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Abstract

Perceptually modeling realistic trees is important for
many graphics applications. However, existing methods
are mainly rule-based. Few have directly associated con-
trol parameters with user modeling intent and semantic
tree shape descriptions. In this paper, we propose a new
interactive tree modeling system, ExploreTree, that au-
tomatically deduces user modeling intent and supports
iteratively design of 3D tree models. It consists of two
major phases. The first phase is an off-line learning
process, where semantic tree traits perceived by humans
are learned. Crowdsourced data on example tree mod-
els are collected and analyzed to construct the seman-
tic trait space as well as the embedding of trees into
this space. Built upon it, the second phase is an inter-
active exploration of tree models via a few user clicks,
where a user intent evaluation model is learned online
to guide the modeling process. Modeled trees and user
studies demonstrate the efficiency and capability of Ex-
ploreTree.

1. Introduction

Trees are ubiquitous in our physical world, but for their
large varieties and natural complexities in forms it is chal-
lenging to model them in a realistic way for the virtual
environments. In the past few decades, researchers have
proposed dozens of methods to make progress in model-
ing realistic trees for various graphics applications. Most
of such methods are focused on designing specific comput-
ing mechanisms to create trees with highly visually pleasant
results [8]. However, it is also important to design a power-
ful yet user-friendly interface that can support the ordinary
users creating trees intuitively and efficiently, even without
concerning the underneath synthesis algorithm or comput-
ing mechanism. Some sketch-based methods (e.g. [43, 21])
have already made a good progress in this direction, but fur-
ther researches for the understanding of user perceptions on
tree forms and their modeling intents are still needed and

are valuable for designing more efficient systems.
Nowadays, a number of tree modeling systems are

mainly designed for trained users or experts. Usually, a sig-
nificant amount of efforts are required to produce desired
good results, either in the sense of tuning tree growing pa-
rameters or in the sense of image processing and 3D recon-
struction [40, 20]. For example, the parametric tree mod-
eling methods [42, 19] involve a number of parameters to
control a variety of effects. By incorporating them with a
traditional trial-and-error style of interactions, users have to
take a lot of time both on familiarizing themselves with the
various parameters and finding the proper parameter com-
binations to achieve their final models.

To overcome aforementioned problems, in this paper, we
propose a novel interactive tree modeling system, called Ex-
ploreTree. Here, the interactive modeling process is con-
sidered as a ”conversation” between the system and the
user [34]. First, from few strokes drawn by the user to
indicate the desired tree shape, our system generates sev-
eral initial tree candidates. Then, tree modeling is acted
in a selection-and-recommendation scheme. From recom-
mended tree models, users first select ‘liked’ trees that
share some similar shape features with the desired one.
Then, these selected trees are automatically processed by
our system to generate top-k new candidates according to
the underlying learnt user intent for a next recommendation.
The entire modeling process is exploratory and iteratively,
which is simple and convenient especially for novice and
casual users. A typical example is demonstrated in Figure 1.

In our system, we use a parametric model derived from
variational optimization [41] to generate trees. However,
the parametric space of the computational model is not only
computation-oriented but also high dimensional. Thus, to
directly establish the exploratory interaction, in terms of
selection-and-recommendation, on such a representation is
awkward. Therefore, in this paper, we introduce a key
technique of constructing a semantic trait space to repre-
sent users’ various perceptions on tree forms based on the
crowdsourced data. This tree trait space is acted as an in-
termediate representation, which bridges the user intent and
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Figure 1. Illustrating the tree modeling procedure of our ExploreTree system. Given a guidance shape and a reference photo (Left), a
desired tree (Right) can be iteratively modeled by selecting trees possesing similar traits with the reference (Middle). In this example, the
first 6 trees are selected through a random exploration to warm-up the online learning procedure. Thereafter, at each iteration, our system
employs a user intent evaluation model (visualized as red bars) to evaluate user intent from their selections and guide the generation of new
candidate trees. Note, we only show the user selected trees at each iteration.

the exploration in the parametric shape space, therefor sup-
ports modeling trees mainly based on user perceptions.

In this paper, our major contributions are:

• By collecting data from designed crowdsourcing ex-
periments, we compute a new semantic trait space to
represent trees, where an off-line learning algorithm is
leveraged to capture users’ perceptions of tree shapes,
and the mapping between the semantic trait space and
the parametric tree modeling space is then built;

• We propose an online learning algorithm to learn the
user intent evaluation model, which includes embed-
ding modeling parameters into the semantic trait space,
evaluating user intent scores and recommending new
candidates successively during modeling;

• Based on those two key points, we present a new inter-
active exploratory method to model trees.

2. Related Work

In the past few decades, many methods on tree modeling
have been published. Here, we only review some most rele-
vant work. Please refer to [8] for an entire overview of this
field.

Rule-based Tree Modeling Since the growth of trees
implies strong botanic rules and patterns, the work of tree
modeling began early with rule-based methods. In general,
they are used to simulate botanical organs or growing pro-
cess rather than model a real tree. The work of [11] pio-
neered in the tree modeling work by proposing a few struc-
tural parameters and some simple rules to describe the form
of a tree-like body. Since then, the rule-based method has
been further developed, where the L-system [33, 31], and
its various extensions [25, 17], become popular and have
been widely used in the field.

The L-system based methods usually require the user to
write botanical rules to generate a specific tree [32]. In spite

of the expressive power, some expert knowledge are neces-
sary for users, since the rule may involve a number of pa-
rameters to encode some botanical or geometric patterns. It
prevents an ordinary user to model a specific tree efficiently.
By addressing this limitation, a series of work [35, 28, 21]
have been published to further improve the L-system to sup-
port modeling trees in a more convenient way.

Many other parametric models have also been proposed
either to simulate the botanical growth mechanisms [7, 30]
or to synthesize a tree with full control on its geome-
tries [42]. Such models with heavily used parameters also
prevent an ordinary user to synthesize a specific tree effi-
ciently.

Lintermann and Deussen [19] proposed a new paradigm
for the procedural tree modeling and have been imple-
mented in some successful commercial softwares, such as
Xfrog and SpeedTree. During the modeling process, the
main interaction is to organize some predefined components
into a structured tree graph. However, various parameters
within each component are still required to be adjusted by
users to model a specific tree.

