
Real-Time KD-Tree Construction on Graphics Hardware

Kun Zhou∗‡ Qiming Hou† Rui Wang∗ Baining Guo† ‡

∗Zhejiang University †Tsinghua University ‡Microsoft Research Asia

Abstract

We present an algorithm for constructing kd-trees on GPUs. This
algorithm achieves real-time performance by exploiting the GPU’s
streaming architecture at all stages of kd-tree construction. Unlike
previous parallel kd-tree algorithms, our method builds tree nodes
completely in BFS (breadth-first search) order. We also develop a
special strategy for large nodes at upper tree levels so as to further
exploit the fine-grained parallelism of GPUs. For these nodes, we
parallelize the computation over all geometric primitives instead of
nodes at each level. Finally, in order to maintain kd-tree quality, we
introduce novel schemes for fast evaluation of node split costs.

As far as we know, ours is the first real-time kd-tree algorithm on
the GPU. The kd-trees built by our algorithm are of comparable
quality as those constructed by off-line CPU algorithms. In terms
of speed, our algorithm is significantly faster than well-optimized
single-core CPU algorithms and competitive with multi-core CPU
algorithms. Our algorithm provides a general way for handling dy-
namic scenes on the GPU. We demonstrate the potential of our al-
gorithm in applications involving dynamic scenes, including GPU
ray tracing, interactive photon mapping, and point cloud modeling.

Keywords: kd-tree, programable graphics hardware, ray tracing,
photon mapping, point cloud modeling

1 Introduction

The kd-tree is a well-known space-partitioning data structure for
organizing points in k-dimensional space. As an acceleration struc-
ture, it has been used in a variety of graphics applications, includ-
ing triangle culling for ray-triangle intersection tests in ray tracing,
nearest photon queries in photon mapping, and nearest neighbor
search in point cloud modeling and particle-based fluid simulation.
Due to its fundamental importance in graphics, fast kd-tree con-
struction has been a subject of much interest in recent years, with
several CPU algorithms proposed [Popov et al. 2006; Hunt et al.
2006; Shevtsov et al. 2007]. However, real-time construction of
kd-trees on the GPU remains an unsolved problem.

In this paper, we present a kd-tree construction algorithm for the
GPU that achieves real-time performance by heavily exploiting the
hardware. Specifically, our algorithm builds tree nodes in BFS
(breadth-first search) order to fully exploit the fine-grained paral-
lelism of modern GPUs at all stages of kd-tree construction. This is
an important feature that distinguishes our work from previous par-
allel kd-tree algorithms including [Popov et al. 2006; Shevtsov et al.
2007], which resort to DFS (depth-first search) for nodes near the

Figure 1: GPU ray tracing and photon mapping for a dynamic
scene, where both the scene geometry and the light source can be
changed. Two kd-trees are built from scratch for each frame, one
for the scene geometry and the other for the photons. Shadows,
reflection/refraction, as well as caustics caused by the glass and
champagne are rendered at around 8 fps for 800× 600 images.

bottom of the kd-tree. Our algorithm builds kd-trees of comparable
quality as those constructed by off-line CPU algorithms. In terms
of speed, our algorithm is 4 ∼ 7 times faster than well-optimized
single-core CPU algorithms [Hunt et al. 2006] and competitive with
multi-core CPU algorithms [Shevtsov et al. 2007].

In designing a kd-tree algorithm for the GPU, we must address two
challenging issues. The first is how to maximally exploit the GPU’s
streaming architecture when parallelizing kd-tree construction. The
modern GPU is massively parallel and requires 103 ∼ 104 threads
for optimal performance [NVIDIA 2007]. By following BFS order,
we are well poised to take advantage of this architecture because
at each BFS step, every node at the same tree level spawns a new
thread and the total number of threads doubles from the preced-
ing step. In addition to following BFS order, we also develop a
special strategy for large nodes at upper tree levels so as to further
exploit the the large scale parallelism of GPUs. For these nodes, we
parallelize the computation over all geometric primitives instead of
nodes at each level. This strategy is effective because there are
only a relatively small number of large nodes at the upper levels,
especially near the top of the tree, which makes parallelizing over
nodes inefficient and leaves the massive parallelism of GPUs under-
exploited. Moreover, the workload among threads is likely to be un-
balanced because the number of primitives may vary significantly
from node to node.

Another issue is the efficient calculation of node split costs, such
as the surface area heuristic (SAH) [Goldsmith and Salmon 1987]
and voxel volume heuristic (VVH) [Wald et al. 2004] costs. This
is critical for maintaining kd-tree quality. The standard practice of
precisely evaluating the costs for all tree nodes is prohibitively ex-
pensive for real-time techniques. To address this issue, we derive
novel schemes for the so-called large and small nodes. A node is
deemed as large if the number of triangles in the node is greater than
a user-specified threshold; otherwise it is small [Popov et al. 2006;



Shevtsov et al. 2007]. For large nodes at upper tree levels, we use
two simple and inexpensive heuristics, median splitting and “empty
space maximizing” [Havran 2001; Wald and Havran 2006], to esti-
mate the costs. For small nodes near the bottom of the tree, where
exact evaluation of the costs is necessary, we introduce a novel data
structure for storing the geometry primitives in these nodes as bit
masks, which allows us to efficiently evaluate the exact costs and
sort these primitives using bitwise operations.

Our real-time kd-tree construction provides a general way of deal-
ing with dynamic scenes on the GPU. We demonstrate the potential
of our kd-tree algorithm with a few applications:

GPU Ray Tracing We implemented a GPU ray tracer for arbi-
trary dynamic scenes using our real-time kd-tree construction (Sec-
tion 4). The ray tracer achieves interactive rates with shadow and
multi-bounce reflection/refraction. Our GPU ray tracer can handle
general dynamic scenes and outperforms a state-of-the-art multi-
core CPU ray tracer [Shevtsov et al. 2007]. A unique feature of
our ray tracer is that it can efficiently handle dynamic geometries
that are directly evaluated on the GPU, such as subdivision surfaces
[Shiue et al. 2005] and skinned meshes [Wang et al. 2007].

GPU Photon Mapping We implemented GPU photon mapping,
in which photon tracing, photon kd-tree construction and nearest
photon query are all performed on the GPU on the fly (Section 5).
Combined with our GPU ray tracer, the photon mapping is capable
of rendering shadows, reflection/refraction, as well as realistic caus-
tics for dynamic scenes and lighting at interactive rates on a single
PC. Such performance has not been achieved in previous work.

Point Cloud Modeling Our real-time kd-tree construction can also
be used for dynamic point clouds to accelerate nearest neighbor
queries (Appendix B). The queried neighbors are used for estimat-
ing local sampling densities, calculating the normals and updating
the deformation strength field in free-form deformation.

2 Related Work

Optimized Kd-trees Early research mainly focused on optimiz-
ing kd-trees for triangle culling in ray-triangle intersection. The
key for this optimization is determining the splitting plane. A sim-
ple but often-used method is spatial median splitting, in which the
plane is positioned at the spatial median of the longest axis of the
tree node volume. To improve effectiveness, researchers proposed
SAH kd-trees [Goldsmith and Salmon 1987; MacDonald and Booth
1990; Havran 2001]. In fact, with the appearance of kd-tree based
packet tracing [Wald et al. 2001] and frustum traversal [Reshetov
et al. 2005], SAH kd-trees have become the best known accelera-
tion structures for ray tracing of static scenes [Stoll 2005].

In other applications such as photon mapping, kd-trees are mainly
used to accelerate nearest neighbor queries, for which different
heuristics are employed to achieve better efficiency. For example,
VVH kd-trees can better accelerate the photon gathering process
than left-balanced trees [Wald et al. 2004].

