
CGI2012 manuscript No.
(will be inserted by the editor)

Compressing Repeated Content within Large-scale Remote
Sensing Images

Wei Hua · Rui Wang* · Xusheng Zeng · Ying Tang · Huamin Wang ·
Hujun Bao

Abstract Large-scale remote sensing images, includ-

ing both satellite and aerial photographs, are widely

used to render terrain scenes in real-time geographic

visualization systems. Such systems often require large

memories in order to store fine terrain details and fast

network speeds to transfer image data, if they are built

as web applications. In this paper, we propose a pro-

gressive texture compression framework to reduce the

memory and bandwidth cost by compressing repeat-

ed content within and among large-scale remote sens-

ing images. Different from existing image factorization

methods, our algorithm incrementally find similar re-

gions in new images so that large-scale images can be

more efficiently compressed over time. We further pro-

pose a descriptor, the Gray Split Rotate (GSR) descrip-

tor, to accelerate the similarity search. The reconstruc-

tion quality is finally improved by compressing residual
error maps using customized S3TC-like compression.

Our experiment shows that even with the error maps,

our system still has higher compression rate and higher

compression quality than using S3TC alone, which is a

typical compression solution in most existing visualiza-

tion systems.

*Corresponding author: Rui Wang, rwang@cad.zju.edu.cn.
This work was supported in part by NSFC (No. 60903037)
and the 973 program of China (No.2009CB320803).

Wei Hua · Rui Wang · Xusheng Zeng · Hujun Bao
State Key Lab of CAD&CG, Zhejiang University
Tel.: +86-571-88206681
Fax: +86-571-88206680

Ying Tang
Department of Computer Science, Zhejiang University of
Technology

Huamin Wang
Department of Computer Science and Engineering,The Ohio
State University

Keywords Texture compression, Image epitomes and

Large-scale remote sensing image

1 Introduction

Real-time geographic visualization system uses a con-

siderable number of large-scale remote sensing images

to reconstruct 3D terrain scenes. Such a system of-

ten requires large memory to store fine terrain detail-

s and fast network speed to transfer image data, if it

is implemented as a web-based application. For exam-

ple, Google Earth requires 256MB GPU memory and

a 768Kbits/sec network connection for fluent rendering

quality; Bing Maps 3D recommends 1GB system mem-

ory, 256MB GPU memory and a high-speed or broad-

band internet connection. Including more user-specific

data and local street scenes will further increase the

system requirement. We believe this issue cannot sim-

ply be solved by having more affordable large memory

and faster network speed in the near future.

Our goal is to efficiently compress and decompress mul-

tiple large-scale remote sensing images for visualization

systems, so that memory and network bandwidth can

be saved for other purposes. Motivated by the method

proposed in [19], our basic idea is to find similarities

among images and simplify image representation by re-

moving duplicate regions. Compared with traditional

image compression algorithms, such as JPEG 2000 [18],

our method removes redundancy globally and supports

real-time GPU decompression. But different from [19],

we focus on dealing with a great number of large-scale

images, which are difficult to handle by their method

due to a large computational cost.

2 Wei Hua et al.

To this end, we propose a progressive texture compres-

sion system by incrementally decomposing new images

into codebooks and transformation maps. Our specific

contributions in this system are:

– Codebooks for Specific Purposes: We classi-

fy remote sensing images into different categories

based on their terrain contents, and we construc-

t codebooks separately for each category. In each

category, we use a public codebook to store com-

mon features among images, and a private codebook

to store distinctive contents in each individual im-

age. Compared with using a single codebook for all

images, this structure is more efficient to build for

large-scale images with varying contents.

– Gray Split Rotate (GSR) descriptor and s-

pace: We propose a GSR descriptor to better depict

similarity of image blocks and use the metric defined

in GSR space to speed up the similarity search. Our

compact descriptor encodes the appearance, orien-

tation and light intensity for one pixel and its neigh-

borhood. By using the GSR descriptor as a simi-

larity metric and searching in the GSR space, we

efficiently distinguish pairs of regions that are not

similar to each other.