Sketch-based methods [27, 13, 4, 43] provide a design-
friendly tree modeling scheme guided by strokes. However,
due to the complexity of the morphology of a tree, these
methods always adopt some simple rules to automatically
infer the full 3D structure of a tree from a 2D sketch with
acceptable complexity to the user.

Recently, [41] proposed a variational framework to
synthesize trees from a user sketched silhouette shape,
which further simplified the complexity of the sketch input.
[44] utilized an exemplar 3D tree-parts database and user
sketches to build realistic tree models within few minutes.
The tree-parts are connected following the allometry rules
and the generation of twigs are guided by the user sketches.

In this paper, starting from a sketching input, we present
a new tree modeling method with an intuitive way of inter-



action between the user and the system, where users explore
in a semantic trait space built upon human perceptions of
trees.

Exploration-based Modeling Recently, methods aimed
at designing modeling tools for novice and casual users are
developed. One of them, which is different from construc-
tive modeling procedures for skillful users, has attracted
much attentions. It can be viewed as an exploratory routine
to find interesting results according to some visual percep-
tions without specialized knowledge. Parametric and design
spaces are central in this category of computer graphics ap-
plications [22, 10, 16, 12, 9]. The dimensionality of such
spaces plays an important role in designing the correspond-
ing exploration procedures. Based on the parametric space,
more representative spaces can be computed for further ex-
ploration through automatic methods [23, 2] or from crowd-
sourced data [39, 26, 45]. In [26, 45], the semantic traits are
given by experts and an embedding of the objects in such a
space then is learned from the crowdsourced data. Our work
shares some similarities when learning such a semantic trait
space, but the semantic traits are also learned from a crowd-
souring study which is even more challenging.

By manually arranging the tree models through collabo-
rations of many users, Talton et al. [39] embedded the tree
model into a 2D map. Then, by exploring such a map, user
could generate new trees interactively. The interaction be-
tween the system is intuitive since it is based on a space with
high semantics. However, as has already been mentioned
in [39], the intrinsic dimension of the morphological space
of a tree is higher than 2. A 2D embedding may lead to huge
jumps in tree traits from local to local, and bring cognitive
difficulties when exploring in such regions. In this paper,
we will further study the semantic trait space of the tree and
design our modeling procedure on it.

The modeling procedure is an interactive process involv-
ing both the user and the system. The above work mainly
focused on the design of the system itself and have paid lit-
tle attention to model the intent of a user. Recently, [6]
extends the concept of exploratory modeling by propos-
ing a user interface that enables the user to quickly pro-
vide preference scores for selected shapes. Then a proba-
bility density function (pdf) is interactively designed based
on such preference scores over the underlying shape space
and new models are sampled and presented according to
the designed pdf. Also, with the development of informa-
tion retrieval systems [18, 36], the intent learning procedure
has been successfully incorporated into the system to guide
the overall retrieval procedure. Inspired by those work, we
adapt a learning procedure for the user intent evaluation
model to guide the tree synthesize process in our system.

3. System Overview

In Figure 2, we illustrate the major computing modules
and the data flow of our tree modeling system, called Ex-
ploreTree. Overall, it has two major phases. The first phase
is an off-line learning procedure of the semantic trait space,
which is learnt once. Built upon it, in the second phase,
our system iteratively applies an online learning algorithm
(Algorithm 1) to update a user intent evaluation model.
This user intent evaluation model is the main driven force
for modeling trees gradually approaching the user’s desired
tree. Note that user’s interactions in our modeling system is
only the selection of tree models in the second phase.

The rest of our paper is organized as follows. In Sec-
tion 4, we briefly introduce the variational tree synthesis
model. Then we describe the tree semantic space and the
related learning mechanism in Section 5. In Section 6, we
introduce the mathematic model behind our intent learning
algorithm. The system implementation with various evalu-
ation results are described in Section 7. Finally, we draw
conclusions, discuss the limitations and the future work in
Section 8 .

4. Parametric Tree Model

The computing framework of ExploreTree is build upon
a parameter-driven tree representation. Theoretically, any
parameter-driven approaches of tree modeling can be inte-
grated as the basic tree representation of our framework.
For the sake of convenient modeling for ordinary users,
in this paper, we employ a recently developed paramet-
ric model based on a variational formulation [41]. After
defining a guidance shape by the user, this model automat-
ically synthesizes a tree by minimizing a variational error.
Here, we briefly introduce the notation and formation of this
model. And in the following sections, we build a semantic
trait space based on this parametric model, where our online
intent learning algorithm is designed to support modeling
various trees.

A guidance shape is firstly defined as a shape of the de-
sired tree crown. A number of small spheres (called shape
nodes) is distributed on the guidance shape to form the con-
straint set C. To find a best tree structure B according to the
guidance shape C, the tree modeling can be formulated as
an optimization problem:

Bopt = arg min
B
F (B;p0, C,R) (1)

where F (·) is the overall cost function,R is a set of botani-
cal parameters and p0 is the root position of the tree. Three
different costs regarding to the tree structure B are consid-
ered and combined as the overall cost. They are the intrin-
sic structure energy FI , the exterior shape-guidance energy
FE due to the guidance shape C, and the parameter control
penalty FP from botanical parametersR.



Figure 2. System overview of ExploreTree. In phase 1, the crowdsourced data HIT-1 are used to extract various semantic tree traits, based
on which the HIT-2 crowdsourcing tasks are designed and finally used to learn and build such a semantic tree trait space. In phase 2, our
intent-based tree modeling process is designed and implemented in a selection-and-recommendation scheme. The computation parameter
space and the semantic trait space then build a bridge between the two major phases, where the loop (green arrows) in the center of the
figure demonstrates the iterative and exploratory nature of our method.