Fast Kd-tree Construction Construction of high quality kd-trees
is expensive due to the evaluation of the SAH cost function. Al-
though an O(n log n) construction algorithm exists [Wald and
Havran 2006], the time needed for large animated scenes is still
too high. To allow a tradeoff between tree quality and construc-
tion speed, fast kd-tree algorithms [Popov et al. 2006; Hunt et al.
2006] approximate SAH using a piecewise linear (or quadric) func-
tion. [Popov et al. 2006] also proposed a parallel algorithm by con-
structing the tree in BFS order up to a certain tree level. However,
their goal is to increase the coherence of memory accesses during
tree construction and targets small scale parallel architectures like
multi-core CPUs. For nodes near the bottom of the tree, DFS order

is used, which is difficult to parallelize and consumes 90% of the
construction time. Based on reported timings, the multi-core algo-
rithm in [Popov et al. 2006] is about an order of magnitude slower
than our kd-tree algorithm. For trees of comparable quality, the al-
gorithm in [Hunt et al. 2006] is about 4 ∼ 7 times slower than our
algorithm.

Shevstov et al. [2007] proposed a parallel kd-tree algorithm for
a shared memory architecture with multi-core CPUs. The algo-
rithm first partitions the space into several balanced sub-regions
and then builds a sub-tree for each sub-region in parallel and in
DFS order. The algorithm cannot be mapped well to GPU archi-
tecture because modern GPUs require 103 ∼ 104 threads for opti-
mal performance [NVIDIA 2007], orders of magnitude greater than
the possible thread number on multi-core CPUs (e.g., four threads
tested in the paper). Another problem with this method is that, as
noted in [Shevtsov et al. 2007], the kd-trees constructed are of ap-
proximately half the quality of those produced by off-line kd-tree
builders. For ray-tracing identical dynamic scenes, their perfor-
mance is lower than our GPU ray tracer.

Ray Tracing on GPUs Ray tracing on GPUs has stimulated much
interest recently. [Carr et al. 2002] implemented ray-triangle in-
tersection on the GPU. [Purcell et al. 2002] designed the first ray
tracer that runs entirely on the GPU, employing a uniform grid for
acceleration. [Foley and Sugerman 2005] introduced two stackless
kd-tree traversal algorithms, which outperform the uniform grid ap-
proach. [Carr et al. 2006] implemented a limited GPU ray tracer for
dynamic geometry based on bounding-volume hierarchies and ge-
ometry images. None of the above GPU ray tracers outperforms
a well-optimized CPU ray tracer. Recently, two techniques [Horn
et al. 2007; Popov et al. 2007] achieved better performance than
CPU ray tracers. Both techniques use stackless kd-tree traversal
and packet tracing. Unfortunately these two techniques work for
static scenes only. For dynamic scenes, most existing methods are
CPU-based (e.g., [Wald et al. 2006; Yoon et al. 2007]). Our work
leads to a GPU ray tracer for general dynamic scenes that outper-
forms a state-of-the-art multi-core CPU ray tracer [Shevtsov et al.
2007].

Photon mapping has been implemented on GPUs [Purcell et al.
2003]. A uniform grid, instead of a kd-tree, is used to store the pho-
tons, greatly degrading the performance of nearest photon queries.
[Günther et al. 2004] presented a framework for real-time dis-
tributed photon mapping. Using 9 to 36 CPUs, they achieved frame
rates of up to 22 fps at the image resolution of 640× 480. As far as
we know, kd-tree based photon mapping algorithms have not been
implemented on the GPU.

3 GPU Kd-Tree Construction

In this section, we describe how to build SAH kd-trees for ray trac-
ing on the GPU. We focus on SAH kd-trees to streamline the dis-
cussion. The adaption of our algorithm to other kinds of kd-trees is
straightforward and will be explained in later sections.

Following conventional kd-tree construction algorithms [Pharr and
Humpreys 2004], our technique builds a kd-tree in a greedy, top-
down manner by recursively splitting the current node into two sub-
nodes as follows:

1. Evaluate the SAH costs for all splitting plane candidates;

2. Pick the optimal candidate with the lowest cost and split the
node into two child nodes;

3. Sort triangles and distribute them to the two children;



Algorithm 1 Kd-Tree Construction

procedure BUILDTREE(triangles:list)
begin

// initialization stage
nodelist← new list
activelist← new list
smalllist← new list
nextlist← new list
Create rootnode
activelist.add(rootnode)
for each input triangle t in parallel

Compute AABB for triangle t

// large node stage
while not activelist.empty()

nodelist.append(activelist)
nextlist.clear()
PROCESSLARGENODES(activelist, smalllist, nextlist)
Swap nextlist and activelist

// small node stage
PREPROCESSSMALLNODES(smalllist)
activelist← smalllist
while not activelist.empty()

nodelist.append(activelist)
nextlist.clear()
PROCESSSMALLNODES(activelist, nextlist)
Swap nextlist and activelist

// kd-tree output stage
PREORDERTRAVERSAL(nodelist)

end

Cut off empty space

Node

Triangles

Median split

Triangles

Node
(a) (b)

e
C

larger 

than

Figure 2: Two cases of large node split. (a) cut off empty space;
(b) spatial median split.

The SAH cost function is defined as:

SAH(x) = Cts +
CL(x)AL(x)

A
+

CR(x)AR(x)

A
,

where Cts is the constant cost of traversing the node itself, CL(x)
is the cost of the left child given a split position x, and CR(x) is
the cost of the right child given the same split. AL(x) and AR(x)
are the surface areas of the left and right child respectively. A is the
surface area of the node. Note that CL(x) and CR(x) can only be
evaluated after the entire sub-tree has been built. Instead of seeking
a globally optimal solution, existing algorithms use a locally greedy
approximation by assuming the children are leaf nodes. In this case
CL(x) and CR(x) equal the number of elements contained in the
left and right child respectively.

Algorithm Overview The algorithm takes a triangle soup as in-
put and follows the construction pipeline as shown in Algorithm 1.
After an initialization step, the algorithm builds the tree in a BFS
manner, for both large nodes and small nodes. Finally, all nodes of
the tree are reorganized and stored. The pipeline consists of a set of
stream processing steps together with minimal coordination work.
The streaming steps are done on the GPU while coordination work
is done on the CPU at negligible costs.

Algorithm 2 Large Node Stage

procedure PROCESSLARGENODES(
in activelist:list;
out smalllist, nextlist:list)

begin

// group triangles into chunks
for each node i in activelist in parallel

Group all triangles in node i into fixed size chunks, store
chunks in chunklist

// compute per-node bounding box
for each chunk k in chunklist in parallel

Compute the bounding box of all triangles in k, using stan-
dard reduction

Perform segmented reduction on per-chunk reduction result to
compute per-node bounding box

// split large nodes
for each node i in activelist in parallel

for each side j of node i
if i contains more than Ce empty space on

side j then
Cut off i’s empty space on side j

Split node i at spatial median of the longest axis
for each created child node ch

nextlist.add(ch)

// sort and clip triangles to child nodes
for each chunk k in chunklist in parallel

i← k.node()
for each triangle t in k in parallel

if t is contained in both children of i then
t0 ← t
t1 ← t
Sort t0 and t1 into two child nodes
Clip t0 and t1 to their respective owner node

else
Sort t into the child node containing it

// count triangle numbers for child nodes
for each chunk k in chunklist in parallel

i← k.node()
Count triangle numbers in i’s children, using reduction

Perform segmented reduction on per-chunk result to compute
per-child-node triangle number

// small node filtering
for each node ch in nextlist in parallel

if ch is small node then
smalllist.add(ch)
nextlist.delete(ch)

end

In the initialization stage, global memory is allocated for tree con-
struction and the root node is created. Additionally, a streaming
step is performed to compute the AABB (axis aligned bounding
box) for each input triangle. In our current implementation, the
user-specified threshold for large/small node is set as T = 64.

