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Figure 1: The octopus example. Our constrained partitioning optimization system automatically generates the partitioning of this octopus
model, which contains nine pieces as shown in (a) and (c). These nine pieces can be packed into a box container as shown in (b) and (d),
which occupies only 10.4 percent of its original container volume.

Abstract

As the 3D printing technology starts to revolutionize our daily life
and the manufacturing industries, a critical problem is about to e-
merge: how can we find an automatic way to divide a 3D model
into multiple printable pieces, so as to save the space, to reduce the
printing time, or to make a large model printable by small printers.
In this paper, we present a systematic study on the partitioning and
packing of 3D models under the multi-phase level set framework.
We first construct analysis tools to evaluate the qualities of a parti-
tioning using six metrics: stress load, surface details, interface area,
packed size, printability, and assembling. Based on this analysis,
we then formulate level set methods to improve the qualities of the
partitioning according to the metrics. These methods are integrated
into an automatic system, which repetitively and locally optimizes
the partitioning. Given the optimized partitioning result, we further
provide a container structure modeling algorithm to facilitate the
packing process of the printed pieces. Our experiment shows that
the system can generate quality partitioning of various 3D models
for space saving and fast production purposes.
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1 Introduction

As 3D printers become more versatile and affordable every year,
it is expected that soon they will transform our daily life and the
manufacturing industries. Interestingly, the 3D printing technology
not only revolutionizes how things are made, but also how things
are designed. In the past, a designer/engineer/architect/artist must
design many parts and their assembling process, through which the
parts are put together to form the desired object. Today, the parts are
no longer needed in the design of a 3D model, thanks to the fact that
3D printers can now manufacture objects as a whole. This benefit,
however, brings new troubles to us when we still need to divide a
3D model and print its pieces separately, for several reasons.

• Printability. A model is not printable if it cannot fit into
the build volume of a 3D printer. A large printer, such as
Objet1000 made by Stratasys, has a large volume, but it is
expensive. Small pieces can be built easily by small printers.

• Fast production. It takes hours or even days to print a large
model. By manufacturing the model pieces separately in par-
allel and reducing their heights during printing, we can save
the printing time, especially for powder-based printers.

• Space saving. By arranging the pieces of an object into
a packed state, we can reduce their occupied space when the
object is not in use. This provides us a cost-effective storage
and transportation solution for multiple printed objects.

To achieve these goals, we believe that a good partitioning should
have six important qualities.

• Minimum stress load. The partitioning should avoid high
stress regions within a model. This is to prevent pieces from
being easily separable, due to large tension or shear loads.

• Surface detail alignment. The pieces may not match per-
fectly due to the imprecision of a printer. To make seams
less noticeable on boundary surfaces, we can align them with
surface details, where people expect to see discontinuities.

• Minimal interface area. A seam between two pieces can
also be reduced by minimizing the contact area. The smaller
the area is, the fewer the mismatches are likely to happen.

• Minimal packed size. The partitioning should allow the
pieces to be tightly organized into a packed state for storage



or transportation. A packed state can also be used to speed up
3D printing, by minimizing the heights of the pieces.

• Printability. The partitioning should ensure the printabil-
ity of each piece. Specifically, each piece should not exceed
the build volume of a 3D printer, nor should it contain any
thin feature below the printing resolution.

• Assembling. There should exist no locking issue prevent-
ing the pieces from being assembled into the original state, or
the packed state.

We propose to study the partitioning of a 3D model under the level
set representation. Compared with other geometric representations,
such as meshes or point clouds, the level set representation trivially
handles topological changes without remeshing, and it is free of
sampling artifacts. There are two additional reasons convincing us
the use of the level set representation in this work. First, its underly-
ing signed distance field allows us to perform fast and easy collision
handling, which is needed frequently in our simulation-based pack-
ing solver. Second, as a volumetric representation, it is more com-
patible with the layering process commonly used in the 3D printing
technology, which successively applies printing material in layers
to form the volume of an object. Previous research [Nooruddin and
Turk 2003; Telea and Jalba 2011] also indicates that volumetric
representations are suitable for geometric processing.

While both shape partitioning and shape packing have been studied
in various areas before, they are often handled separately and se-
quentially in many previous systems [Wu et al. 2014; Vanek et al.
2014]. Doing this limits the packing quality, as the partitioning
should still be adjusted to reduce the packed space even further.
Unfortunately, it is highly difficult to optimize the partitioning and
the packing together using a single objective function, since the
partitioning is formulated in the original space while the packing
is defined in the packed space. As far as we know, there exists no
effective solution to this unique optimization problem.

Instead of optimizing the partitioning and the packing jointly, we
propose to process them in a separate yet interleaved fashion.
Specifically, we develop a constrained optimization system that it-
eratively refines the qualities of the partitioning for a 3D model in
two steps. In the variational step, it improves the intrinsic qualities
of the partitioning, including minimum stress load, surface detail
alignment, and minimal interface area. In the packing step, it then
improves the packing quality of the partitioning to organize the
pieces tightly in a packed state. The system runs the two steps iter-
atively, until both objectives can be achieved sufficiently well. To
ensure the usability of the result, we further introduce a constraint
enforcement step between the two steps. Once the system detects a
constraint violation, it performs local correction to fix it. Since the
optimized result is sensitive to packing initialization, we run the w-
hole optimization process multiple times with random initialization
seeds, and select the final result to be the one with the highest quali-
ties. Thanks to a number of acceleration approaches, such as multi-
threading, our system can finalize the partitioning result within 12
minutes. The experiment examples summarized in Table 1 show
that our interleaved optimization strategy effectively reduces 12.9
to 44.3 percent more space than optimizing the partitioning and the
packing sequentially only once.