In this paper, botanical parametersR is comprised with a
set of structure feature descriptions of tree branches. Every
branch is represented in a 5-dimensional vector:

R = (N,P, n, θ, φ), (2)

in the botanical parameter space, where N specifies the
number of internodes along the branch axis, P provides
an apical control and (n, θ, φ) define the phyllotaxic pat-
tern of lateral branches. Please refer to [41] for more tech-
nique details. Since a tree is represented as a hierarchical
structure, taking the notion of ‘levels of recursion’ [42],
branches in different levels of a tree hierarchy can be either
classified with a similar set of parameters Ri or specified
with different values Rj , where i < j for endogenous ef-
fects. To simplify the representation, all parameter vectors
of different levels are combined to be a botanical arguments
set R = {R0,R1, ...RL} and all these control parameters
are treated as a feature vector of a tree. In general, mostly
L = 6 levels are good enough to model realistic trees in this
paper. The actual branches positions are computed from the
variational model in Equation 1.

5. Learning Semantic Trait Space of Trees

Numbers of geometrical and botanical features have
been proposed to describe and design a 3D tree model [42,
38]. However, these features are somewhat low-level and
to our knowledge, a very few previous work in tree model-
ing had dealt with semantic traits that support users describ-
ing 3D tree models through their visual perceptions. Such
traits are directly related to the visually structure of the tree
and have their corresponding semantic meanings. Also, the

parametric space spanned by the geometrical and botanical
features often has a high dimension, e.g. [42], and this will
incur the ’curse of dimensionality’ problem for the intent
learning algorithm in Section 6. So to construct a semantic
space with a lower dimension will also facilitate our online
intent learning process.

In this paper, we mainly focused on computing the
branching structures of trees. Other traits, such as leaves
and bark patterns, are not taken into consideration in the ma-
jor computational pass but leave them to a post editing one.
Following, we first present the new semantic trait space that
we learned from human perceptions of trees, and then intro-
duce the learning process on mapping these semantic traits
to the parameters we used to generate trees.

Two parametric spaces We define two parametric
spaces as following. One is the tree semantic trait space
whose basis consists of the visual perception traits of a tree,
is denoted as Z . The other is the tree computational para-
metric space where the control parameters of the variational
tree synthesis model constitute the feature vector of a tree,
is denoted as X . Also, we denote n and m to be the dimen-
sion of the space X and Z respectively. The embedding
transform from the parametric space X to Z is defined as

Φ : X → Z.

In this paper, we adopt a linear mapping to constructed such
a transform by setting

Φ = [b1, . . . ,bm]>, (3)

where each vector bi is learnt via a linear SVM classifier to
be further discussed in Section 5.2.



Figure 3. Illustrating of 16 random trees selected from the data set of 7500 example trees.

Example tree data set To learn the trait space, we gen-
erate a data set S, including 7500 example tree models by
sampling the tree computational parametric space X . The
guidance shape is treated as a required input to our system
and is designed to be irrelevant to our trait space learning
process. Thus, our example trees are all generated in a same
guidance shape to simplify the work. Each tree in the data
set corresponds to a 3D branch structure and its computa-
tional parameters in X . In Figure 3, 16 random example
trees selected from the data set are illustrated.

5.1. Semantic Traits

People will perceive a tree in different ways. To col-
lect perceptional traits from different people, we design and
publish HITs (Human Intelligence Tasks) on the Amazon
Mechanical Turk for anonymous worldwide workers. Since
the trees generated with certain parameter combinations
will perceived similarly and for efficiency we first cluster
7500 example trees into 64 clusters in the tree computa-
tional parametric space using the K-means algorithm. Only
one tree in each cluster is randomly selected as the represen-
tative tree to be used in the HITs. In each HIT, we randomly
select 2 out of the 64 tree images and ask the worker to give
descriptions on the similarities and differences of the two
displayed trees. We published a batch of 64 HITs with each
HIT allowing to have a maximum of 5 assignments. In the
supplementary video, we show an example on how one HIT
is taken. Finally, a total of 54 workers took our HITs and
by eliminating some invalid results, we obtain a collection
of 220 valid results, called HIT-1.

Since all the results are described in natural language in
a way like “Left tree is fuller than the right. Right tree is
skinnier than the other.” To process these texts, first, we
manually distill a set of trait keywords, and then parse all
texts to compute the occurrence of each keyword. Due to
the polysemy of the natural language, e.g.”fuller”, ”more
branches” and ”heavier secondary branching” are all related
to the description of the branch density of a tree, the occur-
rence of such keywords with a similar meaning are manu-
ally merged. Finally, 24 trait keywords are mined from the
data and in Figure 4 they are shown in a descending order

according to their occurrences. See the supplemental docu-
ment for more analysis on the results.

Keywords occurrences

Occurrences

Thickness
Density

BranchRule
Leaf

TrunkHeight

TreeShape
BarkColor

FirstBranchPos
TipBranchDirection
TrunkStraightness
BranchStrongness

OveralBranchingDir
Healthy

TreeAge

TreeHeight

Balance of a tree

TreeSize
Natural look of a tree

Tree is alive
Tree is bushy
Tree is thorny

BranchLength
BranchStraightness

SecondaryBranchPos

Figure 4. Trait keywords occurrences. The traits with orange bars
are finally selected to be our tree semantic traits.

Semantic trait selection Not all traits mined are nec-
essary for our modeling purpose. Firstly, since the vari-
ational tree model takes the tree guidance shape as input,
all traits used to describe the overall shape of trees are dis-
carded. Secondly, high level semantic traits (e.g. ”health”
and ”alive”) are also discarded, since they are implicitly cor-
related to the low level semantic traits (e.g. ”thickness” and
”density”) and often have less occurrences compared to low
level traits. Finally, some traits with occurrences less than
a threshold are also discarded. Then, the final 8 traits are
listed as in Table 1, where their corresponding cognitive
properties summarized from the crowdsourcing results are
also given.

5.2. Learning Semantic Trait Space

The directions along the 8 traits will span the tree seman-
tic trait space Z . Ideally, by projecting the trees along such
a direction, we can observe a varying trends in the selected
trait of the trees, see Figure 5 for an illustration. We call
such a direction as the semantic trait vector bi ∈ Rn, and
further let {bi}mi=1 forms a basis of Z . In our implemen-
tation, n = 12 and m = 8 are the dimensions of space X



Trait name Cognitive properties
thickness thick, thin
density fuller, sparse

trunk height tall, short
1st branching position low, high
2nd branching position near outer layer, near

main stem
tip branching direction divergent, consistent

overall branching direction upward, horizontal
trunk straightness straight, bent

Table 1. Selected traits and their cognitive properties. The cogni-
tive property gives two opposite varying directions for each trait.