– Error Map Compression: To further improve the

compression quality, we develop a S3TC-like com-

pression algorithm to compress the error map, which

is defined as the difference between the original im-

age and the decompressed image. The error map

greatly improves the result quality and provides high

compression rate than using S3TC alone.

2 Previous Work

Our work is mainly related to texture compression tech-

niques, most of which have been developed for image

compression, texture synthesis and texture rendering

purposes.

Comparing to general image compression techniques,

for example the JPEG 2000 [18], texture compression

owns several issues to consider differently [2], such as

decoding speed, pixel random access, compression rate

and visual quality, encoding speed and etc. The early

texture compression method proposed by Beers and his

collaborators [2] used Vector Quantization (VQ) algo-

rithm to produce a codebook and an index map. This

method was later adopted to compress a collection of

light-field images in [14]. By using larger image blocks

and more flexible transformations, Wang and his col-

leagues [19] proposed a texture factorization method

that automatically removes duplicate contents from im-

ages and assembles representative contents into a com-

pact codebook, or called the epitome. An important

advantage of these methods is that the decompression

process contains only simple transformations and it can

be easily accelerated by graphics hardware, so they are

suitable for real-time rendering applications. While pre-

vious methods are focused on dealing with a single im-

age or a small set of images, we are more interested

in compressing a great number of large-scale images,

which would require a huge computational cost if the

method has not been properly optimized.

Fractal image compression technique proposed by Fish-

er [5] utilizes the self-similarity implied in images to

build a set of contractive maps for image compression.

Its decompression process is done iteratively by apply-

ing a series of affine transformations so it is not suitable

for real-time rendering.

Developed by Iourcha and his collaborators [7], S3 Tex-

ture Compression (or called DXTC in Microsoft Direc-

tX 3D) is a lossy texture compression algorithm com-

monly used in commercial graphics hardware. Based on

the original S3TC idea, Pereberin [17] later proposed a

hierarchical representation and a block-wise scheme to

support S3TC mip-mapping. Levkovich-Maslyuk and

his colleagues [13] improved color variance within each

block by classifying pixels into different groups and cre-

ating a sub-palette separately for each group. Ivanov

and Kuzmin [8] enriched the number of color choices

by allowing colors shared among multiple blocks. Fen-

ney [4] proposed an efficient representation to avoid

block artifacts by blending multiple low frequency sig-

nals with a low-precision and high-frequency modula-

tion signal. In general, S3TC and its extensions have a

fixed compression ratio independent of the actual image

content.

Given a small texture input, texture synthesis tech-

niques [3,9,22] automatically generate seamless textures

over a large surface. In recent years, researchers have

designed the GPU texture synthesis algorithms to ren-

der the large synthesized results in real-time with the

small input sample stored in the texture memory [11,

12,20]. They may also be formulated as real-time tex-

ture decompression algorithms, if the goal is to get the

surface textured rather than to recover an exact image.

One question is how to summarize large textures into

a small texture image as an inverse texture synthesis

problem. A possible solution is the optimization-based

inverse synthesis framework presented by Wei and his

collaborators [21].

Compressing Repeated Content within Large-scale Remote Sensing Images 3

Image

classification

Image categories

Building

image

pyramids

Image pyramids

Image

compression

Public codebooks

Private codebooks

Transform maps

Packing system

for codebooks

Image

decompression

Decompressed result

Affine

transform

Remote sensing

images

Fig. 1: System pipeline.

Our GSR descriptor is also related to local descriptors

proposed in the computer vision community, such as

SIFT [15] and SURF [1]. These descriptors are typical-

ly developed for image classification and object recog-

nition purposes, so they are robust against image noises

and varying illumination conditions. Since our final goal

is to faithfully replace each original image region by its

similar counterpart in the codebook, these descriptors

are not sensitive enough to discriminate distinctive re-

gions, even though they share certain common features.