Besides the development of this new optimization system, our other
technical contributions are:

• Analysis tools. We evaluate the qualities of a partitioning
by new analysis tools, including collision detector, packing
solver, and locking detector. All of these tools are formulated
under the multi-phase level set framework.

• Level set methods. Based on the analysis, we present level
set methods to improve the partitioning qualities. While some

are developed using the variational approach, others modify
level set functions directly and locally.

• Container structure. We present a container structure
modeling algorithm to simplify the packing process and pro-
tect the pieces from collision damage within a container.

The developed system can be used for different purposes. For space
saving, the system arranges the pieces into a packed state, whose
volume is only 10.4 percent of the original volume, as Figure 1
shows. For fast production, the system reorganizes the pieces with-
in the volume of a FDM printer, so that the printing time can be
reduced by approximately half an hour, as Figure 11 shows.

2 Related Work

Level set methods. The idea of level set methods was initially
developed by Osher and Sethian [1988] as a simple yet versatile tool
to track the motion of an interface under advection. Level set meth-
ods are known for their flexibility in handling topological changes,
such as shape merging or splitting. In computer graphics, level set
methods were found to be useful for collision detection and han-
dling as well, since a point can be quickly tested to know whether it
is within a volume or not, as Guendelman and collaborators [2003]
pointed out. While level set methods have demonstrated its power
in many applications, they are often associated with numerical dis-
sipation, especially near high curvature regions. A popular solution
to this problem is the particle level set method [Enright et al. 2002].
Fortunately, we do not have to worry too much about it, since our
goal is to optimize the internal interfaces rather than the external
boundary of a model, and we actually prefer smooth interfaces.

Multiple level set functions can be used to represent multiple phases
within a 3D volume. An interesting question is how to fix over-
lapping or vacuum regions, when these functions are evolved in-
dependently. Zhao and colleagues [1996] established a theoretical
variational formulation to remove these regions using Lagrangian
multipliers. A faster solution [Ruuth 1998; Smith et al. 2002;
Losasso et al. 2006] is to directly modify the function values in
problematic regions by projection steps. Instead of using multiple
functions, Kim [2010] and Saye and Sethian [2011] proposed to
represent multiple phases by an indicator map and a single level
set function. In this work, we still use multiple level set functions,
since 3D printing needs high accuracy.

Printable shape design. Due to the importance of the 3D print-
ing technology, researchers have studied a variety of problems rel-
evant to printable shapes in recent years, including strength im-
provement [Stava et al. 2012; Wang et al. 2013; Zhou et al. 2013;
Lu et al. 2014], articulated objects [Bächer et al. 2012; Calı̀ et al.
2012], masonry models [Panozzo et al. 2013; Whiting et al. 2012],
inverse shape design [Chen et al. 2014], support structures [Dumas
et al. 2014], spinnable shapes [Bacher et al. 2014], and stackable
shapes [Li et al. 2012]. Among them, shape partitioning is a rela-
tively less studied topic. Xin and collaborators [2011] and Song and
colleagues [2012] studied the design of a printable puzzle, by split-
ting a model into interlocking parts. Lau and collaborators [2011]
proposed to automatically divide a furniture model into pieces with
connectors. Hu and colleagues [2014] developed a novel method
to decompose a model into pyramidal shapes for optimal layered
3D printing. Given a self-supporting structure and its partitioning,
Deuss and collaborators [2014] investigated the physical construc-
tion process by establishing a temporal assembling sequence. Luo
and colleagues [2012] used planar partitioning to fit the pieces of
a large model into the build volume of a small printer. Recent-
ly, Vanek and colleagues [2014] developed a system to reduce the
printing time of a 3D model. In their system, partitioning and pack-
ing are processed sequentially, so the result can contain more pieces
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Figure 2: The system pipeline. The key component of this system is the partitioning optimization process, which uses three steps to iteratively
optimize the partitioning of a 3D model. The whole system is formulated under the multi-phase level set framework.

than necessary. Their system also uses a height-field-based repre-
sentation, which is difficult to be generalized for other purposes,
such as space saving.

Image and mesh segmentation. Computer vision researchers
have extensively studied image and volume segmentation, and they
have developed a variety of techniques, including the ones using
level set methods [Vese and Chan 2002; Gibou and Fedkiw 2005].
Since image segmentation is typically used to segment objects from
an image for easier recognition purposes, its goal is different from
ours. Many image segmentation techniques have been borrowed by
graphics researchers to handle the partitioning of a polygonal mesh.
A recent survey on mesh segmentation can be found in [Shamir
2008]. Although the goals of mesh segmentation are different from
ours, we can make our result more meaningful, by incorporating
mesh segmentation results into partitioning optimization.

Bin packing. Bin packing is an NP-hard problem. Compared
with bin packing of spheres and convex polygons, 2D and 3D pack-
ing of irregular shapes is even more challenging. Many existing
irregular shape packing algorithms are designed for 2D cases, in-
cluding a hybrid method that combines simulated annealing with
linear programming [Gomes and Oliveira 2006], genetic algorithm-
s and heuristics [Junior et al. 2013], an iterative local search al-
gorithm [Imamichi et al. 2009], and a heuristic approach [Yang
and Huang 2013] designed for exhibiting features and relation-
ships among similar objects. Unfortunately, extending these algo-
rithms to handle 3D cases is not so straightforward. Egeblad and
collaborators [2009] developed an algorithm to pack arbitrary d-
dimensional polytopes with translational motions only. Dickinson
and Knopf [1998] proposed a fast serial approach to pack arbitrary
3D models into a fixed container one after another. Imamichi and
Nagamochi [2007] used spheres to represent irregular polyhedra
for collision detection and solved the packing problem by minimiz-
ing the collisions among spheres and a fixed container. By pre-
determining a packing sequence and object orientations, Wu and
colleagues [2014] studied bottom-left-front heuristics for packing
objects into the build volume of a 3D printer. In our work, we study
both fixed and adjustable container cases.

