
Supplementary Material: Implementation Details

This is a supplementary document for our SIGGRAPH paper en-
titled An Efficient GPU-based Approach for Interactive Global Il-
lumination. This document contains additional implementation de-
tails and pseudo-code for several major algorithms.

Overview Algorithm details and various parameters we use can
be found in Sections 3.1 to 3.4 of the paper. We have imple-
mented all our algorithms using BSGP [Hou et al. 2008], which is
a general-purpose C programming interface suitable for many-core
architecture such as the GPU. BSGP builds on top of NVIDIA’s
CUDA, and it can be downloaded as a package from http://
www.kunzhou.net/2008/BSGP-package.zip, which in-
cludes the BSGP compiler, editor, library, and example code.

In the algorithm listings of this document, the parallel primitives
(such as segmented reduction) and code fragments marked by in
parallel refer to GPU code; the other parts are executed on the
CPU. Details on standard parallel primitives (such as scan, reduc-
tion, and list compaction) can be founded in previous work such
as [Harris et al. 2007], [Hou et al. 2008] and [Zhou et al. 2008].
The CUDA programming model requires us to organize the com-
putation into blocks of threads. We use a default number of 256
threads per block.

1 Selecting Irradiance Sample Points

Given the shading points, we select irradiance sample points in two
stages. First, we use an adaptive strategy to seed initial sample
points; we then apply k-means clustering to refine these samples
and obtain the final sample locations.

Adaptive Seeding of Sample Points We use a histogram-based
method to adaptively distribute initial sample points according to
the local geometric changes in the scene. The pseudo-code of this
step – ADAPTIVESEEDING – is given in Algorithm 1. Before it starts,
we need to construct a static quadtree of all the shading points. This
is straightforward to build as the shading points have a one-to-one
mapping to screen pixels.

The ADAPTIVESEEDING procedure takes as input the positions and
normals of all shading points (stored in hit list), and outputs the
resulting seed points (cluster list). In the first step, we assign each
shading point to all quadtree nodes that it belongs to, and then re-
organize the data in the order of the quadtree nodes, so that points
belonging to the same node are stored together. In the second step,
we compute the geometric variation for all quadtree nodes in par-
allel. This is computed in two passes. The first pass computes the
average position xk and normal ~nk of each quadtree node by using
a segmented reduction; the second pass then computes the geomet-
ric variation (ε) per shading point according to Eq 2 in the paper,
and sums it up to obtain the variation per node (εq).

Given the variation computed for all nodes, we seed sample points
using an adaptive, top-down approach. We start with the root node,
and repeatedly distribute the sample budget at the current node to
its children nodes. The distribution is proportional to the geometric
variation term computed above.

K-Means Clustering We follow standard k-means algorithm to re-
fine the irradiance sample points. We use an error metric defined by
Eq 2 in the paper, and the pseudo-code – CLUSTERSHADINGPOINTS
– is provided in Algorithm 2. This procedure takes all the shading
points (hit list) and adaptive seed samples cluster list as input,

Algorithm 1 Adaptive Sample Seeding
procedure ADAPTIVESEEDING(in hits list,out cluster list)
begin

id list←new list
error list←new list
// Compute the geometric variation of each quadtree node
for each shading point i in hits list in parallel

for quadtree node level j = 1 to nlevel

idj = the j-th level parent node of shading point i
id list.add(make pair(idj ,i))

Perform sort on id list by idj

for each quadtree node in parallel
Compute the average position and normal of the node using
segmented reduction applied on the order list id list

for each shading point i in hits list in parallel
Compute the geometric variation ε to every parent node q
error list.add(make pair(ε,i))

for each quadtree node q in parallel
Compute the geometric variation of node, εq , from the
error list by using a segmented reduction

// Distribute seeding samples
for quadtree node level j = 1 to nlevel

Normalize geometric variation εq by segmented reduction
Compute number of seeds nq in proportion to εq

for each node in the level in parallel
Distribute nq sample points randomly
cluster list.add(seedk)

end

and outputs the refined sample points cluster list. Using k-means,
we update each cluster repeatedly until either the clustering con-
verges, or a maximum number of iterations is reached. In the up-
date stage, we need to classify a shading point to its nearest cluster
with respect to the error metric. A brute force approach would re-
quire a linear search of all cluster centers. To accelerate this step,
we build a kd-tree of all cluster centers, and apply a range search to
quickly eliminate clusters that are too far away that do not need to
be tested. At every iteration, we compute the average position and
normal of each cluster by using a parallel segmented reduction.

2 Constructing the Illumination Cut

To reduce the density estimation cost, we compute an illumination
cut to approximate the entire photon tree. The pseudo-code is pro-
vided as BUILDILLUMINATIONCUT in Algorithm 3. This procedure
takes the photon map as input and outputs the illumination cut. We
start by selecting a coarse tree-cut in two steps: first, nodes with an
approximated irradiance value (Ẽp) larger than a predefined thresh-
old Emin are added as candidate nodes for the cut; then, we tra-
verse the different levels of the tree to ensure the construction of a
complete tree-cut. This is done by deleting nodes whose children
are already in the cut, and adding nodes to leaf nodes that do not
have parents representing them in the cut.

Given the coarse tree cut, we perform an optimization to refine its
accuracy. This is done by comparing the accurate density estima-
tion Ep, which is evaluated at node p’s center using the full photon
tree, with the approximated irradiance Ẽp computed above. If the
difference between the two is larger a given threshold ∆E , the node



Algorithm 2 K-Means Clustering
procedure CLUSTERSHADINGPOINTS(

in hits list,
in out cluster list)

begin
id list←new list
while not max iteration and not converged

Build a kd-tree, cluster kdtree, on the cluster list
for each shading point i in hits list in parallel

Apply a range search in cluster kdtree to find the clus-
ter idc with the minimum error
id list.add(make pair(idc,i))

Perform sort on id list by idc

Update cluster centers by using segmented reduction
for each cluster j in cluster list in parallel

Pick the shading point with the smallest error as the irradi-
ance sample point, cluster list.add(sj)

end

Algorithm 3 Constructing Illumination Cut
procedure BUILDILLUMINATIONCUT(

in node list,
out cut list)

begin
work list←new list
for each photon map node p in parallel

if Ẽp > Emin then
work list.add(p)

for each node p in work list in parallel
if p.children is in work list then then

work list.remove(p)
for each tree level l of node list from bottom-up

for each node p in level l in parallel
if p.chilren not both in work list then

work list.add(p)
while not work list.empty()

for each node p in work list in parallel
Compute Ep by a KNN search
if ‖Ep − Ẽp‖ ≤ ∆E then

work list.remove(p) and cut list.add(p)
else

work list.remove(p)
work list.add(p.children)

end

is removed from the cut and replaced by its children nodes. We per-
form 3∼5 iterations of this refinement.
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