3.1 Large Node Stage

As mentioned, the SAH evaluation in the conventional greedy op-
timization algorithm assumes that the current split produces two
leaf nodes. For large nodes, this assumption is almost always un-
true. The resulting estimation is far from accurate. Our splitting
scheme for large nodes is a combination of spatial median splitting
and “empty space maximizing”, which is highly effective for the
upper levels of the tree as noted in [Havran 2001]. Specifically, if



Algorithm 3 GPU Segmented Reduction

procedure GPUSEGREDUCE(
in data, owner:list; op: reduction operator;
out result:list)

begin
result← new list
Fill result with op’s identity element
// assume there are n elements
for d = 0 to log2 n− 1

for each i = 0 to (n− 1)/2d+1 in parallel

w0← owner[2d+1i]
w1← owner[2d+1i + 2d]
if w0 6= w1 then

result[w1]← op(result[w1], data[2d+1i + 2d])
else

data[2d+1i]← op(data[2d+1i], data[2d+1i + 2d])
end

Operator Identity value Usage

min +∞ compute bounding box

max −∞ compute bounding box

+ 0 count triangle number

Table 1: Reduction operators and their usage in Algorithm 2.

the empty space contained in the current node is larger than a prede-
fined ratio Ce along one axis, the empty space is cut off in the next
split; otherwise, the split plane is chosen at the spatial median of
the node’s longest axis (see Fig. 2). Currently, we take Ce = 25%.
Note that, to apply this splitting scheme, a tight bounding box of all
triangles contained in the node has to be computed.

The large node processing procedure, PROCESSLARGENODES, is
elaborated in Algorithm 2. This procedure takes activelist as in-
put, and updates smalllist and nextlist as output. Note that we
also maintain a triangle-node association list for each node list. The
triangle-node association list stores triangle indices contained in the
node list, sorted by node index. Each node in the node list records
the index of its first triangle in the triangle-node association list and
the number of triangles it contains, the scene space it occupies, and
the pointers to its child nodes.

Now we walk through the major steps of PROCESSLARGENODES in
Algorithm 2. The first step of the procedure is to group all triangles
in each node into fixed-sized chunks. Currently we set the chunk
size to N = 256. A large fraction of the subsequent computations
are parallelized over all triangles in these chunks.

In the second step, the bounding box of all triangles in each node is
computed. This is done by first computing the bounding box of all
triangles’s AABBs in each chunk using the reduction algorithm de-
scribed in Algorithm 4 of [Popov et al. 2007], and then computing
the bounding boxes of all nodes by performing segmented reduction
[Gropp et al. 1994] on the sequence of all chunk reduction results.
Segmented reduction performs reduction on arbitrary segments of
an input sequence. The result is a sequence in which each element
holds the reduction result of one segment.

Our GPU algorithm for segmented reduction is described in Al-
gorithm 3. In the input list data, all data elements belonging to
the same segment are located contiguously. In another input list
owner, owner[i] indicates the segment index of data[i]. The re-
duction operator op is associated with an identity value, as listed in
Table 1. The algorithm takes a multi-pass approach. Each thread
takes two elements. If the two elements have the same owner, they
are replaced by their operation result. Otherwise, one element is
accumulated into result and the other is retained.

Note that the chunk data structure is critical for optimal perfor-
mance. Within each chunk, we only need to perform unsegmented
reduction on all triangles’ AABBs, greatly reducing the element
number in the subsequent segmented reduction. Although it is
possible to compute the node bounding boxes by performing seg-
mented reduction on all input triangles’ AABBs directly, this is in-
efficient because large segmented reductions are about three times
slower than large unsegmented reductions [Sengupta et al. 2007].

In the third step, with computed node bounding boxes, large nodes
are split in parallel using the splitting scheme described earlier.
Note that we repeatedly split a node using empty space splitting
until a spatial median split is reached. This allows us to reuse
the bounding box and avoid unnecessary computations after empty
space splitting.

In the fourth step, triangles are sorted and clipped into child nodes.
Triangle sorting is essentially list splitting. For each chunk, the tri-
angles in the chunk are first checked to generate a vector of boolean
values, which indicates whether each triangle is in a child node or
not. Then the triangles are divided into two groups, with all the tri-
angles marked true on the left side of the output vector and all the
triangles marked false on the right side. This can be easily done us-
ing the split operation described in [Sengupta et al. 2007]. For those
triangles contained in both child nodes, another pass is needed to
clip them into the nodes.

In the final step, we count the triangle numbers for all child nodes
using segmented reduction in a way similar to bounding box com-
putation. The reduction operator used here is +. If the trian-
gle number of a node is less then the threshold T , it is added to
smalllist and deleted from nextlist.

3.2 Small Node Stage

Compared to the large node stage, the small node stage is relatively
simple. First, the computation is parallelized over nodes rather than
triangles. The workload among small nodes is naturally balanced
because the triangle numbers of small nodes do not vary signif-
icantly (from 0 to T ). Second, unlike in the large node stage,
we choose not to clip triangles when splitting small nodes. Al-
though clipping triangles to owner nodes reduces false positives of
the triangle-in-node test and always reduces the SAH cost, clipping
may also cause undesirable excessive splits because SAH does not
take memory costs into account. While clipping is effective for
large nodes by preventing false positives from accumulating over
future splits, for small nodes our experiments indicate that clipping
rarely improves ray tracing performance. Thus we do not clip tri-
angles for small nodes, and the splitting plane candidates are re-
stricted to those determined by the faces of the AABBs of triangles
contained in the initial small nodes.

As shown in Algorithm 4, the small node stage consists of two
procedures, PREPROCESSSMALLNODES and PROCESSSMALLNODES.
The first procedure collects all split candidates. It also generates
the triangle sets contained in both sides of each splitting plane can-
didate with a single pass over the triangles in a node. The sec-
ond procedure PROCESSSMALLNODES splits small nodes. Processed
in parallel for each node i, the procedure first gets its triangle set
triangleSet and its uppermost ancestor smallRoot (also a small
node) in the tree. Then the SAH costs for all splitting plane can-
didates located inside the node are computed. Finally the node is
split using the optimal split plane with minimal cost, and triangles
are sorted into child nodes.

Instead of storing the triangle sets in the triangle-node association
lists as is done in the large node stage, we now store triangle sets in
small nodes as a bit mask of its smallRoot as shown in Fig. 3. Note



Algorithm 4 Small Node Stage

procedure PREPROCESSSMALLNODES(smalllist:list;)
begin

for each node i in smalllist in parallel
i.splitList← list of all split candidates in i
for each split candidate j in i in parallel

/* “left” represents smaller coordinate */
j.left← triangle set on the left of j
j.right← triangle set on the right of j

end

procedure PROCESSSMALLNODES(
in activelist:list;
out nextlist:list)

begin

for each node i in activelist in parallel
// compute SAH and determine the split plane
s← i.triangleSet
r ← i.smallRoot
A0 ← area of node i
SAH0 ←‖ s ‖
for j where j ∈ r.splitList and j.triangle ∈ s

CL ←‖ s ∩ j.left ‖
CR ←‖ s ∩ j.right ‖
AL ← area of left child after split j
AR ← area of right child after split j
SAHj ← (CLAL + CRAR)/A0 + Cts

p← The split candidate that yields minimal SAH

// split small nodes
if SAHp ≥ SAH0 then

Mark i as leaf node
else

Split i using p, add new nodes to nextlist
Sort triangles to new nodes

end

that the triangle sets of each split candidate j, j.left and j.right,
are also stored as bit masks.