3 System Overview

A geographic visualization system often requires a huge

data set of large-scale remote sensing images. While

most existing texture compression algorithms are fo-

cused on dealing with a single image or a small col-

lection of images, our system can efficiently compress

multiple remote sensing images in a progressive way,

and decompress them on the fly using random-access

texture fetches.

Following the same representation used in [19], we sep-

arate images into two components: a codebook and a

transformation map. The codebook contains represen-

tative small samples from original images; the trans-

formation map indicates how an image can be recov-

ered from the codebook. Here we use the name code-

book instead of epitome in order to emphasize its gen-

eral use among multiple images. The basic idea behind

this system is to incrementally update the contents in

codebooks, if and only if its content is not sufficient to

recover a new image. This dynamic feature is crucial

to reducing the computational cost when dealing with

a varying data set of multiple images. A simple solu-

tion here is to directly insert new contents into a single

codebook when the system receives a new image. How-

ever, it is likely to produce a huge codebook and slow

down the compression process. So we propose to use t-

wo codebooks instead of one. We use a public codebook

to contain common contents among images and it will

be used to recover multiple images during the decom-

pression process. Meanwhile, we use a private codebook

to store and recover distinctive contents in each image.

This data structure allows us to effectively reduce the

codebook size and makes the similarity search more ef-

ficient, by only considering the public codebook in the

similarity search. To further reduce the public codebook

size, we classify remote sensing images into different

categories and construct public codebooks separately

for each category. Since images in each category share

more common features and the number of categories for

remote sensing images is limited, the codebook for each

category can also be more efficiently built.

Figure. 1 shows the pipeline of our system. It contains

two components, compression and decompression. The

compression process first classifies a set of initial images

into different categories using the K-mean clustering al-

gorithm [10]. We choose the color histogram as a simple

classifier. The initial value of each cluster center is as-

signed by user input. After classification, we construct

image pyramids using Gaussian filters and they are then

compressed using our progressive compression algorith-

m, as will be discussed in Section 4. The compression

process produces a codebook bank that contains both

public and private codebooks for images in different

categories, and transformation maps that instruct the

renderer how to recover images using random texture

access. We will explain the decompression algorithm in

Section 5.

4 Wei Hua et al.

4 Texture Compression

Our texture compression approach takes a three-step al-

gorithm. The first step is to find similar regions within

and among images by our new descriptor. Then, these

similar regions are progressively factorized into code-

books and transform maps. After these steps, to im-

prove the compression quality, residual errors are com-

puted and quantized into error maps. Since two for-

mer steps of our algorithm bear some similarities to

that in [19], we highlight two distinctive adoptions of

our algorithm for compressing large-scale images. First,

compared with the color and orientation histogram-

s used in [19], a new descriptor, the GSR descriptor,

is proposed in this paper. With extra local rotation-

variant information, our descriptor brings more accu-

rate depiction of similarities among image regions. Sec-

ond, instead of comparing every pair of image blocks,

a quadratic number of comparisons to the number of

blocks [19], we utilize the high-dimension feature space

of the GSR descriptor and employ K-nearest neighbor

search to accelerate the pruning process. In this section,

we first introduce the GSR descriptor, then describe the

construction of codebook and finally give out details of

the error maps. The validation of these adoptions com-

paring to [19] is given in section 6.

4.1 Similarity Search by GSR Descriptor

Our Gray Split Rotate (GSR) descriptor combines in-

tensity/color statistics with the rotation-variant descrip-

tor used in SURF. Although the descriptor can be for-

mulated using all three RGB channels of the original

image, we prefer to use only the grayscale intensity so

that the descriptor can be more efficiently calculated.