Figure 5. Illustration of trees distributed along 2 trait directions.
See the supplemental video for all the 8 trait directions.

and Z , respectively. Though we can further construct an
orthogonal basis from {bi}mi=1 for Z , but then the semantic
interpretability for each new trait will be lost. By learning
the user intent to guide the tree modeling process as detailed
in the next section, this interpretability is important. Thus,
we just keep the semantic traits directly learned from our
crowdsourcing study.

We then designed and published HITs for each trait on
the Amazon Mechanical Turk. Anonymous workers are
asked to label our data set S with respect to each sematic
trait. Specifically, in each HIT, we randomly select 15 trees
from 7500 trees in the example tree data set, and ask work-
ers to label them according to a given sematic trait. For
each semantic trait, the workers are given some guidelines
to choose the trees from the HIT to label them as positive
examples. The maximum assignments of each HIT is set
to be 3 with each HIT only labelling one sematic trait. We
named this data set as HIT-2.

After labeling the data set S for all 8 traits, we ob-
tain m data sets D(l) = {(x(l)

i , y
(l)
i )}Ni=1, where m is the

number of selected traits, l = 1, . . . ,m, x
(l)
i ∈ X and

y
(l)
i ∈ {+1,−1}. Then we train a binary classifier using

the linear SVM with soft-margin [5] on each data set D(l)

and set bi to be the normal vector of the separating hyper-
plane of the trained classifier. The details of the training
procedure and various training results are described in Sec-
tion 7.

6. Intent-based Tree Modeling

Algorithm 1 IntentLearningAlgorithm
Input: S {the example tree data set}
Initialization: σ2 ← 1, tw ← 6, c← 2, µ← 1,

t← 1, n← 1,K ← 9,Zt ← {Φ}, rt ← {Φ},
ŵt ← 0, ŵ(n|n−1) ← 0,Σ(n|n−1) ← 0
{Warm-up the learning process}

1: for t = 1 to tw do
2: Zt ← Zt ∪ randomSample(S,K)
3: rt ← rt ∪ userFeedback(Zt)
4: end for
5: ŵ(n|n−1) ← (Zt

>Zt + µI)−1Zt
>rt

6: Σ(n|n−1) ← σ2(Zt
>Zt + µI)−1Zt

>Zt(Zt
>Zt + µI)−1

{The main online learning procedure}
7: while not get the target tree do
8: ŵt ← ŵ(n|n−1)

9: Zs ← genCandidateTrees(Zt, rt, ŵt, c,K)
{Sec. 6.2}

10: rs ← userFeedback(Zs)
11: Zt ← Zt ∪ Zs
12: rt ← rt ∪ rs
13: for (z(n), r(n)) in (Zs, rs) do
14: k(n) ← Σ(n|n−1)z(n)

z(n)>Σ(n|n−1)z(n)+σ2

15: Σ(n|n) ← (I− k(n)z(n)>)Σ(n|n−1)

16: ŵ(n|n) ← ŵ(n|n−1)+k(n)(r(n)−z(n)>ŵ(n|n−1))

17: ŵ(n+1|n) ← ŵ(n|n)

18: Σ(n+1|n) ← Σ(n|n)

19: n← n+ 1
20: end for
21: end while

Based on the learnt tree sematic trait space, our Explore-
Tree system provides an intuitive and simple tree model-
ing process. The entire process of modeling a single tree
is performed iteratively. That is, at the beginning of each
iteration, the system will generate and display a number
of candidate trees to the user. Then, the user needs to se-
lect ”liked” trees, which share certain similar shape fea-
tures with the target tree. The historical user interactions
are all recorded and then used to train an user intent evalu-
ation model. According to the learnt intent, the system will
automatically compute top-k new candidates for the next it-
eration.

In ExploreTree, the modeling of the user intent is the key
to drive the whole modeling process. In our work, We rep-
resent the intent evaluation model as an evaluation function,
f . Such an intent evaluation function is learnt from the user
interaction data, and is used to guide the generation of new
candidate trees with higher intent scores. There are several
challenges in learning f . First, at the early iterations of the



modeling process, the size of the user interaction data set is
small and the learnt f may not be accurate. Second, there
are difficulties on the trade-offs between the exploration and
exploitation process, which are critical to guide users mod-
eling their desired trees effectively. If we generate new can-
didate trees exactly according to f , which is called the ex-
ploitation process, will lead us to a local optimal. In order
to avoid such local traps, we must also generate candidate
trees that are not fully meet the current f but to some extent
will lead us to a better estimate of f . This late process is
called the exploration process.

Our intent-based modeling framework is inspired by the
LINREL algorithm [1], which is designed for exploratory
searching and recently has been successfully applied in data
mining [18] and knowledge management [36]. In this paper,
we further extended the LINREL algorithm by incorporat-
ing the Kalman filtering [15] into the online intent learning
process. Our online intent learning algorithm is illustrated
in Algorithm 1 and the details of its steps are described in
the following sections.

6.1. Learning User Intent

As in [1], we define a linear evaluation function to com-
pute the user intent score for a given tree in the semantic
trait space:

f(zI) = zI ·w + ε, (4)

where zI ∈ Z is the semantic trait vector of the tree,
w ∈ Rm is called the intent weights and ε ∼ N(0, σ2)
is introduced to model the evaluation error. Since the size
of the interaction data is limited and often there are noises,
we can only compute an estimation of w. Thus, our goal is
to learn the estimation vector ŵ that best fits the historical
user interaction data.

The original LINREL algorithm solved this problem
within a regression formulation (Equation 10), where ŵ is
updated at each iteration in a batch way (Equation 11).
Thus all the data are weighted identically importantly and
no obvious control had been exerted on the error of the
learnt ŵ. But, at each modeling iteration step, a more rea-
sonable way is to treat each newly observed interaction data
differently according to its prediction error with our current
learnt ŵ. The ŵ then is updated by combining its current
estimate and the prediction error of the corresponding data.
All these considerations motivated us to adopt the Kalman
filter, which provides us a framework to continuously com-
bine our predictions with observations, form beliefs, and
then update our predictions for the future [37]. More im-
portantly, we get an direct control over the error of ŵ when
minimizing its variance to compute the Kalman gain (Equa-
tion 8).