With this bit mask representation, triangle sorting and SAH evalu-
ation for any split candidate can be efficiently done using bitwise
operations. As shown in Algorithm 4, the bit mask of the left child
is computed as the bitwise AND of the bit mask of the current node
s and the bit mask of the left side of the split candidate j, which
is precomputed in PREPROCESSSMALLNODES. Then a parallel bit
counting routine [Manku 2002] is performed on the resulting bit
mask to get the number of triangles in the left child.

The bit mask representation allows us to compute the optimal split
plane in O(n) time and sort triangles in O(1) time. An alternative
method for computing the optimal splitting plane in O(n) is to sort
all split candidates in a preprocess. Then the cost functions of all
split candidates and the optimal splitting plane can be computed
by only a single pass over the sorted data, at the cost of O(n).
However, since the sorted order cannot be represented as a bit mask,
triangle sorting can only be done at the cost of O(n).

3.3 Kd-Tree Output Stage

As described in Section 4, our GPU ray tracer is stack-based and it
requires the kd-tree’s final layout to be a preorder traversal of nodes
for optimal cache performance.

We compute the preorder traversal using two parallel BFS traversals
(see Algorithm 5). The first pass traverses the tree bottom-up to
compute required memory size for each subtree. The second pass

Algorithm 5 Preorder Traversal

procedure PREORDERTRAVERSAL(nodelist:list)
begin

for each tree level l of nodelist from bottom-up
UPPASS(l)

Allocate tree using root node’s size
for each tree level l of nodelist from top-down

DOWNPASS(l)
end

procedure UPPASS(activelist:list)
begin

for each node i in activelist in parallel
if i is not a leaf then

i.size← i.left.size + i.right.size + 1
else

i.size← i.triangleCount + 1
end

procedure DOWNPASS(activelist:list)
begin

for each node i in activelist in parallel
if i is not a leaf then

i.left.address← i.address + 1
i.right.address← i.address + 1 + i.left.size

Store node i in final format to i.address
end

A

R R Large node

A Small node

B C

triangle set 

in node A

CB

1 0 0 1 0 1 1 1

Node A

Split Plane

(a) (b)

Figure 3: Storing triangle sets as bit masks of small root. Node A
is split into node B and node C as shown in (a). Triangles B and C
are subsets of their small root A’s triangles. They are stored as bit
masks as shown in (b).

traverses the tree top-down to compute the starting address in the
traversal for each subtree, and distributes node information to the
corresponding address to produce the final tree. This is analogous
to the parallel scan in [Sengupta et al. 2007]. Note that, in procedure
PREORDERTRAVERSAL, we need to collect nodes located at the same
tree level. Fortunately this information is already available in each
while-loop in Algorithm 1.

After preorder traversal, each node in the resulting node list records
the number and indices of the triangles it contains, its splitting
plane, and the links to its children.

3.4 Implementation Details

We implemented the above kd-tree builder using NVIDIA’s CUDA
framework [NVIDIA 2007]. CUDA provides a general-purpose C
language interface for GPU programming. It also exposes some
important new hardware features which are useful for data-parallel
computations. For example, it allows arbitrary gather and scatter
memory access from GPU programs. Our GPU implementation
heavily makes use of these new features.

In all the algorithm listings above, the parallel primitives (e.g., seg-
mented reduction) and the code fragments marked by in paral-



(a) Toys (b) Museum (c) Robots

(d) Kitchen (e) Fairy Forest (f) Dragon

Figure 4: Test scenes for kd-tree construction and ray tracing. (a)
11K triangles, 1 light; (b) 27K triangles, 2 lights, 2 bounces; (c)
71K triangles, 3 lights, 1 bounce; (d) 111K triangles, 6 lights, 8
bounces; (e) 178K triangles, 2 lights; (f) 252K triangles, 1 light.

Scene
Off-line CPU builder Our GPU builder

Ttree Ttrace SAH Ttree Ttrace SAH

Fig. 4(a) 0.085s 0.022s 79.0 0.012s 0.018s 67.9

Fig. 4(b) 0.108s 0.109s 76.6 0.017s 0.108s 38.3

Fig. 4(c) 0.487s 0.165s 68.6 0.039s 0.157s 59.7

Fig. 4(d) 0.559s 0.226s 49.6 0.053s 0.207s 77.8

Fig. 4(e) 1.226s 0.087s 74.4 0.077s 0.078s 94.6

Fig. 4(f) 1.354s 0.027s 124.2 0.093s 0.025s 193.9

Table 2: Comparing kd-tree construction time Ttree, ray tracing
time Ttrace and SAH costs between an offline CPU builder and our
GPU builder. All rendering times are for 1024× 1024 images.

lel are GPU code; others are CPU code. We also need to specify
the number of thread blocks and threads per block for the parallel
primitives and the code fragments marked by in parallel. In our
current implementation, we use 256 threads for each block. The
block number is computed by dividing the total number of parallel
threads by the number of threads per block.

During kd-tree construction, we store all data as dynamic lists in
linear device memory allocated via CUDA. List size is doubled
whenever more memory is required. This allows us to avoid high
overhead in CUDA memory management after an initial run, at the
cost of more memory consumption. For structures with many fields
such as nodes and triangles, we use structure of arrays (SoA) in-
stead of array of structures (AoS) for optimal GPU cache perfor-
mance.

From its description, the reader may have noticed that our algo-
rithm also frequently calls certain parallel primitives such as reduce
and scan. Many of these primitives have been efficiently imple-
mented and exposed in CUDPP [Harris et al. 2007]. Most con-
ditional program flows in the pseudo code are handled using list
splitting, which is also a standard GPU primitive with optimized
implementation [Sengupta et al. 2007]. The conditional programs
in Algorithm 3 (lines 12 ∼ 15) will be serialized and result in
performance penalty, but the chunk structure used to perform most
computations in the per-chunk standard reduction in Algorithm 2
avoid these conditional program flows. Compared to per-chunk
standard reductions, the segmented reduction in Algorithm 3 does
not consume any significant processing time, and its performance
issues can thus be safely ignored.

#procs Fig.4(a) Fig.4(b) Fig.4(c) Fig.4(d) Fig.4(e) Fig.4(f)

16 0.037s 0.057s 0.197s 0.260s 0.463s 0.564s

32 0.022s 0.034s 0.107s 0.139s 0.242s 0.292s

48 0.018s 0.026s 0.077s 0.098s 0.169s 0.202s

64 0.016s 0.022s 0.063s 0.079s 0.133s 0.157s

80 0.015s 0.020s 0.055s 0.068s 0.113s 0.132s

96 0.014s 0.019s 0.049s 0.060s 0.100s 0.116s

112 0.013s 0.018s 0.046s 0.056s 0.091s 0.105s

128 0.012s 0.017s 0.039s 0.053s 0.077s 0.093s

speedup 3.08 3.35 5.05 4.90 6.01 6.06

Table 3: Scalability of our kd-tree construction algorithm on a
GeForce 8800 ULTRA graphics card. The bottom row shows the
speedup going from 16 to 128 processors. Note that our algorithm
scales better with large scenes. However, the scalability is still sub-
linear mainly because the total running time contains a constant
portion due to the overheard of CUDA API.