3 System Overview

The pipeline of our system is shown in Figure 2. The input to this
system is a watertight 3D polygonal model. The system first per-
forms a pre-computation step on it, including stress analysis, mesh
segmentation, and initial partitioning generation. Given an initial
partitioning as shown in Figure 3a, it then starts the optimization
process to iteratively optimize the partitioning in three steps. In
Step 1, the system uses a variational approach to improve the in-
trinsic partitioning qualities, including minimal stress load, detail
alignment, and minimal interface area. In Step 2, it detects con-
straint violations and fix them locally in each level set. In Step 3, it
runs a packing solver and adjusts the partitioning, to pack the pieces
more tightly in the packed state. Since the optimization result is
sensitive to packing initialization, the system randomly initializes

(a) Initial partitioning (b) Optimized partitioning

Figure 3: A bunny example. We use multiple level set functions
(in different colors, discretized over a regular grid) to represent the
pieces of this bunny model. The goal of partitioning optimization
is to improve the intrinsic qualities and to reduce the packed space
simultaneously, by adjusting the interfaces (in dotted lines).

the packed state and runs the optimization process multiple times, to
obtain a high-quality partitioning result. Finally, the system builds
auxiliary structures, including connectors and a container structure,
and outputs the surface mesh of each piece.

Termination procedure. While each optimization step modifies
level set functions to improve one or more partitioning qualities,
it also compromises other qualities that were previously improved
by other steps. For example, the variational optimization step can
trigger new collisions in the packed state. Meanwhile, the packing
optimization step can create sharp interface features and downgrade
the intrinsic partitioning qualities. Both steps can cause new con-
straint violations that make the partitioning unusable. This is why
the system runs the steps iteratively, to improve all of the partition-
ing qualities through their balance.

A critical question is: how can we know a balance is reached? In
other words, how can we determine when to terminate the optimiza-
tion process? Since the process does not have a single objective
function, we cannot use the convergence of that function to define
the termination condition. Our solution here is to prioritize the
steps according to their importance. First, constraints are important
and they must be strictly satisfied for usability purposes. Note that
constraint violation is rare and its enforcement step does not affect
the intrinsic qualities much. Second, the pieces must be strictly
collision-free in the packed state, to make sure it is still valid. Final-
ly, we claim that the intrinsic qualities are more important than the
packing quality, because they directly affect the interfaces. Based
on these assumptions, we propose to run and terminate the opti-
mization process as follows. We first disable the packing optimiza-
tion step and improve the intrinsic qualities alone. After the vari-
ational optimization step converges, we turn packing optimization
on and run all of the three steps iteratively. Once the packing opti-
mization step fails to remove the remaining collisions, we terminate
the whole partitioning optimization process, restore the shape of
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Figure 4: The printed results using different representations. The
imprecision of a 3D printer causes inevitable seams among the
pieces. The use of the level set representation makes the seams
less visible, by aligning them with surface details as shown in (c).

each piece to the one before packing optimization, and finally use
the same packing solver described in Subsection 5.2 to relax the
pieces and expand the container, until the collisions are gone. By
slightly sacrificing the packing quality, our approach ensures that
the constraints are satisfied and the packed state is collision-free.
We note that if the packing quality is more important, we can adjust
the termination procedure to sacrifice the intrinsic qualities instead.

Level set representation. Our system is built upon the mul-
tiple level set representation. Let i = 1, 2, ..., n be a partitioned
piece of a 3D model. Its level set function φi defines the signed
distance field to its boundary, such that: φi(x) = 0 means x is on
the boundary; φi(x) < 0 means x is inside; and φi(x) > 0 means x
is outside. Given these level set functions {φ1, φ2, ..., φn}, we have
min(φ1(x), φ2(x), ..., φn(x)) = φ0(x) for any x satisfying φ0(x) > 0,
in which φ0 is the level set function of the original model. This is
because the original model is the union of its pieces and the distance
from an outer point to the boundary of the model must be the same
as the distance from that point to the pieces. We use a regular grid
to discretize each level set function, as shown in Figure 3.

We choose the level set representation rather than others, because it
can represent interface details for high-quality partitioning results.
In comparison, planar cuts leave unnatural seams on the boundary
surface of an armadillo model as Figure 4a shows, and they do not
allow easy local partitioning adjustment. The use of voxels makes
the result even worse, since voxelized pieces cannot be closely
aligned due to printer errors, as shown in Figure 4b. In contrast, the
smooth interfaces represented by the level set functions effectively
reduce the visibility of the seams, as Figure 4c shows. Although
meshes and particles can achieve similar results, they have difficulty
in addressing topological change, collision detection, or sampling
issues, as discussed in Section 1.

4 Precomputation and Initial Partitioning

The initialization process in our system contains three steps: stress
analysis, mesh segmentation, and initial partitioning.

Stress analysis. To begin with, we tessellate the surface mesh
input into a tetrahedral mesh and use the finite element method to
perform stress analysis. In this analysis, we fix the bottom mesh
vertices as boundary conditions and apply the gravity force as the
only load. If needed, we can also use yield criteria, additional loads,
or other analysis tools. After stress analysis, we build a Cauchy
stress tensor field on the regular grid defining the level set function
φ0 of the external surface. Using this field, we can identify high
stress regions, where partitioning should be avoided. Figure 5a
and 6a visualize the stress fields on the surfaces of two examples.