We first apply a Gaussian blur filter to remove high-

frequency image noises. We then segment the image

into square blocks and calculate intensity gradient for

each pixel in every block (Figure 2a). These gradients

on pixels are grouped to obtain the main direction (Fig-

ure 2b). Once we find the main direction, we create a

N -by-N square grid that is aligned with the main direc-

tion as Figure 2c shows. Given this grid, we simply use

interpolated grayscale values in the grid to formulate

the descriptor in N2 dimensions. N is typically chosen

from 4 to 8 (Figure. 3).

The GSR descriptor presented above allows us to quick-

ly compare two image blocks and terminate further

computations if they appear too different in the de-

scriptor space. Wang and his colleagues [19] compared

p

(a)

p

(b)

p

(c)

Fig. 2: Gradient vectors (a) in each block are used to

find the main direction (b). The overall direction allows

us to create a grid for GSR formulation as (c) shows.

+ + +=

(b)

p

Fig. 3: We use interpolated grayscale values within the

grid to formulate the descriptor in N2 dimensions. This

figure is only an illustration that an 8× 8-pixel block is

formulated in a 16-dimensional descriptor. The color

blocks are for illustration, in our method, we only use

the grayscale values of each block.

every pair of image blocks so the number of compar-

isons is quadratic to the number of blocks. While doing

this is acceptable for a single image, it is no longer af-

fordable when we deal with multiple large-scale images.

So instead, we build a N2-dimensional tree for all GSR

descriptors and only compare a pair of blocks that are

neighbors in the GSR space using [16]. The neighbor-

hood can either be defined within a fixed radius or by

a fixed number of neighbors. Since it is not straight-

forward to automatically adjust radius parameters for

different types of images, we prefer to set a fixed num-

ber of neighbors to define the similarity neighborhood

in the descriptor space. After a pair of image regions

passed this pruning process, they will be further tested

under the computationally expensive KLT metric and

compute the affine transform. We recommend readers

to check [19] for more details about using the KLT fea-

ture tracker and the computation of affine transform.

When images are represented in multi-resolution, we

process the similarity search separately at each image

pyramid level. Although we can incorporate similarity

search across different pyramid levels as that in [19], we

find from our experiment that it is unnecessary because

features in remote sensing images are at similar scales.

Compressing Repeated Content within Large-scale Remote Sensing Images 5

0

Header

R

… … …

0

Texel indices

16

R G B

16 21 27 32

R G B

0 5 11

32 64

… … … …

… … … …

Texel indices

(a)

0

Header

R G B

5

… … …

R G B

0 128

… … … …

… … … …

Texel indices

16

32

64

… … …

(b)

Fig. 4: Bits formations. (a) is the bits formations used

in DXT1 for a 4× 4-pixel block and (b) shows our bits

formation for a 8×8-pixel block to compress error map.

4.2 Codebook Construction

Given the GSR descriptor proposed in Section 4.1, our

next goal is to progressively factorize images into code-

books and transformation maps.Without losing gener-

ality, given a new image and an existing public code-

book, we take following steps to update the public code-

book and construct a private codebook.

We first separate the image into a set of blocks, each

of which contains 16 × 16 pixels. We then run simi-

larity search between each image block and the public

codebook. If a match exists, we compute and store the

appropriate transformation, with which the block can

be directly recovered from the existing codebook. For

these remaining blocks that cannot be represented by

the public codebook, we build a similarity match list

for each block as in [19] and count how representative a

repeated content is. If the reused times are more than a

threshold, the block will be added into the public code-

book bank. Otherwise, we think it is not representative

enough and it will be assembled into the private code-

book instead. Details on the assembling process can be

found in [19].

4.3 Compression with Error Maps

The combination of codebooks and transformation map-

s allows us to reconstruct comparable results to origi-

nal images. However, this compression algorithm can

be highly lossy if original images do not have sufficient

similarity regions. Here we use an error map to fur-

ther improve the compression quality. The error map E

is defined as the difference between the reconstruction

result and the original image. Ideally, using a lossless

compression algorithm [6] to compress this error map,

we are able to fully recover the original image with-

out any residual error. However, the compression ratio

would be greatly affected in this way. So we prefer to

use a lossy compression algorithm instead.