In Figure 6, we give the error curves of ŵ, when mod-
eling the trees in Figure 9, with the LINREL algorithm
and our algorithm with Kalman filter. The error measure

(a) The error curve of LINREL (b) The error curve of our method

Figure 6. Illustrating the error curves of ŵ when modeling the
trees in Figure 9. Note, the two algorithms resulted in different
iteration steps and to facilitate the comparison, we plot a maxi-
mum of 6 iterations after the warm-up process, which is enough
for us to demonstrate the trends. The difference is obvious, with
our method, the error is decreasing throughout the learning pro-
cess, which demonstrates a better convergence property.

adopted here is the trace of the covariance matrix in Equa-
tion 9.

6.1.1 Learning User Intent From Interaction Data

The Historical User Interaction Data During the model-
ing process, we maintain a user interaction data matrix Zt
and a user feedback vector rt to store the trait vectors of
the user selected trees and the selection information respec-
tively. More precisely, after iteration step t, we accumulated
K new data points {(z(t)

i , r
(t)
i )}Ki=1. The matrix Zt−1 along

with the rt−1 then are updated to include such new data:

Zt = [z
(1)
1 , . . . , z

(1)
K , . . . , z

(t)
1 , . . . , z

(t)
K ]> (5)

rt = [r
(1)
1 , . . . , r

(1)
K , . . . , r

(t)
1 , . . . , r

(t)
K ]>, (6)

where z
(t)
i ∈ Z and r(t)

i ∈ {0, 1}.
The Kalman Filter The key idea in incorporating the

Kalman filter to learn ŵ is to utilize a ’prior’ estimate of
ŵ to compute the ’posterior’ estimate based on the newly
observed data. Following, to facilitate the discussion, we’ll
use ŵ(n|n−1) and ŵ(n|n) to denote the ’prior’ and ’poste-
rior’ estimate of ŵ before and after observing the newly n-
th data, respectively. Meanwhile, we use Σ(n|n−1), Σ(n|n)

to denote the corresponding covariance matrices. Note, in
ExploreTree, at each iteration there are K such new data
points.

The rule for updating ŵ on each data point is:

ŵ(n|n) = ŵ(n|n−1) + k(n)(r(n) − z(n) · ŵ(n|n−1)), (7)

here, k(n) ∈ Rm is called the Kalman gain [15], z(n) ∈ Z
and r(n) ∈ {0, 1}.

The uncertainty of the ’posterior’ estimate is character-
ized by Σ(n|n) and we want to reduce it after each update.
Thus, the optimal Kalman gain is computed by minimizing



Σ(n|n). We define the norm of the covariance matrix to be
its trace, tr[Σ(n|n)], as in [37] and by minimizing it we get:

k(n) =
Σ(n|n−1)z(n)

z(n)>Σ(n|n−1)z(n) + σ2
. (8)

Finally, Σ(n|n) can be expressed with k(n) in a compact
form as below:

Σ(n|n) = (I− k(n)z(n)>)Σ(n|n−1). (9)

The derivations are detailed in the supplemental document.
Then, by observing the (n + 1)-th data point, we set the
’prior’ estimate ŵ(n+1|n) = ŵ(n|n) and its ’prior’ vari-
ance Σ(n+1|n) = Σ(n|n). Following the rule in Equation
7, we denote ŵt to be the final estimate achieved after go-
ing through the K new data points at iteration step t.

Warm-up of the Online Learning Procedure To start
the learning algorithm, we need to provide an initial esti-
mate of ŵ(1|0) and Σ(1|0). To this end, we adopt the com-
mon warm-up strategy in machine learning to compute such
initial estimations. For the first tw iterations, we randomly
select trees from the dataset S without replacement for the
user interactions. Then, as in [1], we compute the best ŵtw

by solving the following regularized regression problem

argmin
wtw

‖rtw − Ztwwtw‖2 + µ‖wtw‖2. (10)

Such a quadratic minimization has a closed-form solution.
Therefore, after tw iterations, the best fit ŵtw can be com-
puted as:

ŵtw = (Ztw
>Ztw + µI)−1Ztw

>rtw . (11)

Then we set:

ŵ(1|0) = ŵtw

Σ(1|0) =

(Ztw
>Ztw + µI)−1Ztw

>var(rtw)Ztw(Ztw
>Ztw + µI)−1,

where we set var(rtw) = σ2I. Through experiments we
found σ2 = 1, tw = 6 and µ = 1 provide good results and
we use them as default values in this paper.

6.1.2 Augmenting with Upper Confidence Bound

New candidate trees could be recommended to the user
simply based on the learnt ŵt for a new round iteration,
which is the so-called exploitation process. For reasons as
discussed earlier, here we introduce the upper confidence
bound [1] to provide a mechanism making the trade-off be-
tween the exploitation and exploration process.

Given a candidate tree with trait vector zI in spaceZ , we
treat it as a linear combination of the trait vectors of trees in
the historical data Zt:

zI = Z>t aI , (12)

(a) Start configuration (b) c = 0

(c) c = 5 (d) c = 10
Figure 7. Illustrating the effect of different c values on candidate
tree recommendations. The three different cases start from a com-
mon configuration in (a), where user selected trees are marked
with blue boxes. Then, as the c value increases (b)-(d), more vari-
ant trees from the current configuration are recommended for the
next round iteration.

where aI is the coefficients vector of the linear combina-
tion. It follows that the estimation of the user intent score
r̂I could be computed as (see Appendix A):

r̂I = a>I rt, (13)

which is a linear combination of the corresponding user his-
torical feedbacks. The intuition here is that, the current in-
tent score of the queried model is a weighted sum of the
intent scores related to the models in the historical records.
The weights are serving as a measure of the similarity be-
tween these models.

