nodes (the cyan one and the green one), they are

away from all other lines because their CPU utilization is much

lower than others, as we can see from the detailed view. However,

their standard deviations are relatively small, so we refer to the

statistical line view, as shown in Figure 10(d), where the maximum

standard deviation of both nodes (highlighted in Figure 10(b-c)) is

lower than that of other nodes, indicating that both nodes act more

stable than others. And we can also find out the two outliers easily

from the statistical line view (Figure 10(d)).

Figure 11 shows a selection of the middle portion of the 4 hour

dataset. For the most part, the lines bundle into clusters, indicating

a smoothly running system, with an exception of the green nodes.

From the detailed view, we can tell that the two green nodes are

much like the yellow cluster; they may have just been trapped in

the force directed layout for a while before self-correcting. For the

red and yellow clusters, the primary difference between them is

the CPU and memory usage, we can see that from the detail plots,

both CPU and memory utilization of the red cluster are a little

higher than the yellow one. It indicates that they may be working

on different jobs or have a different hardware configurations. For

Fig. 9. The detailed view consists of an array of small multiples per
dimension and per selection. Each plot renders semitransparent areas
over time to convey the smoothed statistical metrics. The thickness of
the area corresponds with the variance of the timeseries.

the blue cluster, it is tightly bundled because all the nodes belong

to this cluster seem to be idle, as shown in the detailed view.

The 24 hour dataset exhibits much more interesting behaviors,

particularly since there is a gap in the middle of the dataset where

the cloud system was inaccessible - possibly due to maintenance

or an update. Figure 12(a) shows the timeline stacked chart of the

overall system behavior. The gap is quite obvious, but there are

a number of other notable spikes and behavior shifts. We explore

some of these in the more detailed view.

Early in the overall time period, as we can see in Figure 12(b),

the system is fairly constant, some nodes have periodic behavior,

and some disk-heavy nodes suddenly drop to 0, which lead to a

shift. Then, a little after 2:00, we can perceive a drastically change

in the layout, which turns out to be caused by a spike in disk reads

in the yellow and green clusters.

In Figure 12(c), at around 3:15 and 3:40, two valleys emerge

for the red cluster due to CPU spikes. After that there comes the

second spike, primarily affected by the green and yellow clusters,

mostly hitting their CPU load. Fringe nodes, such as those in the

cyan cluster, are pushed away, even though their pattern doesn’t

change.

Leading up to the outage, the 2 primary clusters exhibit

more sporadic but synchronous behavior Figure 12(d), with the

exception at 5:50, when each cluster diverges briefly in disk

reads. For the outage, it is noteworthy that this affects all nodes

seemingly equivalently, indicating that it is a system-originated

effect, like a system-wide out of power, and not likely job or user

originated.

After the outage (Figure 12(e)), the two primary clusters begin
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CPU Utilization(%)

CPU Utilization(%) CPU Utilization(%)

CPU Utilization(%)

Fig. 10. The two week dataset. The behavior line view (a) shows an overall trend where one bundle splits into two, with a number of outliers.
Investigating some of the outliers reveals that the underlying statistical lines (b-c) have very unique patterns, particularly with respect to the context
of the entire dataset (d).

Fig. 11. A time-range selection from the 4 hour data set. The behavior is overall very stable, grouped into several clusters. The red group and the
yellow group are very similar, with a little difference in CPU and memory usage. The two green nodes are much like and finally shift into the yellow
group. The blue group is tightly bundled together, because those nodes seem to be idle and all metrics are very much the same.
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(b) (c) (d) (e) (f) (g)

(a) 24 Hour Timeline

Network Lo(MB/s) Disk Read(MB/s)

Disk Read(MB/s)Disk Write(MB/s)

(b) Early in the day, some nodes have periodic behavior, and there are
some disk-heavy nodes that suddenly drop to 0. Then, a little after
2:00AM, a spike in disk reads occurs in 2 clusters

CPU Utilization(%)

CPU Utilization(%)

CPU Utilization(%)

CPU Utilization(%)

Memory Idle(GB)

Memory Idle(GB)

(c) Around 3:15 and again at 3:40, one minor cluster exhibits CPU spikes.
At 4:10, the two major clusturs both exhibit spikes in CPU usage. Fringe
nodes are pushed away, even though their pattern doesn’t change.

Disk Read(MB/s) Disk Read(MB/s)

Disk Read(MB/s)Disk Read(MB/s)

(d) Leading up to the outage, the 2 primary clusters exhibit more sporadic
but synchronous behavior, with the exception of at 5:50AM each cluster
diverges briefly in disk reads.