We modify the standard DXT1 in S3TC to compress

this error map. In DXT1, a 64-bit word is used to rep-

resent a 4× 4-pixel block. The first half of the word is

used to store two 16-bit RGB565 colors and the second

half is used to store a 2-bit control code per pixel. Since

an error map has relatively smaller intensity values, we

use a 8 × 8-pixel block and store two colors with dy-

namic bit lengths (12 bits in maximum if using 4 bits

per channel, or 0 bits in minimum) and a 6-bit prefix

header to indicate the actual bit length. The bit format

is illustrated in Figure 4. In total, our method requires

156 bits in maximum for a 8× 8 pixel block, compared

with 256 bits used by DXT1. Compression results with

and without error maps are shown in Section 6.

5 Texture Decompression

In this section, we introduce our decompression algo-

rithm for real-time rendering. Before the rendering pro-

cess, codebooks, transformation maps and error maps

are loaded into the GPU memory. Each of them is rep-

resented as an image texture. They are used to recover

images by fragment shaders in GPU.

The pseudo code of the actual decompression process is

shown in Algorithm 1. For each pixel, we first determine

its texture coordinate in the transformation map (line

6). We also compute the coordinate difference, which

gives the relative position of the current texel within a

block (line 7). We then fetch transformation coefficients

from two transformation textures, including 6 affine co-

efficients and a codebook type flag (line 8-9). According

to these coefficients, we prepare the codebook texture

coordinate (line 11-12) and then read the texture col-

or from public or private codebook based on the flag

taffine1.w (line 13-15). If the user chooses not to use

the error map for better rendering quality, the pixel

value will be directly sent to the display buffer. Other-

wise, we use a S3TC-like decompression algorithm (line

18-19) to compensate the residual error.

6 Results

We implemented and tested our system on an Intel

CoreTM2 Quad 2.83GHz workstation with 3 GB of RAM

and an nVIDIA GeForce 280 GTX graphics card.

6 Wei Hua et al.

Examples (1K×1K size) Algorithms Search Time (s) Codebook Size RMS Error Acceleration Ratio

Hill,
[19] 658.00 704×288 8.97 1.00

Acceleration 1 15.39 480×448 9.15 42.76
Acceleration 2 29.91 448×384 9.05 22.00

Building,
[19] 246.50 960×272 7.52 1.00

Acceleration 1 15.25 576×512 8.08 16.16
Acceleration 2 29.90 512×448 7.81 8.24

Field,
[19] 508.55 448×384 9.42 1.00

Acceleration 1 15.18 504×320 9.83 33.50
Acceleration 2 30.73 448×336 9.62 16.55

Table 1: Comparison of our method versus the method proposed in [19]. Acceleration 1 is our method that uses

250 nearest neighbors as similarity candidates for each block, while acceleration 2 uses 500 neighbors. The grid

size N is chosen to be 4 for both cases and the descriptor is a 16-dimensional vector.

IR = 86.4%,
Avg. IR = 85.9%

IR = 58.2%,
Avg. IR = 58.1%

IR = 90.8%,
Avg. IR = 90.9%

IR = 51.2%,
Avg. IR = 51.0%

(a) Our gray split rotate
descriptor

(b) The color and
orientation histogram

descriptor [19]

(c) Our gray split rotate
descriptor

(d) The color and
orientation histogram

descriptor [19]

Fig. 5: Descriptor performance comparison between the GSR descriptor proposed in this paper with the color and

orientation histogram descriptor proposed in [19] on different types of images. Given a sample block, shown in blue

box, red boxes shown in images are similar regions computed by KLT feature tracker and green boxes are computed

by specific feature descriptor. The more overlaps of red and green boxes indicate larger IR and higher accuracy.

The ”IR” ratio depicts the accuracy of a descriptor for the given sample block. The ”Avg. IR” ratio depicts the

accuracy of a descriptor for the entire image, which is computed by averaging ”IR” ratio of blocks of the sample

image.