Figure 5: The tree construction time decreases quickly with the in-
crease in the number of GPU processors before reaching a plateau.

3.5 Results and Discussion

The described algorithm has been tested on an Intel Xeon 3.7GHz
CPU with an NVIDIA GeForce 8800 ULTRA (768MB) graphics
card. Parameters (e.g., T and N ) used during tree construction are
intentionally kept the same for all scenes.

We compare our GPU algorithm with an off-line CPU algorithm
which always uses the greedy SAH cost to calculate optimal split
planes and clips triangles into child nodes [Wald and Havran 2006].
Table 2 summarizes the comparison results for several publicly
available scenes as shown in Fig. 4. As shown, our kd-tree construc-
tion algorithm is 6 ∼ 15 times faster for all scenes. The quality of
the trees is assessed in two ways. First, we compute the SAH costs.
Second, we evaluate the practical effect of tree quality on render
time by using the constructed trees in a ray tracer as described in
Section 4. As shown in the table, our algorithm generates lower
SAH costs for Toys, Museum and Robots, but higher SAH costs
for Kitchen, Fairy Forest and Dragon. In all cases, our trees always
offer better rendering performance, which attests to the high qual-
ity of our trees in practical applications. Note that SAH cost is the
expected cost for a ray to traverse the entire tree, whereas actual kd-
tree traversal terminates at the first node of intersection. Therefore
there is no strict correlation between the SAH costs and the actual
ray trace time. SAH cost is only one way to measure the quality of
kd-trees. The most important metric is how well the resulting tree
accelerates ray traversals, which is the ultimate goal of an SAH tree
construction strategy.



Scene [Wald07] [Shevtsov07] Our method

Fig. 4(a) 10.5fps 23.5fps 32.0fps

Fig. 4(b) n/a n/a 8.00fps

Fig. 4(c) n/a n/a 4.96fps

Fig. 4(d) n/a n/a 4.84fps

Fig. 4(e) 2.30fps 5.84fps 6.40fps

Fig. 4(f) n/a n/a 8.85fps

Table 4: Performance comparison results for four dynamic scenes.
All images are rendered at resolution 1024×1024. [Wald07] times
are from [Wald et al. 2007] on an AMD Opteron 2.6GHz CPU.
Multi-core times are from [Shevtsov et al. 2007] on a Dual Intel
Core2 Duo 3.0GHz (4 cores).

Our kd-tree construction algorithm also scales well with the number
of GPU processors. The running time contains a scalable portion
and a small non-scalable portion due to the overhead of CUDA API
and driver. Theoretically, the running time is linear with respect
to the reciprocal of the number of processors. As shown in Ta-
ble 3 and Fig. 5, we ran the algorithm on a GeForce 8800 ULTRA
graphics card with 16, 32, 48, 64, 80, 96, 112, and 128 processors
respectively. The NVStrap driver in RivaTuner [Nicolaychuk 2008]
is used to disable processing units by adjusting hardware masks.

Although our technique is capable of constructing high quality kd-
trees in real-time, it has its limitations. For small scenes with less
than 5K triangles, CUDA’s API overhead becomes a major bottle-
neck. In this case, it is more efficient to switch to a complete CPU
method. Also, our method consumes much more memory than a
CPU method. This is mainly due to the use of doubling lists and
extra bookkeeping for BFS order construction. Our system sup-
ports scenes with up to 600K triangles on the GeForce 8800 Ultra
(768MB) graphics card. For the six tested scenes, the peak mem-
ory in our build is around 8MB, 18MB, 50MB, 90MB, 123MB
and 178MB respectively. This problem, however, can be reduced
with a better memory management scheme. For example, currently
we keep many temporary data structures in memory at all stages
to avoid costly CUDA API calls to free these temporary data. If
we implement a set of efficient CUDA memory allocation/free rou-
tines, we will be able to free temporary data and reduce memory
consumption considerably. Other techniques for reducing mem-
ory are certainly possible and are to be investigated in future work.
The memory consumption issue is also alleviated with the rapid
advancements in graphics hardware. NVIDIA recently released
Quadro FX 5600 which supports CUDA and has 1.5GB memory.

4 GPU Ray Tracing

We have incorporated our kd-tree builder into a GPU ray tracer for
arbitrary dynamic scenes. For each frame, the ray tracer first builds
a kd-tree from scratch. For each ray to be traced, the ray tracer
walks through the kd-tree until it reaches leaf nodes and the associ-
ated triangles, in front to back order.

While existing GPU ray tracers [Foley and Sugerman 2005; Horn
et al. 2007; Popov et al. 2007] adopt a stackless scheme for kd-
tree traversal, they require additional information to be precom-
puted and stored during tree construction, and extra computation
during tree traversal. To avoid such overhead we chose to imple-
ment a conventional stack-based scheme on the GPU. As pointed
out in [Horn et al. 2007], when a ray passes through both sides
of a splitting plane, the “far” subtree is pushed into the stack and
the “near” subtree is traversed first. For this reason a stack-based
scheme requires a local stack for each thread. Fortunately, this can
be efficiently implemented in CUDA by allocating a fixed-sized ar-
ray in thread-local memory. Although kd-tree depth is unbounded
in theory, we found that a stack depth of 50 is enough for all test

Figure 6: GPU ray tracing of a dynamic subdivision surface.
The scene consists of 47K triangles. The armadillo model is di-
rectly evaluated on the GPU through subdivision and displacement
mapping from a coarse control mesh. We can achieve 22 fps for
800× 600 images.

scenes in this paper.

In order to handle reflection/refraction, our ray tracer performs the
following multiple passes after building a kd-tree for the scene:

1. Spawn and trace eye rays;

2. Generate a list of hits on specular and refractive surfaces by
performing a list compaction [Harris et al. 2007] on eye ray
hit points;

3. Spawn and trace reflective and refractive rays;

4. Repeat Step 2 and Step 3 if there are more bounces to handle;

5. Spawn and trace shadow rays;

6. Compute shading;

After the shading is computed, each ray’s contribution to the final
image is sent to an OpenGL pixel buffer object (PBO). The PBO is
then accumulated to the final image using alpha blending.

Experimental Results We tested our GPU ray tracer using the dy-
namic scenes shown in Fig. 4. Table 4 compares our frame rates
with those reported in two recent works. One is an algorithm based
on bounding volume hierarchies (BVHs) [Wald et al. 2007], and
the other is the multi-core CPU algorithm using kd-trees [Shevtsov
et al. 2007]. The performance takes into account both the tree (or
BVH) construction and rendering time. It can be seen that our al-
gorithm runs interactively with shadow and multi-bounce reflec-
tion/refraction, and outperforms the other two algorithms. These
results suggest that for dynamic scenes GPU ray tracing acceler-
ated by our kd-trees provides a competitive alternative to CPU ray
tracing on multi-core CPUs. Note that here we do not claim that
our GPU ray tracer is faster than all CPU ray tracers. Indeed, im-
plementing the fastest CPU ray tracer is like chasing a moving tar-
get because various optimizations could be used for higher perfor-
mance and some optimizations are hardware dependent, and better
performance can be achieved by adding more CPU cores. For ex-
ample, [Wald 2007] reported 13 ∼ 21 frames per second for the
exploding dragon scene (Fig. 4(f)) on a 2.6GHz Clovertown system
with 8 cores.

Note that for the Toys and Fairy Forest scenes, our frame rates are
higher than the 4-core CPU algorithm [Shevtsov et al. 2007]. Both
scenes actually do not reveal our method’s advantage in tree quality,
due to the lack of divergent secondary rays from reflection/refrac-
tion. However, this already demonstrates the potential of ray tracing
dynamic scenes on GPUs.