(a) Stress (norm) (b) Not using stress (c) Using stress

Figure 5: A deer example. The deer head falls as (b) shows, if the
connector is loose and partitioning optimization does not consider
the stress. Once we add the stress field into the objective function,
the new partitioning keeps the head still as (c) shows.

Mesh segmentation. Our system offers several automatic mesh
segmentation options to users, including shape diameter, random
walk, random cuts, normalized cuts, fitting primitives, k-means,
and core extraction, as listed in [Chen et al. 2009]. We apply size
constraints on each segmentation to ensure that no piece is too small
or too large. Any segmentation that violates the size constraint will
be discarded. In addition, our system provides geometric metrics,
including interface area, cut perimeter, convexity and compactness,
to help users evaluate each segmentation. If automatic segmenta-
tion results are not satisfactory, we allow users to manually segment
the mesh by adding or editing surface curves.

Given a mesh segmentation result, we compute the mean curva-
ture and the geodesic distance to the segmentation for every surface
vertex, using the methods described in [Novotni and Klein 2002].
We sum these two values up and use extrapolation to form a scalar
field within a narrow band around the boundary surface |φ0| ≤ b, in
which b is the bandwidth. This field will be used in variational op-
timization to specify desired surface partitioning locations. In prac-
tice, we consider only negative mean curvatures, since partitioning
at bumps may cause thin features over the surface of a model piece.
Figure 6b shows the segmentation field of an airplane example.

Level set initialization. Our last initialization step is to convert
mesh segmentation into an initial partitioning of the 3D model, by
calculating the level set functions of its pieces. Given the segment-
ed surface mesh, we assign each segmented region with an ID and
label each triangle with its regional ID. To introduce some random-
ness, our system allows users to randomly merge two regions, to
randomly split one region into two by a new cutting plane, or to
randomly switch the ID of a triangle. After that, we compute the
distance from each grid cell to its closest surface triangle and assign
the grid cell with the ID of that triangle. Using these IDs, we now
effectively segment the whole volume into multiple regions and we
build their level set functions {φ1, ..., φn}.

To simplify the constraint enforcement step, we use the same de-
tection methods described in Subsection 5.3 to check whether a
partitioning violates size limit or assembling constraints. If the
size of a piece is beyond the limit, we use planes to divide it. If a
cluster of pieces are found to be locked, we select an axial direction
for separation and swap the regional IDs near the interfaces in that
direction, until the locking issue is resolved. Note that both issues
are rare in practice, especially if mesh segmentation is smooth.

5 Partitioning Optimization

The system uses the constrained optimization process to improve
the qualities of the partitioning in three steps, each of which is
responsible for one or more qualities. These steps are executed
iteratively, until the packed space cannot be reduced any further.
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Figure 6: An airplane example. By changing the parameters in
Equation 4, we can use variational optimization to achieve differ-
ent partitioning results. For example, the result in (d) ignores the
segmentation field by setting β = 0, while the result in (e) ignores
the stress field, by setting α = 0. In practice, we consider both
fields, so variational optimization can move the interfaces to places
where stress is low and surface segmentation is preferred, as in (f).

5.1 Variational Optimization

We use variational optimization to improve the intrinsic qualities of
the partitioning, including minimal stress load, surface detail align-
ment, and minimal interface area. Intuitively, it tries to smooth the
interfaces, and move them to low stress and preferred segmenta-
tion regions. Given the stress tensor field σ(x) obtained from stress
analysis, we first compute the separation load f (x) at a point x of
the i-th piece by:

f (x) = max(f(x) · ∇φi(x), 0) + (‖σ(x)‖F − ‖f(x)‖2) , (1)

where f(x) = σ(x)∇φi(x) is the tension force density at x. In E-
quation 1, the first term measures the tension load and the second
term measures the shear load. Compression should not cause sep-
aration, in which case f(x) · ∇φi(x) < 0. The use of f (x) is to
prevent the pieces from becoming easily separable due to the use of
a loose connector, as shown in Figure 5. Let g(x) be the scalar field
defining the segmentation preference on the model surface, and α
and β be two control variables. We define the following surface
energy functional over the whole grid volume D under the level set
framework:

E =

n∑
i=1

$
D
δ(φi(x)) ‖∇φi(x)‖ (α f (x) + βg(x) + 1) dx, (2)

subject to the following constraints:{ ∑n
i=1 H(−φi(x)) ≡ 1, for any x : φ0(x) < 0;∑n
i=1 H(−φi(x)) ≡ 0, for any x : φ0(x) ≥ 0, (3)

Iteration 0 Iteration 2

Iteration 5 Iteration 10

Figure 7: The removal of a thin feature. The variational optimiza-
tion step automatically removes a thin feature of a partitioned piece
through the smoothing process, within just 10 iterations as shown
on the right side.

in which H is the Heaviside function and δ(x) =
dH(x)

dx is the Dirac
delta function. The energy in Equation 2 contains three surface
energies, corresponding to the separation load f , the surface seg-
mentation field g, and the surface area. Without considering Equa-
tion 3 and the dependency of f (x) on φi(x), we can use the gradient
projection method to formulate the time evolution function of φi:

dφi

dt
= ‖∇φi‖

(
(α f + βg + 1) κi + (α∇ f + β∇g) ·

∇φi

‖∇φi‖

)
, (4)

in which the first term gives the mean curvature flow that smooths
the boundary surface of the i-th piece. To prevent it from constantly
affecting other terms, we perform smoothing only when the mean
curvature magnitude is above a threshold κci :

κi = max
(∣∣∣κ0

i

∣∣∣ − κci , 0) κ0
i

/∣∣∣κ0
i

∣∣∣, (5)

in which κ0
i = ∇ ·

(
∇φi
‖∇φi‖

)
is the original mean curvature.