Disk Write(MB/s)

CPU Utilization(%)

Memory Idle(GB)

Memory Idle(GB)

(e) After the outage, the two primary clusters begin synchronized, before
splitting into two distinct groups based on memory usage. They also
exhibit strong CPU spikes. Meanwhile, the fringe nodes exhibit more
regular behavior, such as periodic small writes.

CPU Utilization(%) CPU Utilization(%)

CPU Utilization(%)CPU Utilization(%)

(f) Eventually, the system moves into a more synchronized pattern. While
the two primary clusters are changing CPU load behavior over time, they
remain in sync.

Network Lo(MB/s) CPU Utilization(%)

(g) Finally, the system settles into a steady state for the remainder of the
time range, with the exception of a few small spikes in fringe nodes.

Fig. 12. A cloud computer system, over a 24 hour period with an outage in the middle. There are some significant events leading up to the outage,
and a period of flux after the outage as the system returns to a steady state. Excerpts from the detail view are inset for space to describe the more
interesting patterns.
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Fig. 13. The effect of different smoothing window sizes. From left to right, the smoothing window sizes are 0, 16, and 64, respectively. Color of the
behavioral lines here encodes nothing but is used to distinguish from each other.

synchronized, before splitting into two distinct groups based on

different memory usage. Outliers, the green node and the high-

lighted red node, can be easily recognized, because any anomaly

in any metric of the node is exhibited in its behavior line.

Then the system moves into a more synchronized pattern

(Figure 12(f)). While the two primary clusters are changing CPU

load behavior over time, the changes synchronize well, leading to

the stability of the layout.

Finally, the whole system settles into a steady state for the

remainder of the time range (Figure 12(g)), with several anomalies

in the red and yellow nodes.

5 DISCUSSION AND FUTURE WORK

The main contribution of our design is the presentation of a

succinct overview of the whole cloud computation system, which

provides effective indicators for the analysts to more easily locate

system anomalies or bottlenecks. Nevertheless, it is possible for

the overview to possibly miss some subtle events due to the

similarity metric used. For example, two processing nodes could

shift in different metrics such that the behavioral lines of these two

nodes tend to be bundled together when they should not, but such

occurrences are not likely. Allowing the users to assign different

weights to different dimensions may reduce this problem.

Before we compute a force-directed layout for the behavioral

similarity plot, we first need to smooth the original data, because

the original, noisy data is not that useful, as shown Figure 6. The

data used in the stacked graph timeline view is smoothed in the

same way as the data used in the behavioral similarity plot view.

The choice of the smoothing window size could be critical to the

results; a small window size might not provide enough readability

while a large window size could lose too much of the original

information contained in the data. Figure 13, shows an exploration

of the parameter space; from left to right, the window size is 0, 32,

and 128, respectively. Line patterns better reveal themselves as the

window size increases, but some features can become less clear or

almost disappear in the extreme case. While this provided insight

to find a decent default value, we also allow users to interactively

adjust the window size in the stacked graph timeline view. After

an interesting pattern is identified with one window size, the user

can adjust the window size according to the corresponding time

range, which is then applied to smooth the data used to compute

the behavioral lines. In this way, our approach enables users to

find a good window size to smooth the data contextually.

Our approach utilizes basic signal processing techniques.

However, other applications could greatly benefit from combining

our approach with more sophisticated signal processing tech-

niques, such as wavelets or Fourier analyses. The force directed

approach we implemented is rather naı̈ve and inefficient, as it has

to compute a full O(n2) repulsive forces, and it may encounter

problems with local minima – particularly in 1D. More efficient

layout approaches could be incorporated to increase the scalability

to larger data sets. Dynamic clustering approaches could be

incorporated to aid in this. We plan to develop a hierarchical

force-directed algorithm with a time complexity of O(n logn) for

faster layout computing to better be capable of handling streaming

data. And when a line plot such as the one we have used grows

too dense, additional visual summarization techniques could be

explored. Lastly, while we have demonstrated some applications of

our visual-based approach through case studies, a more extensive

study that allows us to validate the findings experimentally would

further prove the effectiveness of our approach.

6 CONCLUSION

Time varying multidimensional data commonly found in many

Big Data applications can be very difficult to reason effectively.

When the data is noisy, this challenge is greatly compounded.

We have developed a new approach to visual summarization of

such complex data in a way that is intuitive and simple. In

particular, it enables visual analysis in a novel statistical space

and has the potential to support streaming data analysis. We have

demonstrated the visual analysis process with case studies on

two datasets that existing techniques were ill equipped to handle.

While these data sets were obtained from logging cloud comput-

ing, the applicability of our approach extends to innumerable other

domains, and could greatly help in other complex, time critical

situations. Although behavior plots may not present every facet of

the data to the user in isolation, they provide good indicators to

attract analysts’ attention and they link well with more detailed or

traditional visual analytic approaches.
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