A unique feature of our ray tracer is that it can efficiently handle
dynamic geometries that are directly evaluated on the GPU, such as
skinned meshes [Wang et al. 2007] and subdivision surfaces [Shiue
et al. 2005]. The armadillo in Fig. 6 is such an example. The input
geometry is a sequence of coarse control meshes provided by the
authors of [Zhou et al. 2007]. Two levels of Loop subdivision and



displacement mapping are performed on the GPU to generate the
detailed meshes. The output of GPU subdivision and displacement
mapping is immediately sent to our GPU kd-tree builder and then
ray traced directly without copying back to the CPU. Please see the
accompanying video for live demos.

5 GPU Photon Mapping

In this section we first show how to adapt our kd-tree builder for
photon mapping. Then we describe how to perform k-nearest-
neighbor (KNN) search using kd-trees on the GPU. Finally we
show how to use the kd-tree builder and KNN search to render caus-
tics, and present some experimental results.

5.1 Kd-Tree for Photon Mapping

Algorithm 1 can be used to build photon kd-trees after several mod-
ifications. First, we use VVH [Wald et al. 2004] instead of SAH to
evaluate the split cost function. Given a node d and a split position
x, the VVH cost function is defined as:

V V H(x) = Cts+
CL(x)V (dL(x)±R)

V (d±R)
+

CR(x)V (dR(x)±R)

V (d±R)
,

where the definitions of Cts, CL(x) and CR(x) are similar to those
in SAH. R is an estimated KNN query radius described in more
details in Appendix A. V (d±R) represents the volume of node d’s
cell extended by radius R in the three axis directions. dL(x) and
dR(x) are the left and right child nodes, respectively, for the given
split position x.

For large nodes, the hybrid scheme of spatial median splitting and
empty space splitting is still employed. However, a different switch
threshold Ce = 10% is used. We also use a smaller threshold
for large/small node classification, T = 32, since exact VVH cost
evaluation is more expensive than SAH cost evaluation as we dis-
covered through experiments.

The second modification is that, unlike in ray tracing, photon kd-
trees are built for points instead of triangles. Thus we do not need to
compute AABBs in the initialization stage. Clipping to split planes
is no longer required for large nodes. Splitting planes are restricted
to initial point positions for small nodes.

The third modification is that we can now simplify the large node
stage greatly because clipping is not needed. Most computation can
be directly parallelized over all points in large nodes, and the chunk
data structure is no longer necessary. As in [Wald et al. 2004],
in the initialization stage, for each of the three axis dimensions,
we compute and maintain a sorted order for all points using a sort
primitive cudppSort [Harris et al. 2007]. With the sorted order,
tight bounding boxes of large nodes can be computed in O(1) time,
avoiding the use of segmented reductions. This compensates for
the overhead of computing and maintaining the sorted order. Also
sorting points to child nodes and counting point numbers for child
nodes can be done in O(n) time with a single pass over the sorted
data.

We store point-sorted order for all nodes in three concatenated point
ID lists, one for each axis. To allow efficient per-node access of
these lists, we enforce two properties: 1) points in the same node
are contiguous in the lists; 2) points in the same node start at the
same offset in three lists. Such properties allow an arbitrary sub-list
for each individual node to be indexed using a head pointer and a
tail pointer. After node splitting, we perform the split operation of
[Sengupta et al. 2007] on the concatenated lists to separate points
of left child nodes and points of right child nodes. It is easy to
verify that the resulting new lists inherit the two aforementioned
properties.

Algorithm 6 KNN Search

function KNNSEARCH(in q:point)
begin

rmin ← 0
rmax ← r0

hist←new array[0..nhist − 1]
for i = 1 to niter

r ← rmax

∆r ← rmax − rmin

Set all elements in hist to zero
for each photon p, ‖ p− q ‖< r, via range search

Increment hist[⌊max{‖p−q‖−rmin,0}
∆r

nhist⌋]

Find j, such that hist[j] < k ≤ hist[j + 1]
(rmin, rmax)← (rmin + j

nhist

∆r, rmin + j+1

nhist

∆r)
rk ← rmax

return all photons p, ‖ p− q ‖< rk, via range search
end

The sorted order is also used to accelerate the computation in
PREPROCESSSMALLNODES in the small node stage. However, the
bit mask representation and bitwise operations for small nodes are
still employed for both performance and storage efficiency.

As in Section 3.3, we reorganize all nodes using a preorder traver-
sal. Each node in the resulting node lists records the number and
indices of the photons it contains, its splitting plane, the links to its
children, and its bounding box.

5.2 KNN Search

As described in [Jensen 2001], to estimate the radiance at a surface
point, the k-nearest photons need to be located and filtered. Effi-
ciently locating the nearest photons is critical for good performance
of photon mapping. The photon kd-tree built in the last subsection
can be used to speed up nearest neighbor queries.

A natural choice to locate the nearest neighbors in a kd-tree is the
priority queue method described in [Jensen 2001]. Although it
is possible to implement a priority queue using CUDA’s thread-
local memory, such an implementation would be inefficient be-
cause CUDA’s local memory requires both pipelining with suffi-
cient amount of independent arithmetic for efficient latency hiding
and a thread-wise coherent access pattern [NVIDIA 2007]. In pri-
ority queue operations, almost all memory accesses and arithmetic
are inter-dependent. It is difficult for the hardware to hide memory
latency. Thread-wise coherence is also problematic since photon
distribution is usually highly irregular.

We instead propose an iterative KNN search algorithm based on
range searching [Preparata and Shamos 1985]. As shown in Al-
gorithm 6, the algorithm starts from an initial conservative search
radius r0, and tries to find the KNN query radius rk through a few
iterations. During each iteration, a fixed-radius range search is per-
formed to construct hist, a histogram of photon numbers over ra-
dius ranges. The search radius is then reduced according to the
histogram. Finally, all photons within radius rk are returned.

There are three parameters in Algorithm 6: r0, nhist and niter . r0

is an initial search radius. On the one hand, it should be conser-
vative such that there are at least k photons within this radius. On
the other hand, it should be as tight as possible to limit the search
range. A good estimation of r0 is critical to the performance of
KNN search. In Appendix A, we elaborate on the details of r0 es-
timation. nhist is the size of the histogram array. It controls the
precision gain in each iteration. As hist requires frequent random
updates, we store it in CUDA’s shared memory. A larger nhist



increases the precision of each iteration while decreasing GPU oc-
cupancy. We find nhist = 32 to be a reasonable balance point.
niter is the number of iterations. Currently, we take niter = 2.
The resulting error in the final KNN radius is less than 0.1%.

Range searching is performed using the standard DFS kd-tree
traversal algorithm [Preparata and Shamos 1985]. Like stack-based
kd-tree traversal in GPU ray tracing, this algorithm can be effi-
ciently implemented using CUDA’s local memory.

5.3 Caustic Rendering of Dynamic Scenes

As a sample application of the photon kd-tree and KNN search, we
develop a photon mapping system for rendering realistic caustics
on the GPU.

Before building the tree, photons must be emitted into the scene.
The process of tracing eye rays and tracing photons from a light
source is very similar. The GPU ray tracer described in Section 4
can be easily adapted for photon tracing. The main difference is
that the interaction of a photon with a surface material is different
from that of a ray. When a photon hits a surface, it can either be
reflected, transmitted, or absorbed based on the surface material.
Since we only trace caustic photons, a photon will be terminated
and stored once it hits a diffuse surface. Our current system sup-
ports only point light sources. Photons are emitted randomly using
a projection map [Jensen 2001]. For caustic rendering, only specu-
lar and refractive objects are identified in the projection map.