According to Equation 13, the variance of r̂I is upper
bounded by ‖aI‖2/4 (see Appendix A). In order to obtain
a good estimation, we want to make the variance small by
solving the following least-norm optimization problem to
find aI :

minimize ‖aI‖22
s.t. zI = Zt

>aI . (14)

By applying the same regularization term as in Equation 11,
the closed-form solution of aI is given as follow:

aI = Zt(Z
>
t Zt + µI)−1zI . (15)

Finally, the intent score of the tree zI is computed as:

f̂
′
(zI) = f̂(zI) +

c

2
‖aI‖, (16)



where f̂(zI) = zI · ŵ is an estimation of the intent evalu-
ation function defined in Equation 4 and c > 0 is a confi-
dence bound coefficient (see Figure 7). The value of c could
be set by the user, but a default value of 2 works well in
most cases in our experiments. Thus, f̂

′
is our final intent

evaluation function. As our method shares several similar-
ities with the LINREL algorithm, please refer to [1] for
more technical details.

From Equation 16 we know that a tree with a higher
score may demonstrate the following two situations. In the
first case, the tree is compatible with the current learnt user
intent thus get a higher estimate from f̂(zI). In the second
case, the tree is not compatible with the current learnt user
intent but has a higher ‖aI‖ which indicates that by select-
ing such a tree into the next iteration, we may have a chance
to guide the user intent learning algorithm to jump out the
current optimal state (see the supplemental document for a
theoretical analysis).

6.2. Generating Candidate Trees

While learning the user intent, we want to guide the tree
modeling process to generate trees approaching the target
tree after several iterations. To this end, at each iteration,
we take three steps to generate new tree samples. First, we
generate new tree samples according to the historical user
interaction data. Then, we rank newly generated sample
trees with the user intent scores, and select K trees with
highest scores. Finally, the K new candidate trees are syn-
thesized and displayed to the user for the next iteration.
These steps constitute the genCandidateTrees procedure
in Algorithm 1.

6.2.1 Generating New Tree Samples

We use Tt to denote the set of tree samples generated at
iteration t. These tree samples in Tt are generated from a
probabilistic distribution learned from the user interaction
data.

Formally, we define P(z|r) to be the conditional prob-
ability distribution of a tree with feature z given its user
feedback r. Here, z = (z1, ..., zm)T is a feature vector in
the semantic trait space. Thus, Tt will include tree samples
all drawn from the conditional probability P(z|r = 1).

To facilitate the learning of such a probability distribu-
tion we make two commonly used assumptions as adopted
in the Gaussian Naı̈ve Bayes[24], namely, ∀i, j, zi is condi-
tionally independent of zj given r andP(zi|r) is a Gaussian
distribution. Then the final probability is:

P(z|r) =

m∏
i=1

P(zi|r) =

m∏
i=1

N (zi|µi, σ2
i ). (17)

The parameters µi and σ2
i are estimated from the user in-

teraction data Zt−1 by the maximum likelihood estima-

tion(MLE). Note that the estimated probability from this
simple setting is not suffice to serve as a good evaluation
of the user intent but only provided us a proper prior for
sampling the semantic trait space to generate new candidate
trees.

6.2.2 Selecting Candidate Trees

After generating Tt, we want to select K samples from it as
new candidate trees for a new round user interaction. We
use Equation 16 to compute a score for each sample and the
K tree samples with highest scores are selected. Precisely,
we define Z̃t to be the matrix with its rows arranged in an
order as following:

Z̃t = [zi1 , . . . , zin ]> with f̂
′
(zi1) ≥ · · · ≥ f̂

′
(zin), (18)

here zik ∈ Tt and we set |Tt| = 60000. Then Zs =
[zi1 , . . . , ziK ] forms the set of the candidate trees.

Figure 8. Illustrating the effect of different user selections on a
new round recommendation. Left column, the same tree configu-
rations with different user selections (marked as blue boxes). Right
column, the candidate trees recommended. The learnt ŵt is visu-
alized as a red bar plot in the middle column. The recommended
candidate trees on the second row have more dense branches and
their tip branch orientations are more consistent, which correspond
to our 2nd and 6th semantic traits (see Table 1). These differences
are reflected in the red bar plot, where the heights of the corre-
sponding bars are increased.

6.2.3 The Inverse Transform from Semantic Trait
Space to Parametric Space

The candidate trees in Zs are vectors in the semantic trait
space, we need to transform them back to the parametric
space in order to finally synthesize their 3d branching struc-
tures. To map a vector zI in space Z back to X , we apply
the Gaussian radial basis function (RBF) to interpolate its



corresponding vector xI in space X . By locating L nearest
neighbors of zI in the data set S, we compute xI as follow:

xI =

∑L
i=1RBF (di)xi∑L
j=1RBF (dj)

. (19)

where di is the distance between zI and its i-th nearest
neighbor in space Z . After that K new trees are generated
based on the variational modeling engine for further model
exploration and online recommendations.

In Figure 8, we show an example to demonstrate that
different user selections will lead to different learnt user in-
tents. Then, as a consequence, the generated candidate trees
in the next iteration will differ. In Figure 8, we visualize the
learnt ŵt as a bar plot, where the height of the bar indi-
cates the magnitude of the corresponding semantic trait to
the resulted intent score of a tree. And the bar directions
indicates the positive or negative effect of the semantic trait
on the intent score, respectively.

7. Implementation and Results

System implementation The user interface of Explore-
Tree is designed to both support the interactive modeling
and post-editing. Our system mainly accepts two kinds of
shape inputs namely 3D mesh or 2D sketch. We adopted a
spreadsheet-like interface inspired by [14] to support the in-
teractive modeling process. Through this user interface de-
sign, the user can view and select multiple trees by simple
mouse clicks. In our implementation, 3 × 3 sub-viewports
are displayed so as to provideK = 9 candidate trees in each
round to make the balance of the simplicity of user cogni-
tion and the diversity of selections. But other value of K
could be employed in our computation framework without
any difficulty. The final tree then is generated and various
post-editings are provided to make the tree even more real-
istic, such as attaching leaves and bark textures to it. Our
prototype system is implemented in C++ and Qt in a desk-
top computer and see the supplementary video for a demon-
stration of our UI.