Figure 6 demonstrates how the surface energy defined in Equation 2
changes, when the partitioning optimization process handles an air-
plane example using different control variables. Before starting
packing optimization, the system uses variational optimization to
reduce nearly one third of the energy within 50 to 90 iterations.
After packing optimization starts, variational optimization keeps
the energy at a low level, although the energy does not necessarily
decrease. To decide the time step, we set the CFL condition to
C = 0.3. In other words, the interface cannot move more than 0.3h
within a time step, in which h is the size of a grid cell.

One advantage of our variational optimization step is that it can
automatically remove unprintable thin features near the boundary
surface of a partitioned piece, as shown in Figure 7. This is because
thin features have high curvatures and they will be gradually elim-
inated by the smoothing process described in Equation 4. We note
that this step only affects the interfaces defined by the pieces. If the
original model itself contains thin features on its boundary surface,
we require users to fix it ahead of time by existing techniques.

Level set correction. A level set function may no longer be a
valid signed distance field, once it gets updated. Meanwhile, there
can be gaps or overlaps among level set functions, after they are
updated separately. To solve these two issues, we must correct the
distances of each grid cell. Here we use the projection method pro-
posed by Losasso and colleagues [2006]. The basic idea is to find
the two smallest level set function values of each grid cell around
the boundaries, and then shift their average to zero. This ensures
that the grid cell has the same distance to the zero surfaces specified
by the two level set functions. Since it is possible to have gaps or
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Figure 8: A collision example. Two separate pieces in the original
space (a) are in collision in the packed space (b). We remove this
collision by correcting the sample points and then enforcing the
rigidity of the pieces, until no collision occurs as (c) shows.

overlaps between a piece and the external boundary of the original
model, we consider −φ0 in the above process as well. If −φ0 gives
one of the smallest level set values, we modify the value of the
other level set function only. Doing this prevents the shape and the
topology of the original model from being modified by optimiza-
tion. Once we remove gaps and overlaps, we use the fast marching
method to recalculate the distances of other cells.

We perform level set correction at the end of the variational op-
timization step. Since level set functions can also be changed by
other steps, they must be corrected again. We will discuss how to
do so later in this paper.

5.2 Packing Optimization

In this subsection, we will discuss how to incorporate 3D packing
into the partitioning optimization process. Our idea is to reduce the
size of a container first, and then try to remove all of the collisions
by iteratively running two sub-steps: packing solver, which updates
the positions and the orientations of the pieces to eliminate their
collisions, and level set adjustment, which modifies the level set
functions of the pieces to remove the colliding regions.

Packing solver. Given the level set functions {φ1, ..., φn} repre-
senting the pieces of a 3D model, we would like to find the opti-
mal configuration for them to be tightly packed within a specified
container. Inspired by Imamichi and Nagamochi [2007]’s work
on spherical packing, we formulate a packing solver using a rigid
body simulator based on shape matching [Müller et al. 2005]. Let
< Ri, ti > be the rotation matrix and the translation vector de-
scribing the rigid transformation of the i-th piece from the origi-
nal space to the packed space. The packing solver iteratively up-
dates < Ri, ti >, to remove both piece-piece collisions and piece-
container collisions.

Let xk be a grid cell sample belonging to the i-th piece in the original
space, such that φi(xk) ∈ [−h, 0], in which h is the size of a grid
cell, as shown in Figure 8a. We use the following condition to test
whether it is in collision with the j-th piece:

dk = −φi (xk) − φ j(x j
k) + D > 0, (6)

where dk is the penetration depth, D is a safety threshold, x j
k is the

corresponding location of xk in the original space of the j-th piece:

x j
k = RT

j

(
Ri(xk − toi ) + ti − t j

)
+ toj . (7)

Here toi and toj are the mass centers of the two pieces in the original
space. Equation 6 means the distance from xk to the boundary of the
i-th piece must be shorter than the distance from x j

k to the boundary
of the j-th piece. If not, the two pieces must be in collision. We can
fix this collision, if we move x j

k to xnk in the original space:

xnk = x j
k + dk∇φ j(x j

k), (8)

(a) Without preferred orientations (b) With preferred orientations

Figure 9: The packed state of a chair model. By using preferred
orientations during the packing process, our packing solver can
produce a more organized result, as shown in (b).

which can then be converted to xpk in the packed space, as Fig-
ure 8b shows. Once we obtain xpk for all of the colliding points,
we use shape matching [Müller et al. 2005] to update Ri and ti, by
minimizing

∑
k mk

∥∥∥Ri(xk − toi ) + ti − xpk
∥∥∥2

, where mk is the mass of
xk. This can be quickly solved through mass center alignment and
polar decomposition. Since some collisions may not be removed
immediately, we update Ri and ti several times, before resorting to
the level set adjustment process. In average, we use approximately
1500 samples for each piece and we do not use collision culling
currently. The collision between a piece and a container can be
handled in the same way, by formulating the container boundary as
a signed distance field as well.

If a model has obvious intrinsic orientations, its packed result can
appear to be messy as Figure 9a shows. To make the result more
organized and more visually appealing, our system offers an option
for users to specify preferred orientations. For example, 24 axis-
aligned orientations can be set as the preferred ones for the chair
example. In each iteration, the packing solver gradually rotates
each piece toward the closest preferred orientation. Figure 9b shows
that the solver can make most pieces aligned with their preferred
orientations. Although doing this increases the occupied volume
by approximately 5 percent, we think it is worthwhile, since the
result simplifies the packing process in the real world.