Once photon tracing is done, a kd-tree is built for all stored pho-
tons. Caustics are then rendered by tracing eye rays. For each ray,
at its first intersection with a diffuse surface, KNN search is per-
formed to locate the nearest photons, which are then filtered to get
the radiance value.

Experimental Results Fig. 7(a) shows a cardioid-shaped caus-
tic formed on the table due to light reflected inside a metal ring.
We traced 200K photons in total and the 50 nearest photons were
queried in the radiance estimate. Both the lighting and the surface
material can be changed on the fly. Please see the accompanying
video for live demos. Combined with our GPU ray tracer in Sec-
tion 4, we even allow the user to change the scene geometry. In
this case, two kd-trees need to be built on the fly: one for the scene
geometry and the other for the photons.

Fig. 7(b) demonstrates the caustic from a glass of champagne. The
caustic is formed as light is refracted through several layers of glass
and champagne. We use six bounces of refraction in photon tracing.
In total 400K photons were traced and k is set to 40 in KNN search.
Again, both the lighting and scene geometry can be changed.

Table 5 summarizes the times for photon kd-tree construction and
KNN search, using both CPU and GPU algorithms. The CPU KNN
search is based on the priority queue method described in [Jensen
2001]. Overall, both our GPU kd-tree builder and KNN search are
around 10 times faster than the CPU algorithms.

6 Conclusion

We have presented a kd-tree algorithm capable of achieving real-
time performance on the GPU. The algorithm builds kd-trees in
BFS order to exploit the large scale parallelism of modern GPUs.
The constructed kd-trees are of comparable quality as those built by
off-line CPU algorithms. We also demonstrated the potential of our
kd-tree algorithm in three applications involving dynamic scenes:
GPU ray tracing, GPU photon mapping, and point cloud modeling.

There are several directions for future investigation. We plan to in-
corporate packets [Wald et al. 2001] into the GPU ray tracer for
further performance enhancements. We also intend to implement

(a) A metal ring (b) A glass of champagne

Figure 7: Caustic rendering using photon mapping. Both scenes
are lit by a point light source and rendered at image resolution
800 × 600. (a) Cardioid-shaped caustic caused by light reflection
inside a metal ring. The scene consists of 3K triangles and the ren-
dering performance is 12.2 fps. (b) Caustics due to light refraction
through several layers of glass and champagne. The scene has 19K
triangles and the performance is about 7.5 fps.

Scene
CPU algorithm GPU algorithm

kd-tree KNN kd-tree KNN

Fig. 7(a) 0.081s 0.508s 0.009s 0.044s

Fig. 7(b) 0.237s 0.371s 0.017s 0.050s

Table 5: Comparing photon kd-tree construction time and KNN
time between a CPU algorithm and our GPU algorithm.

global photon maps on the GPU using a general photon scattering
scheme based on Russian roulette. Such photon maps would allow
us to render indirect illumination. Finally, we are interested in ex-
tending our kd-tree algorithm to higher dimensions for applications
such as texture synthesis.

Acknowledgements

The authors would like to thank Eric Stollnitz for his help with
video production. We are also grateful to the reviewers for their
helpful comments.

References

CARR, N. A., HALL, J. D., AND HART, J. C. 2002. The ray
engine. In Proceedings of Graphics Hardware, 37–46.

CARR, N. A., HOBEROCK, J., CRANE, K., AND HART, J. C.
2006. Fast GPU ray tracing of dynamic meshes using geometry
images. In Proceedings of Graphics Interface, 203–209.

FOLEY, T., AND SUGERMAN, J. 2005. Kd-tree acceleration struc-
tures for a GPU raytracer. In Graphics Hardware’05.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation of
object hierarchies for ray tracing. IEEE CG&A 7, 5, 14–20.

GROPP, W., LUSK, E., AND SKJELLUM, A. 1994. Using MPI:
Portable Parallel Programming with the Message Passing Inter-
face. MIT Press.

GÜNTHER, J., WALD, I., AND SLUSALLEK, P. 2004. Real-
time caustics using distributed photon mapping. In Eurographics
Symposium on Rendering, 111–121.

HARRIS, M., OWENS, J., SENGUPTA, S., ZHANG,
Y., AND DAVIDSON, A., 2007. CUDPP homepage.
http://www.gpgpu.org/developer/cudpp/.

HAVRAN, V. 2001. Heuristic Ray Shooting Algorithms. PhD thesis,
Czech Technical University in Prague.



HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND

STUETZLE, W. 1992. Surface reconstruction from unorganized
points. In Proceedings of SIGGRAPH’92, 71–78.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN,
P. 2007. Interactive k-d tree GPU raytracing. In Proceedings of
Symposium on Interactive 3D graphics and Games, 167–174.

HUNT, W., MARK, W. R., AND STOLL, G. 2006. Fast kd-tree
construction with an adaptive error-bounded heuristic. In IEEE
Symposium on Interactive Ray Tracing, 81–88.

JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon
Mapping. AK Peters.

MACDONALD, J. D., AND BOOTH, K. S. 1990. Heuristics for ray
tracing using space subdivision. Vis. Comput. 6, 3, 153–166.

MANKU, G. S., 2002. Fast bit counting routines.
http://infolab.stanford.edu/ manku/bitcount/bitcount.html.

MOUNT, D. M., AND ARYA, S., 2006. ANN: A li-
brary for approximate nearest neighbor searching.
http://www.cs.umd.edu/˜mount/ANN/.

NICOLAYCHUK, A., 2008. RivaTuner.
http://www.guru3d.com/index.php?page=rivatuner.

NVIDIA, 2007. CUDA programming guide 1.0.
http://developer.nvidia.com/object/cuda.html.

PAULY, M., KEISER, R., KOBBELT, L. P., AND GROSS, M. 2003.
Shape modeling with point-sampled geometry. In Proceedings
of SIGGRAPH’03, 641–650.

PHARR, M., AND HUMPREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann.

POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P.
2006. Experiences with streaming construction of SAH KD-
trees. In IEEE Symposium on Interactive Ray Tracing, 89–94.

POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P.
2007. Stackless kd-tree traversal for high performance GPU ray
tracing. In Eurographics’07, 415–424.

PREPARATA, F. P., AND SHAMOS, M. I. 1985. Computational
Geometry: An Introduction. Springer-Verlag New York, Inc.

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P.
2002. Ray tracing on programmable graphics hardware. ACM
Trans. Gr. 21, 3, 703–712.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN,
H. W., AND HANRAHAN, P. 2003. Photon mapping on pro-
grammable graphics hardware. In Graphics Hardware’03, 41–
50.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
level ray tracing algorithm. In SIGGRAPH ’05, 1176–1185.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for GPU computing. In Graphics Hard-
ware’07, 97–106.

SHEVTSOV, M., SOUPIKOV, A., AND KAPUSTIN, A. 2007.
Highly parallel fast kd-tree construction for interactive ray trac-
ing of dynamic scenes. In Eurographics’07, 395–404.

SHIUE, L.-J., JONES, I., AND PETERS, J. 2005. A realtime GPU
subdivision kernel. ACM Trans. Gr. 24, 3, 1010–1015.

STOLL, G. 2005. Part II: Achieving real time - optimization tech-
niques. In SIGGRAPH 2005 Course on Interactive Ray Tracing.