Traits training We adopt a leaning scheme to compute
the semantic trait vector for each trait as described in Sec-
tion 5. Here, m = 8 traits are selected in our implemen-
tation. We first collected a data set of 7.5K labeled trees
from Amazon MTurk. For each trait, based on this data, we
trained a binary classifier using the linear SVM model with
soft-margin. We utilize the Python library scikit-learn[29]
to train all our classifiers. For the linear SVM model with
soft-margin, we need to set the penalty parameter ξ as the
error control term. Thus, our training procedure consists
of three passes. First, we split the labeled data set of each
trait into two sets: the training set (80%) and the testing
set (20%). Then, we use 5-fold cross-validation to train the
model on the training set with a series of different values

Trait ξ Accuracy
thickness 1.0 0.88
density 1.0 0.79

trunk height 0.1 0.69
1st branching position 55.0 0.91
2nd branching position 0.1 0.76
tip branching direction 10.0 0.73

overall branching direction 0.005 0.74
trunk straightness 0.1 0.65

Table 2. SVM training results for each trait.The accuracies are
computed from the testing data by comparing the predictions to
the crowdsourced labels of the data. The chance accuracy for our
binary classification is 0.5.

of ξ. The final value of ξ is selected to be the one with
the lowest cross-validation mean error. Finally, we train the
model on the whole training set with the selected ξ and use
the testing set to evaluate the trained model. In Table 2, we
list the selected ξ and the prediction accuracy on the testing
set for each trait.

Intent-based tree modeling evaluation We design tree
matching tasks to evaluate our intent-based tree modeling
system. We randomly select 4 target trees from our 7500
example trees and use our modeling system to generate cor-
responding models. For each target tree, we also record
all the candidate trees generated during the modeling iter-
ations. Then we compute the average distances from the
candidate trees to the target tree at each iteration. These
distance trends for different matching tasks are shown in
Figure 9.

The distance metric here should offer a proper way to
measure the perceptual similarity between two trees. How-
ever, the naive similarity metric with Euclidean distance is
not good enough to this end. To illustrate such a problem,
in Figure 10 we show three example trees, with the tree
in the top row as the reference tree and the two trees at
the bottom row as alternative trees. According to the Eu-
clidean distance metric, the bottom left tree will be chosen
as the most similar tree to the reference from the two alter-
natives. This result obviously violates our observation that
the bottom right tree is most similar to the reference tree.
In [26], when predicting the perceptual similarity between
fonts, they also encountered such a problem. Since we share
the same situation here, we adopt a similar distance metric:

di,j = ‖W(zi − zj)‖, (20)

where zi and zj are tree feature vectors in the semantic trait
space and W is a p×m embedding matrix. Here m = 8, is
the dimension of the semantic trait space. And p = 8 is se-
lected by cross validation (see the supplemental document).
According to such a distance metric, the bottom right tree
in Figure 10 will be chosen as the most similar tree to the
reference.



(a) (b)

(c) (d)
Figure 9. Intent-based tree modeling evaluation on four randomly selected target trees from our 7500 example trees, where the values of
the semantic traits of each tree are known. In each sub-figure(a)-(d), the left plot shows the average distance trend against the modeling
iterations, where the red curve indicates our method and the blue curve is the LINREL algorithm. The target tree and the resulted trees are
shown in the right column. From these distance curves, we can see a better convergent tendency for our methods.

Figure 10. Example task for tree distance study. The worker de-
cides which alternative trees at bottom is more similar to the ref-
erence tree above.

In Figure 9 (a)-(d), we show four resulted trees mod-
eled according to their corresponding target trees through
our intent-based tree modeling system. Both of the results
by using the LINREL algorithm and our method with the
Kalman filter are given. All the distances are computed us-
ing the learnt distance metric. The candidate trees at the first
six iterations are selected randomly from the 7500 example
trees to warm-up the learning process. At each iteration
since then, the intent evaluation model is updated and new
candidate trees are generated according to the learnt intent
evaluation model. From these plots, first, we can observe
that our method has a nicer convergent tendency than the
LINREL algorithm and the resulted trees are more closer to
the targets. These are mostly due to our direct control with
the error of ŵ at each iteration. Second, the distances be-
tween the candidate trees generated by our intent evaluation

model and the target tree are declined overall in a fluctuant
way. This demonstrates that our tree modeling system can
support the users getting their desired models by learning
their modeling intents.

Modeling capability To evaluate the capability of our
tree modeling system, we mainly ask users to model trees
from various photos of real trees. This is more convenient
and illustrative than just asking the user to generate trees
freely. The photo is only served as a visually guide for
the users to select trees during the modeling process and
is not an input to the computation procedure during the ex-
ploration. In Figure 11, four typical trees are modeled using
our system. After the warm-up process (tw = 6 for all the
four trees), the number of explorations to generate the final
trees are 9, 4, 6 and 6 respectively. In average, each tree
takes the user 5 minutes to achieve the final model. Since
our system is not a image-based modeling one, it is difficult
to capture the exact details from the image. But, by inspect-
ing the results, we found that the tree models possess some
obvious traits of the reference trees, though some local de-
tails, like branch geometries, may vary. A detailed example
is also shown in Figure 1, where it is easy to see that ŵ
converges and leads to the final result.

Modeling diversity In Figure 13, we show four differ-
ent tree modeling results from users with the same refer-
ence tree and guidance shape. Though the modeling target
is the same, but people may have different perceptions on
the same tree and this will lead them to generate different
trees under varying intents. Nevertheless, it is worth not-
ing that all results captured some sort of features from the



reference tree.
User studies We conducted user studies on a group of

21 subjects to further evaluate our tree modeling system in
many aspects. All subjects have no previous experience on
our modeling system, and covers the age from 12 to 45.
Every subject was asked to create tree models according
to a fixed set of 2 reference photos of real trees using our
modeling system. All subjects accomplished the modeling
tasks in less than 20 minutes. For example, Figure 13 il-
lustrates the modeling results using one of the photo by dif-
feren users. When finishing the tree modeling task, each
subject was presented with a series of statements, including
14 questions, of our modeling system. For each statement,
a subject was asked to give a score in [1, 5] with 5 indi-
cates ‘strongly agree’ and 1 for ‘strongly disagree’. The
survey results are summarized in Figure 12. From the sur-
vey results, almost no subject claimed his/her 3D modeling
knowledge as ”expert” and the majority of subjects were
agreed on the modeling system to be simple and intuitive.
More importantly, the subjects also have a common agree-
ment on the fact that our modeling system can ”understand”
their modeling intents and generate their desired models.