Level set adjustment and correction. If the packing solver
cannot remove all of the collisions after a number of sub-iterations,
the system adjusts the level set function of each piece to remove the
colliding region directly, so that the pieces can be packed even fur-
ther. Let xk be a point sample of the i-th piece close to its boundary:
φi (xk) ∈ [−h, 0]. If it is in collision with another piece: dk > 0, we
modify φi by removing a sphere around xk with radius dk:

φnewi (x) = max
(
φi(x), dk − ‖x − xk‖

)
. (9)

Doing this prevents the same collision from happening at xk again.
If xk is in collision with the container whose level set function is
defined as φb, we remove the colliding region from φi:

φnewi (x) = max
(
φi(x), φb(x)

)
. (10)

Once we update φi, we use the projection method described in Sub-
section 5.1 to fill the vacuum regions by other pieces. Since the
projection method also repairs the gap between the pieces and the
external boundary of the original model, we do not need to process
level set adjustment differently near the external boundary. Finally,
we use the fast marching method to re-distance the updated level set
functions, and restart the packing solver to detect and handle newly
emerged collisions.

The system repeats the packing solver and the level set adjustment
multiple times. If all of the collisions are removed within a fixed



(a) Before adjustment (b) After adjustment

Best case
Worst case

22.2%
49.2%

400
Iterations

8000

18.7%
10.4%

200 600
0.0Pa

ck
in

g 
R

at
io

0.8

0.4

1000

(c) Convergence plot

Figure 10: A volume reduction example using the octopus model.
Enabling the level set adjustment allows packing optimization to
further reduce the volume in the packed state, from 18.7 percent of
the original volume to 10.4 percent of the original volume.

number of sub-iterations, it ends the current optimization iteration
and starts another. If there are still collisions, the system termi-
nates the whole partitioning optimization process and finalizes the
partitioning result using the procedure described in Section 3.

Applications. We use packing optimization for multiple purpos-
es, depending on how the container shrinks. If the goal is to reduce
the volume of a box container, we shrink the container by a small
amount along an axis at the beginning of each packing optimization
step, and we end the process when the container cannot be com-
pressed in any of the three axes without causing collisions. The final
shape of the container is typically similar to a cube, as the octopus
example shows in Figure 10b. This example also demonstrates the
importance of adjusting the partitioning in packing optimization:
the packing ratio1 is reduced from 18.7 percent without level set
adjustment to 10.4 percent with level set adjustment. For fast pro-
duction, we can use the same system to reduce the maximum height
of the pieces, by decreasing the height slightly in each iteration.
Figure 11 shows that the system reduces the maximum height of an
armadillo model from 6.0cm to 4.5cm, and its printing time from
4.0 hours to 3.5 hours using a FDM 3D printer.

When using packing optimization to reduce the maximum height
for fast printing, we can also optimize the orientation of each piece,
to reduce the use of support structure due to large overhanging fea-
tures. To do that, we uniformly sample 124 orientations, evaluate
each of them for every piece, and rotate the piece to the best orien-
tation at the beginning of each iteration. An even better solution is
to formulate the avoidance of overhanging features as a partition-
ing quality as well, and optimize the partitioning to remove these
features. We will investigate this idea further in the future.

Packing initialization. Unlike spheres or convex polyhedra, the
pieces in irregular shapes may get locked in the packed state, if we
allow them to randomly swap their positions as did in [Imamichi
and Nagamochi 2007]. So instead, we initialize the packed state to
be locking-free by making the pieces well separated, and we allow
the packing solver to naturally avoid the locking issue afterwards.
Doing this makes our result sensitive to the initialization and we

1We define the packing ratio as the ratio of the packed volume to the
bounding box volume of the original model.
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Figure 11: A height reduction example using the armadillo model.
The packing optimization step reduces the maximum height of the
pieces from 6cm to 4.5cm and the printing time from 4.0 hours to
3.5 hours using a FDM 3D printer.

need multiple random initializations to ensure the packing quality
of the final result. Figure 10c and 11c visualize the best and the
worst packing results using different initializations. Their differ-
ence demonstrates the importance of using multiple initializations.
Our experiment shows that 100 initializations are typically suffi-
cient for the system to obtain an acceptable result.

5.3 Constraint Enforcement

We enforce two types of constraints to ensure the usability of the
partitioning result: the size limit of each piece and the ability to get
the pieces assembled. Since the system ends the whole partitioning
optimization process by packing optimization as discussed in Sub-
section 3, we place the constraint enforcement step between varia-
tional optimization and packing optimization. Our system guaran-
tees that the constraints are strictly satisfied.

Size limit. A printable piece must fit into the build volume of a
3D printer, which is in a box shape typically. To know if a piece
can fit into the box, we simply define it as a container and use the
packing solver to eliminate their collisions, as in Subsection 5.2. If
the piece does not fit, we use the same level set adjustment method
to remove the collisions and then correct the level set functions.

Assembling. The partitioning is usable only if the pieces can be
assembled into both the original state and the packed state. Our
simulation-based packing solver naturally allows the pieces to be
organized into the packed state, as long as the pieces are well sep-
arated initially. So here we just need to know whether the pieces
can be assembled into the original state. In other words, whether
the pieces are locked as Figure 12a shows. To answer this question,
we need to find a separation order, using which each piece can be
separated from the rest. For example, the pieces in Figure 12b are
separable in the green, red, blue order. Asking whether a piece is
separable is equivalent to asking whether a separation path exists,
through which the piece can be moved away from others without
collision. This is a highly difficult problem, since the search space
is large and the path may change its direction, as Figure 12c shows.



(a) Locked (b) Separable (c) Separable (d) Detachable

Figure 12: Locked and separable cases. For simplicity, we test
whether a piece is detachable rather than separable from others.

(a) The packed space (b) Chopped structure (c) Final structure

Figure 13: The construction of a container structure. Given the
packed state in (a), we perform a set of steps to create a container
structure in (c), which secures the pieces within a container.