6.1 Descriptor Comparison

6.1.1 Speed Comparison

Table 1 compares the compression time, the reconstruc-

tion quality and the compression ratio of our method

versus the method proposed in [19]. Acceleration 1 is

our method that uses 250 nearest neighbors as simi-

larity candidates for each block, while acceleration 2

uses 500 neighbors. The grid size N is chosen to be 4

for both cases and the descriptor is a 16-dimensional

vector. This comparison shows that under almost the

same compression ratio and reconstruction quality, our

method is approximately ten times faster than [19].

While applying different acceleration techniques, more

searching neighbors bring less reconstruction errors but

have more acceleration ratio. In our following results,

Unless mentioned otherwise, we use acceleration 2 in

the compression.

6.1.2 Accuracy Comparison

Let D be the set of blocks that are accepted under the

descriptor metric, and M be the set of blocks that are

accepted under the KLT metric, we define the accuracy

factors as follows:

IR =
|M

⋂
D|

|M|
. (1)

Intuitively, IR ratio measures the accuracy of a de-

scriptor, since a larger IR value means that the de-

scriptor is consistent with KLT and there will be less

false-positives.

Compressing Repeated Content within Large-scale Remote Sensing Images 7

Fig. 6: Screenshots of our visualization system.

Algorithm 1 Decompression code in shader

1: int blockNum, blockLength;
2: sampler2D publicEptm, privateEptm, eMap;
3: sampler2D tfmAffine0, tfmAffine1;
4: procedure main(in t, out outColor, const use emap)
5: begin
6: vec2 tblock = (floor(t.st)+vec2(0.5,0.5))/blockNum;
7: vec2 diff = (frac(t.st)-vec2(0.5,0.5))*blockLength;
8: vec4 taffine0 = tex2D(tfmAffine0,tblock);
9: vec4 taffine1 = tex2D(tfmAffine1,tblock);

10: vec2 tEpitome;
11: tEpitome.x = taffine0.xy*diff.xy+taffine1.x;
12: tEpitome.y = taffine0.zw*diff.xy+taffine1.y;
13: vec2 tidx; tidx.x = taffine1.w; tidx.y = 1-tidx.x;
14: vec4 eColor = tidx.x * tex2D(publicEptm,tEpitome)
15: + tidx.y * tex2D(privateEptm,tEpitome);
16: outColor = eColor;
17: if use emap then
18: vec4 errorColor = decode emap(eMap, t);
19: outColor = eColor + errorColor;

Using this ratio, Figure 5 compares descriptors pro-

posed in this paper and that used in [19] on image ex-

amples. The gray split rotate descriptor (Figure 5a,c)

here uses a 4-by-4 grid. The color and orientation his-

togram descriptor (Figure 5b,d) uses 16 buckets. Given

a sample block, for each descriptor, 500 nearest neigh-

bors in feature space are identified and used to compute

corresponding IR. This example shows that our GSR

descriptor performs better in accuracy than that used

in [19].

6.2 Large-scale Images Compression

We compress multiple large-scale remote sensing im-

ages with an overall resolution of 76K × 76K. The to-

tal uncompressed size of such images is about 16.92

GB and if including mipmaps built in video memory,

it is 22.56 GB. At compression, we divide these images

into 1K × 1K sub-images and process them progres-

sively. Six categories are initially set to classify these

sub-images and then 6-level image pyramids are built

for further processing. For each similarity search task,

four threads are parallelized for acceleration. It takes

a total of 16 hours to complete the whole compression

process. After compression, the public codebook bank

size is 150.96 MB and the private codebook bank size

is 2661.2 MB. We then compress them by DXT1 and

obtain final public codebook bank with 25.16 MB and

private codebook bank with 443.5 MB for rendering.