WALD, I., AND HAVRAN, V. 2006. On building fast kd-trees for
ray tracing, and on doing that in O(Nlog N). In Proceedings of
IEEE Symposium on Interactive Ray Tracing, 61–69.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M.
2001. Interactive rendering with coherent ray tracing. Computer
Graphics Forum 20, 3, 153–164.

WALD, I., GÜNTHER, J., AND SLUSALLEK, P. 2004. Balanc-
ing considered harmful – faster photon mapping using the voxel
volume heuristic. In Proceedings of Eurographics’04, 595–603.

WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER,
S. G. 2006. Ray tracing animated scenes using coherent grid
traversal. ACM Trans. Gr. 25, 3, 485–493.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray tracing
deformable scenes using dynamic bounding volume hierarchies.
ACM Trans. Gr. 26, 1, 6.

WALD, I. 2007. On fast construction of SAH based bounding vol-
ume hierarchies. In IEEE Symposium on Interactive Ray Trac-
ing, 33–40.

WANG, R. Y., PULLI, K., AND POPOVIĆ, J. 2007. Real-time
enveloping with rotational regression. ACM Trans. Gr. 26, 3, 73.

YOON, S.-E., CURTIS, S., AND MANOCHA, D. 2007. Ray tracing
dynamic scenes using selective restructuring. In Eurographics
Symposium on Rendering.

ZHOU, K., HUANG, X., XU, W., GUO, B., AND SHUM, H.-Y.
2007. Direct manipulation of subdivision surfaces on GPUs.
ACM Trans. Gr. 26, 3, 91, 9.

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M.
2001. Surface splatting. In SIGGRAPH’01, 371–378.

ZWICKER, M., PAULY, M., KNOLL, O., AND GROSS, M. 2002.
Pointshop 3d: an interactive system for point-based surface edit-
ing. In SIGGRAPH’02, 322–329.

A Initial KNN Radius Estimate

As mentioned in Section 5.2, a good estimation of r0 is critical to
the performance of KNN search. Due to the irregularity of photon
distributions, r0 needs to be estimated for each KNN query point.
As shown in Algorithm 7, we take a two-stage approach.

First, for each rendering frame, PRECOMPUTERADIUS is carried out
to compute KNN query radiuses for a set of node centers. This
is done by running the KNN search algorithm in Algorithm 6
with parameter r0 = R. Then, for each KNN query point p,
ESTIMATERADIUS is performed to compute p’s initial query radius
from the KNN query radiuses of the nodes containing p. It can
be easily proven that the resulting query radius is guaranteed to be
conservative.

R is a conservative estimation for r0. Note that photon density ρ
is inversely proportional to the square of KNN query radius rk. By
defining a minimal physically meaningful density ρǫ, a reasonably

tight estimation can be be computed from R ∼
√

1

ρǫ
. R is also

used as the estimated query radius in VVH.

Ci is the center of node i’s bounding box. The node radius is com-
puted as half of the length of the bounding box diagonal. α and
nlevel are two user-specified constants which determine the nodes
used for radius estimation. We find that α = 0.5 and nlevel = 3
work well for all examples shown in the paper.



Algorithm 7 Estimate r0

procedure PRECOMPUTERADIUS()
begin

Compute R
Initialize Ri to +∞, for all nodes i
work ←new list
for each kd-tree node i with radius less than α ·R

work.add(i)
for each node i in work

if i.parent is in work then
work.remove(i)

for i=1 to nlevel

for each node i in work
Compute KNN query radius Ri for node i’s center Ci

work′ ←new list
for each node i in work

Add i’s children to work′

work ← work′

end

function ESTIMATERADIUS(in p:point)
begin

r ← R
for each node i containing p

r ← min{r, ‖ p− Ci ‖ +Ri}
return r

end

B Point Cloud Modeling

The kd-tree builder and KNN search algorithm described in Section
5 can be directly used to estimate local sampling density and nor-
mals for dynamic point clouds, as well as to update the deformation
strength field in free-form deformation.

Given a set of points as input, we first build a kd-tree. Unlike in pho-
ton mapping, we do not have a good estimate for the initial KNN
query radiuses, R and r0. We thus let the user specify these parame-
ters. Then in parallel, for each point xi, we find the k-nearest neigh-
bors for xi using KNN search. The final query radius ri can be used
to determine the local kernel size in surface splatting [Zwicker et al.
2001]. The local sampling density can be computed as ρi = k/r2

i .

To compute the normal at xi, as in [Hoppe et al. 1992], we first per-
form principal component analysis (PCA) on the covariance matrix
of its k-nearest neighbors. The unit eigenvector ni with minimal
eigenvalue is regarded as xi’s normal. A minimum spanning tree
(MST) based approach [Hoppe et al. 1992] is then used to make all
point normals consistently oriented. Both the KNN search and PCA
are performed on the GPU. The minimum spanning tree, however,
is currently built on the CPU.

In point cloud deformation tools [Pauly et al. 2003], a scalar value
ranging from 0 to 1 is computed for each point to indicate the defor-
mation strength at that point. Each point’s scalar value is decided
by its distances to the current “active” handle and other static han-
dles. The closer a point is to the active handle, the stronger will
the deformation be for that point. Each handle consists of a set of
points. A point’s distance to a handle is defined as the minimal dis-
tance between the point and all points of that handle. To efficiently
calculate these distances, two kd-trees are built, one for the active
handle and one for all static handles. Then, for each point, its near-
est neighbor in each tree is searched and the distance is computed.
Therefore, when the user defines new handles or removes old han-
dles, we need to rebuild the kd-trees and recompute the distances,
which can be done efficiently using our GPU kd-tree builder and
KNN search.

Figure 8: Sampling density and normal estimation of a point
cloud. From left to right: the input point cloud (127K points) ren-
dered using surface splatting, sampling density map for the rest
pose and sampling density map for a deformed pose (blue: small;
red: large).

Figure 9: Deforming a point cloud (170K points). The active han-
dle is marked in blue. Our algorithm allows the user to define and
switch to new handles quickly.

Experimental Results We have implemented the described algo-
rithm and developed a point cloud deformation tool as in [Pauly
et al. 2003]. Point clouds are rendered using a GPU implementa-
tion of the surface splatting algorithm [Zwicker et al. 2001]. Please
see the accompanying video for live demos.

In Fig. 8, the sampling density and normals are computed for a
dynamic point cloud on the fly. With our GPU algorithm, the kd-
tree is built in about 21 milliseconds and KNN search (k = 10)
takes about 14 milliseconds. The CPU algorithm in Pointshop3D
[Zwicker et al. 2002] uses simple midpoint splitting to build kd-
trees quickly. However, the tree quality is poor, resulting in very
slow KNN search. For the same data, it takes about 32 milliseconds
and 6.5 seconds for tree construction and KNN search respectively.
We also compare our algorithm with the kd-tree algorithm in the
ANN library [Mount and Arya 2006]. For the same data, it takes 98
milliseconds and 828 milliseconds for tree construction and KNN
search respectively. Overall, our approach is over 20 times faster
than the ANN algorithm. Note that to achieve a consistent normal
orientation, a minimum spanning tree is built for the initial pose of
the point cloud, on the CPU in less than 30 milliseconds. Minimum
spanning trees need not be built again during deformation since we
make use of temporal coherence to force the point normals of the
current pose to be consistently oriented to those of the preceding
pose.

In the deformation example shown in Fig. 9, we allow the user to
manipulate the point cloud by defining new handles and dragging
them. Our algorithm can provide immediate response to the user
since the deformation strength field is computed in about 310 mil-
liseconds, while the CPU algorithm based on ANN takes about 3
seconds, and thus provides better user experience.