For simplicity, we choose to evaluate the detachable condition in-
stead, by testing whether a piece can be disconnected from others.
To know if a piece is detachable in a direction, we test whether
the normals on the contact interface are consistent with that direc-
tion. Here we sample the spherical coordinates into a number of
directions, and check the detachable condition for each of them.
Without loss of generality, let φi be the level set function of the i-th
piece and min j,i φ j be the union of the rest. We select the grid cell
xk as a sample near the interface between the i-th piece and the rest,
if |φi(xk)| < h and

∣∣∣min j,i φ j(xk)
∣∣∣ < h, in which h is the grid cell

size. To know if the piece is detachable in the direction d, we test:
d · ∇φi(xk) > 0. If this is true for all xk, the surface normals are
consistent with d and the i-th piece is detachable. We then remove
it and test if another piece is detachable from the rest. We continue
this process, until all of the pieces are removed, or a subset of pieces
are found to be locked. If a locking issue is found, we simply restore
the level set values of the involved grid cells, given the fact that the
partitioning has no locking issue previously.

We note that our approach does not guarantee the detection of ev-
ery locking issue, since a detachable piece may still be trapped as
shown in Figure 12d. Fortunately, those “traps” are rare in practice,
because they should be naturally eliminated by variational opti-
mization through the smoothing process in Subsection 5.1. It is pos-
sible that this problem can become more serious, if there are “traps”
on the external boundary of the model that cannot be smoothed. In
that case, we can still use more sophisticated approaches, which do
not seem to be necessary at this time.

6 Container Structure

Here we present a container structure modeling algorithm to facil-
itate the packing process and secure the pieces within a container.
Our first step is to convert the level set functions from the original
space to the packed space, as Figure 13a shows. Let ϕ1, ϕ2, ..., ϕn
be the level set functions in the packed space. A naı̈ve idea to define
the container structure is to simply use the complement of the level
sets: ε − min(ϕ1, ϕ2, ..., ϕn), in which ε is a buffering variable to
prevent the pieces from being too tightly packed. However, there
are two issues associated with this idea. The first issue is that it uses
too much printing material, especially if the packed state contains
large holes that need to be filled as part of the structure now. To
solve this issue, we formulate the level set function of the struc-
ture as:

∣∣∣ε −min(ϕ1, ϕ2, ..., ϕn) + B
2

∣∣∣ − B
2 , in which B is a thickness

Name Original Time Initial Final Pack
(#Pieces) Resolution (min) Ratio Ratio Merger
Tree (4) 96 × 152 × 54 6.0 30.7% 23.5% 39.0%
Tree (8) 96 × 152 × 54 7.4 20.1% 15.2% 22.5%
Chair (8) 78 × 180 × 94 9.8 32.4% 24.9% 38.5%
Chair (10) 78 × 180 × 94 10.7 25.3% 19.4% 24.1%

Armadillo (7) 94 × 118 × 78 8.6 36.4% 31.7% 45.4%
Octopus (9) 98 × 68 × 107 7.2 18.7% 10.4% 22.0%

Deer (9) 39 × 149 × 148 8.6 28.7% 23.1% 29.5%
Sphere (6) 89 × 90 × 90 6.4 50.7% 43.0% 55.8%
Bunny (8) 105 × 105 × 81 8.4 60.3% 52.8% 70.9%

Airplane (8) 104 × 34 × 198 6.9 33.5% 27.3% 30.1%
Sculpture (10) 58 × 70 × 149 6.8 50.4% 42.6% 64.4%

Vase (10) 6.5 × 167 × 92 11.2 65.1% 57.0% 78.5%
Wheel (9) 80 × 122 × 122 10.2 62.6% 53.1% 55.7%

Creature (8) 108 × 134 × 88 11.6 37.7% 21.4% 44.0%
Knots (9) 107 × 106 × 50 4.9 38.7% 29.1% 40.1%

Trophy (9) 81 × 144 × 84 8.3 58.8% 46.7% 62.0%
Scorpion (9) 126 × 79 × 111 9.7 22.7% 13.3% 28.7%

Hand (8) 96 × 84 × 150 9.9 18.7% 14.8% 17.1%

Table 1: Statistics showing the number of pieces, the grid reso-
lution, the running time, and the packing ratios of using different
methods, including before and after using the level set adjustment.

variable. Intuitively, this defines the structure as a shell with thick-
ness B around the pieces. The second issue is that the pieces may
be locked within the structure. This problem is closely related to
locking detection discussed in Subsection 5.3. For simplicity, we
consider the vertical separation direction only, which is a reason-
able assumption since most containers can be opened only from the
top. Our idea is to chop the container structure by a set of horizontal
planes across the centers of the pieces, so that every piece can be
reached by at least one plane. For example, two cutting planes are
used in Figure 13b. We then eliminate the locking issue of each
piece by projecting its level set function vertically onto its cutting
plane and carving the container structure accordingly. The final
result allows each piece to be separable in the vertical direction, as
shown in Figure 13c.

7 Results and Discussions

We tested the performance of our system using an Intel Core i7-
4790K 3.6GHz processor. Our examples, listed in Table 1, cover
a wide range of 3D printable models. For all of the examples, we
choose the grid cell size h = 1mm. We set the collision safety
threshold D to 1.5mm, the buffer variable ε to 0.5mm, and the
thickness variable B to 4mm. These variables allow the container
structure to have sufficient strength, even though they downgrade
the packing quality slightly. We use a Makerbot Replicator 2× 3D
printer to build some of the models for evaluation purposes.