The error maps occupy 2205.6 MB. The final compres-

sion ratio for these multiple large-scale remote sensing

images is 2.08% (without error maps) and 11.19% (with

error maps). Please check the supplemental material for
a captured real-time video demo that shows the quali-

ty and performance of our visualization system. Three

screenshots are shown in Figure 6.

6.2.1 Compression Quality

Figure 7 compares the residual error of our compres-

sion results with the results compressed by the DXT1

method. This example shows that without using the er-

ror map, our result is comparable to DXT1. After using

the error map, our compression quality becomes better

than DXT1.

6.3 Rendering Frame Rate and Memory Consumption

We compare rendering speeds using different decom-

pression methods through the FPS curves sampled at d-

8 Wei Hua et al.

RMS: 7.10 RMS: 6.41 RMS: 6.84

RMS: 11.66 RMS: 7.10 RMS: 7.97

RMS: 10.87 RMS: 6.53 RMS: 7.10

(a) Our results (b) Our results with error map (c) DXT1 Results (d) Original Images

Fig. 7: Quality comparison among a) our compression results only using codebooks, b) our compression results

using codebooks and error maps, c) results compressed by DXT1 and d) uncompressed original image. For each

image, we enlarge two regions for details comparison.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

2
6
5

2
7
6

2
8
7

2
9
8

3
0
9

3
2
0

3
3
1

3
4
2

3
5
3

3
6
4

3
7
5

3
8
6

3
9
7

4
0
8

4
1
9

4
3
0

4
4
1

F
P

S

Time stamps

Original Images Results using codebooks + error maps

Results only using codebooks Results using DXT1

Fig. 8: FPS curves sampled at different time stamps.

ifferent time stamps in Figure 8. The FPS curve demon-

strates how FPS fluctuates over time, and it shows that

our method performs more smoothly compared with

pure DXT1 compression or directly rendering the o-

riginal image. In particular, loading the whole original

image into the GPU memory for rendering will cause

frequent memory bandwidth bottlenecks and they are

shown as sudden jumps in its FPS curve.

The plot in Figure 9 explores how the size of occupied

video memory varies as a function of time for differen-

t methods. It shows that directly rendering the origi-

0

100

200

300

400

500

600

700

800

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

2
6
5

2
7
6

2
8
7

2
9
8

3
0
9

3
2
0

3
3
1

3
4
2

3
5
3

3
6
4

3
7
5

3
8
6

3
9
7

4
0
8

4
1
9

4
3
0

4
4
1

V
id

e
o

 M
e
m

e
o

r
y

 (
M

B
)

Time stamps

Original Images Results using codebooks + error maps

Results only using codebooks Results using DXT1

Fig. 9: Occupied memory curves sampled at different

time stamps.

nal image requires a large GPU memory as expected.

Both DXT1 and our method use much less memory

than the original image, and even using the error map,

our method consumes less memory than that of using

DXT1 compression.

7 Conclusions and Future Work

How to efficiently compress and decompress multiple

large-scale remote sensing images for geographic visu-

Compressing Repeated Content within Large-scale Remote Sensing Images 9

alization applications is an interesting problem, and we

present a systematic solution to this problem under

the image factorization framework. The system uses a

set of codebooks for different purposes, so that each of

them can built in a compact and efficient way. We also

propose a GSR descriptor to accelerate the similarity

search and we demonstrate that similarity matches can

be efficiently found in the GSR space. Finally we im-

prove the compression quality by compressing the error

map using a customized S3TC-like compression algo-

rithm.

Looking into the future, we would like to further im-

prove the compression speed by implementing compres-

sion algorithms on GPU. We are also interested in ap-

plying different importance weights to local image re-

gions, so that we adaptively control the local compres-

sion quality. How to assemble codebooks into a compact

form is also an interesting topic to study in the future.

Acknowledgements We would like to thank the reviewers
for their thoughtful comments. We also would like to thank
student Hong Yu for her efforts on the demos.