Besides, the subjects also show an agreement on provid-
ing a direct way of parameter adjustment to support model
fine-tunings for more realistic results. Thus, we conducted
another user study on 10 subjects to further evaluate our
intent-based tree modeling system over the traditional trial-
and-error one. We developed an interface with the 8 seman-
tic traits directly adjustable through sliders to provide the
subjects a tree modeling system with a trial-and-error style.
Then for each system, the subjects are asked to model 5
target trees both within a time limit of 10 minutes. The
target trees are randomly selected from our example tree
data set and are kept the same for all subjects when using
both of the two systems. In Table 3 there is a summary of
the results for the two systems, where the mean distances
from the resulted trees to the target ones are given. These
results showed that our intent-based tree modeling system
can support the users achieving their modeling targets more
closely in a limited modeling time. From Table 3, the stan-
dard deviations for our intent-based tree modeling system
are also smaller, which indicates that our system provided
the user a more consistent way for tree modeling. The main
reason here is that there exists different learning curves for
the users when mastering the system with a trial-and-error
modeling style. Within a limited time, the consequences of
these differences are magnified and the resulted tree models
are more diverse. Since our intent-based system does not
involve any explicit parameter tunings during the modeling
process such problems can be avoided.

To generate tree models with certain semantic traits, our
exploratory modeling system guided by user intents will
conform to the major perceptions of the target tree. But

Target tree intent-based trial-and-error
1 0.35± 0.19 0.36± 0.28
2 0.24± 0.12 0.32± 0.22
3 0.20± 0.14 0.36± 0.31
4 0.29± 0.15 0.23± 0.25
5 0.34± 0.19 0.36± 0.21

Table 3. The mean distances from the resulted trees to the target
ones for two modeling systems. In the second column, the mean
distance with one standard deviation for our intent-based tree mod-
eling system are given. In the third column, the same results for
the tree modeling system with a trial-and-error style are given. All
the distances are computed using Equation 20.

for some detailed lower level controls, like the geometries
of the branches, it is seemed more convenient to manipu-
late parameters directly. Fortunately, our prototype system
already integrated such functionalities into the post editing
mode.

8. Conclusion

In this paper, we proposed a novel tree modeling system
with an intuitive user interface design. The main goal, when
designing our system, is to ease the learning and cognitive
burdens on using our system to model various trees. Thus,
the main difference of our system to the previous ones on
providing professional modeling solutions for senior users
is on supporting ordinary users modeling trees through a
selection-and-recommendation scheme, where their model-
ing intents are automatically deduced to guide the explo-
ration in a semantic tree trait space.

The semantic traits of the tree are distilled and learnt
from the crowdsourced data collected through the Amazon
MTurk, where an off-line learning procedure is carried out
to learn the final semantic trait space. These tree semantic
traits provide us a way to understand the human percep-
tions on different tree shapes and support our online intent
learning algorithm to learn the user intent evaluation func-
tion in a space that is close to the user perceptions. Finally,
intensive user studies have been conducted, which demon-
strate the efficiency of our system both for the amateur and
experienced users, on modeling trees and supporting their
explorations in such a tree space.

Limitations and Future Work Although our system is
effective for generating realistic trees through a few inter-
actions, it bears some limitations in the current state. First,
the size of our textual data collected to distill the semantic
traits are limited and the process for selecting semantic tree
traits from the textual data are mainly manually, which is
inefficient for a larger data set. In the future, we’d like to
adopt advanced algorithms, like the deep learning technol-
ogy [3], to automatically mining such traits from the text
data. Second, currently we only consider the semantic traits
from the perceptions of ordinary users. By also collecting



(a) Reference Photo A (b) Tree A (c) Reference Photo B (d) Tree B

(e) Reference Photo C (f) Tree C (g) Reference Photo D (h) Tree D
Figure 11. Illustrating the modeling results of trees according to four reference photos using ExploreTree. The reference photos here are
not directly involved with any computations in ExploreTree, but serving as a visually guide for the user to select trees during the modeling
process. The final tree models ((b), (d), (f), (h) ) then possess a number of similar traits to the reference.

Figure 12. The survey results from 21 subjects of our intent-based
tree modeling interface. The subject rates 1 for ’strongly disagree’,
3 for ’neutral’ and 5 for ’strongly agree’. Error bars indicate one
standard deviation.

and analysing the data from botanists, we may complement
our semantic traits to support modeling more realistic trees.
Also, the semantic traits currently are learned through batch
comparisons and the resulted loss in accuracy when com-
paring to the pairwise comparisons as in [26, 45] should be
further studied. Third, our current system incorporating no
image-based modeling techniques, by combining which the
final results may even be more compelling.

There are also several other valuable directions for our
future work. For instance, we could improve our method
based on other non-linear parameter embedding techniques.
And of course, a larger scale size of crowdsourcing study
will help us finding more dimensions of shape perceptions.
Also, we can integrate collaborative filtering or personal-
ized recommendation algorithms from the field of machine
learning and data mining to further customize the modeling

process for a individual user. Since our computing frame-
work is a data-driven one, the presented system could be
extended for other geometry design issues (e.g. buildings,
faces, machinery and 2D artworks) without large work, if
a suitable parametric representation can be found to match
our computation framework.
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Appendix A. Upper confidence bound

As already mentioned in Section 6, the LINREL algo-
rithm [1] built a linear map between the data feature and its
response. Precisely, after iteration step t, this linear regres-
sion problem implies that Ztŵ ' rt. Then by incorporating
Equation 12 we get:

r̂I = z>I ŵ = (Z>t aI)
>ŵ = a>I (Ztŵ) ' a>I rt. (21)

To compute an upper confidence bound for r̂I , the LINREL
algorithm treats rt as a Bernoulli random vector since its
elements take binary values. Then by definition, we get:

var(r̂I) = a>I var(rt)aI ≤
1

4
a>I aI , (22)

where we also take the assumption that the elements of rt
are i.i.d Bernoulli random variables and the fact that the
variance of a Bernoulli random variable is upper bounded
by 1

4 .



Figure 13. Illustrating the modeling outputs of different users from the same reference photo. The upper left image is the given reference
photo and the lower left one is an input 3D mesh as the guidance shape. The upper right four images are rendered results generated by four
different users selected from the data of our user study. The lower right four red bar plots are the corresponding intent weights ŵ.
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