It is not surprising to see from Table 1 that the more pieces we
create, the more tightly we can pack the pieces. The packing quality
relies on the original shape of the model as well. In general, it is
likely to get higher packing quality if a model has hollow regions,
such as the tree example and the octopus example. Table 1 also
shows that our system outperforms Packmerger [Vanek et al. 2014],
which offers only a limited number of orientations for the pieces in
the packed state and does not change partitioning after packing.

Fragment removal. Small disconnected fragments are rare, but
they may still occur due to numerical instability at the contact front
where three pieces meet, or level set correction near thin features
on the external boundary. To remove these fragments, we perform
connected component search after every level set update and use a



12
Number of pieces

2
0
6

Ti
m

e 
(m

in
)

12

7 17

18

2
Number of cells (million)

0 1 3
0
8

Ti
m

e 
(m

in
)

16
24

Figure 14: Running time plots. These plots show how the number
of pieces and the number of cells can affect the running time.

volume threshold to identify these fragments. We then merge them
with large pieces nearby and recompute the signed distances locally
using the fast marching method.

Connectors. To prevent the pieces from movement in the origi-
nal state, we create male and female cylindrical connectors on every
interface between two pieces, as Luo and colleagues [2012] did. To
avoid new locking issues, we align the connectors with the detach-
ing direction detected in Subsection 5.3. We add these connectors
before the termination procedure (described in Section 3) starts, so
we do not have to worry about new collisions in the final packed
state. It is possible that a connector cannot be added when both
pieces are thin. Fortunately, it is rare in practice and we did not
notice it happening in our experiment.

Surface mesh reconstruction. Although the level set function-
s provide sufficient details on the interfaces, they may not carry
the same external surface details as the original input mesh does.
Because of this, we do not use them to construct the surface meshes
of the pieces. Instead, we first extend the interfaces slightly and
construct the interface meshes by a multi-phase marching cubes
algorithm. After that, we calculate the intersections between the
interface meshes and the original input mesh, the latter of which is
then segmented into parts. Finally, we stitch the segmented mesh
and the interface meshes to form the surface mesh of each piece.

Performance acceleration. Although each iteration of the par-
titioning optimization process is computationally inexpensive, the
system needs to run 600 to 800 iterations each time and restart the
whole process 100 times with new packing initialization seeds. So
the overall cost of the system can still be large. Besides the use of
multi-threading, we apply three methods to improve the system per-
formance. First, we define the level sets in two resolutions. We run
the optimization in low resolution first, and then use the up-sampled
result to initialize partitioning optimization in high resolution. This
method alone can reduce nearly 70 percent of the computational
cost. Second, we terminate the optimization process, if an early
result is far from satisfactory. Specifically, we run the optimization
without the level set adjustment sub-step in packing optimization
first. If the packing quality of the current result is far below that
of the best result we have obtained, its final result is unlikely to be
the best and there is no need to optimize it even further. Finally, we
incorporate velocities and repulsion forces into our packing solver
and handle them as in a rigid body simulator, to reduce the number
of needed sub-iterations. Table 1 shows that these methods effec-
tively reduce the total computational cost from three hours to less
than 12 minutes, given a single initial partitioning input.

Running time analysis. In general, the running time is linearly
proportional to the number of pieces and the number of grid cells,
as shown in Figure 14. This is not surprising, since the number of
pieces determines the number of level set functions and the number
of grid cells controls the cost spent on the level set function. The
running time can be affected by other factors as well, such as model
shape and packing initialization. However, these relationships are
not so straightforward.
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Figure 15: The results of using five partitioning initialization meth-
ods. Each dot represents the result of a packing initialization seed.

Partitioning initialization. So far we have discussed packing
initialization and its influence on the system performance. Since
our system offers several ways to initialize the partitioning as well
in Section 4, it is interesting to know how they affect the final result.
Figure 15 demonstrates the results using five partitioning initializa-
tion methods, each of which is tested by 100 packing initialization
seeds. In our experiment, we typically combine the shape diameter
method with manual editing to initialize the partitioning.

Limitations. Our system needs to run the optimization process
multiple times using random packing initialization seeds, which is
a dominant factor of the system performance. The system needs
large computational and memory costs to handle thin features. For-
tunately, this is not a big issue since 3D printers have difficulty in
building these details anyway. Our printability metric considers the
size limit only. In practice, 3D printers may have other printability
criteria and they must be addressed additionally. Our assembling
tester evaluates whether a piece is detachable, rather than separable
from others. As a result, it cannot guarantee the detection of every
locking issue. The container structure modeled by our algorithm
may contain unprintable thin features, or overhanging features that
require additional material for its support structure. The container
structure has not been optimized or tested by stress analysis, so it
is not clear how much protection it can offer, especially under large
impact. Finally, the number of pieces are pre-determined in parti-
tioning initialization and the system does not change it afterwards.

8 Conclusions and Future Work

We present a level-set-based system to automatically generate the
partitioning of a 3D model for printing and packing purposes. Com-
pared with mesh-based and particle-based representations, the level
set representation can more conveniently and flexibly handle parti-
tioning optimization, as shown in this work. We believe it is suitable
for solving other printable shape optimization problems as well.

In the future, we plan to improve our system in many ways. Our im-
mediate plan is to make the packing solver even faster, by applying
collision culling techniques. When using the system to reduce the
maximum height of the pieces for fast 3D printing, we are interested
in developing new metrics to minimize the use of support structure
material as well. We also would like to study the locking issue
further, by finding ways to detect and fix sophisticated interlocking
cases. Finally, we will improve connector and container structure
modeling algorithms, to make the pieces more useful in both the
original state and the packed state.



(a) Armadillo (b) Octopus (c) Tree (d) Chair
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Figure 16: Our examples and results. We enlarge some of the packed states to make them more visible. Some of the models are obtained from
Autodesk 123D, under an Attribution-NonCommercial-ShareAlike license.
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