References

1. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up
robust features. In: In ECCV, pp. 404–417 (2006)

2. Beers, A.C., Agrawala, M., Chaddha, N.: Rendering from
compressed textures. In: Proceedings of the 23rd annual
conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’96, pp. 373–378. ACM, New York,
NY, USA (1996)

3. Efros, A.A., Freeman, W.T.: Image quilting for texture
synthesis and transfer. In: Proceedings of the 28th annu-
al conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’01, pp. 341–346. ACM, New York,
NY, USA (2001)

4. Fenney, S.: Texture compression using low-frequency
signal modulation. In: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, HWWS ’03, pp. 84–91. Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland (2003)

5. Fisher, Y.: Fractal Image Compression, Theory and Ap-
plication. Springer-Verlag (1995)

6. Inada, T., McCool, M.D.: Compressed lossless texture
representation and caching. In: Proceedings of the
21st ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, pp. 111–120. ACM, New York,
NY, USA (2006)

7. Iourcha, K., Nayak, K., Hong, Z.: System and method for
fixed-rate block image compression with inferred pixels
values. US Patent 5,956,431 (1999)

8. Ivanov, D.V., Kuzmin, Y.P.: Color distribution - a new
approach to texture compression. Computer Graphics
Forum 19(3), 283–290 (2000)

9. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture
optimization for example-based synthesis. ACM Trans.
Graph. 24, 795–802 (2005)

10. Lai, J.Z.C., Huang, T.J., Liaw, Y.C.: A fast k-means clus-
tering algorithm using cluster center displacement. Pat-
tern Recogn. 42, 2551–2556 (2009)

11. Lefebvre, S., Hoppe, H.: Parallel controllable texture syn-
thesis. ACM Trans. Graph. 24, 777–786 (2005)

12. Lefebvre, S., Hoppe, H.: Appearance-space texture syn-
thesis. ACM Trans. Graph. 25, 541–548 (2006)

13. Levkovich-Maslyuk, L., Kalyuzhny, P., Zhirkov, A.: Tex-
ture compression with adaptive block partitions (poster
session). In: Proceedings of the eighth ACM international
conference on Multimedia, MULTIMEDIA ’00, pp. 401–
403. ACM, New York, NY, USA (2000)

14. Levoy, M., Hanrahan, P.: Light field rendering. In: Pro-
ceedings of the 23rd annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’96, pp.
31–42. ACM, New York, NY, USA (1996)

15. Lowe, D.G.: Object recognition from local scale-invariant
features. In: Proceedings of the International Conference
on Computer Vision-Volume 2 - Volume 2, ICCV ’99, pp.
1150–. IEEE Computer Society, Washington, DC, USA
(1999)

16. Mount, D.M., Arya, S.: Ann: A library for approximate
nearest neighbor searching (2010). URL http://www.cs.

umd.edu/~mount/ANN/

17. Pereberin, A.: Hierarchical approach for texture compres-
sion. In: Proceedings of GraphiCon, pp. 195–199 (1999)

18. Skodras, A.N., Christopoulos, C.A., Ebrahimi, T., E-
brahimi, T.: JPEG2000: The upcoming still image com-
pression standard. pp. 1337–1345 (2001)

19. Wang, H., Wexler, Y., Ofek, E., Hoppe, H.: Factoring re-
peated content within and among images. ACM Transac-
tions on Graphics (SIGGRAPH 2008) 27(3), 14:1–14:10
(2008)

20. Wei, L.Y.: Tile-based texture mapping on graphics hard-
ware. In: ACM SIGGRAPH 2004 Sketches, SIGGRAPH
’04, pp. 67–. ACM, New York, NY, USA (2004)

21. Wei, L.Y., Han, J., Zhou, K., Bao, H., Guo, B., Shum,
H.Y.: Inverse texture synthesis. ACM Trans. Graph. 27,
52:1–52:9 (2008)

22. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-
structured vector quantization. In: Proceedings of the
27th annual conference on Computer graphics and inter-
active techniques, SIGGRAPH ’00, pp. 479–488. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA (2000)

