
Computers & Graphics (2021)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Multi-resolution Terrain Rendering Using Summed-Area Tables

Shi Li, Chuankun Zheng, Rui Wang∗, Yuchi Huo, Wenting Zheng, Hai Lin, Hujun Bao

State Key Lab of CAD&CG, Zhejiang University, HangZhou, 310058, China

A R T I C L E I N F O

Article history:
Received 2021

Keywords: Terrain Rendering,
Summed-Area Tables (SATs), Level of
Detail (LOD)

A B S T R A C T

Due to the fundamental weaknesses of level-of-detail (LOD) control and rich details
in the Geometry Clipmaps, we propose a multi-resolution terrain rendering algorithm
that utilizes summed-area tables (SATs) [1] to facilitate the rendering of terrain with
better geometric and shading details. First, our algorithm introduces a novel geometric
error bound on the screen-based terrain rendering approach that juggles low render-
ing throughput and better LOD control. Geometric errors are estimated in real-time
from SATs, enabling error-bounded geometry clipmap. Second, we utilize Spherical
Gaussian (SG) functions to approximate lighting and bidirectional reflection distribu-
tion functions (BRDFs), and efficiently calculate outgoing radiance with self-occlusions
of the terrain. SATs are utilized to enable the mipmapping of visibility and normal
maps. We demonstrate the improvements of our method with experiments on accuracy
and efficiency.

c© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Real-time terrain rendering plays an important role in many2

applications, such as geographic information systems, virtual3

reality, 3D games, battlefield simulation, etc. Numerous meth-4

ods have been proposed to address the issue of large terrain5

rendering while maintaining rich details. According to the6

space of refinement hierarchy, these methods can be divided7

into two categories. The first category, namely Mesh Hier-8

archy, is based on the object space. It adopts a hierarchy of9

mesh refinement operations to control LOD for large terrain10

heightmap. The structure of these hierarchies contains irreg-11

ular meshes [2, 3, 4, 5], bin-tree hierarchies [6, 7, 8], bin-tree12

regions [9, 10, 11] and tiled blocks [12, 13, 14]. With the expan-13

sion of hardware capability and GPU pipelines, especially tes-14

sellation shader, more hardwares have been utilized to enhance15

algorithm[15, 16, 17, 18, 19, 20, 21, 22] performance. All these16

methods control the LOD on the terrain through split-merge op-17

∗Corresponding author: Tel.: +86-0571-88206681-430;
e-mail: rwang@cad.zju.edu.cn (Rui Wang)

erations [12] or quadtree structure [20] in object space. How- 18

ever, such hierarchies have several shortcomings. For example, 19

the refinement operations must be pre-computed and consume 20

additional memory; and the data structures involve random- 21

access traversals with poor cache-coherence. To address these 22

issues, Geometry Clipmap [23] pioneers the other category ter- 23

rain rendering methods that the refinement hierarchy is based 24

on screen space rather than object space. While the viewpoint 25

moves, the clipmap levels shift and are only filled with data. It 26

provides considerable advantages. First, it takes constant mem- 27

ory footprint, where all vertices reside in video memory and 28

no explicit vertex I/O at runtime. Second, it has no irregular 29

traversal of geometry structures and no tracking of refinement 30

dependencies, thereby has better rendering throughput and effi- 31

ciency. Geometry Clipmaps has been widely used in the game 32

engines or virtual globes, such as OGRE engine [24] and Open- 33

Globe [25]. However, it still has the fundamental weakness that 34

the LOD in Geometry Clipmaps [23] is essentially based on the 35

2D distance to the viewpoint, thus lacking accurate estimation 36

of geometric errors. 37

In this work, we present a new screen-based terrain rendering 38

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Author version / Computers & Graphics (2021)

approach that inherits the advantages of screen and object space1

approaches. Technically, compared with methods of Mesh Hi-2

erarchy, our method resides all vertices data in video memory,3

and does not need to tessellate the grids or track refinement4

dependencies at runtime. Compared with methods of Geom-5

etry Clipmaps, our method dynamically selects a LOD level of6

heightmap to bound the geometric error using SATs-based fil-7

tering.8

Moreover, we found SATs do not only facilitate the render-9

ing of terrain geometry but could also be used for better ter-10

rain shading. Realistic terrain shading that usually incorporates11

lighting, normal maps, visibility maps, etc., brings more chal-12

lenges to multi-resolution representations and rendering tech-13

niques. Quite a few related works [26, 27, 28, 29, 30, 31, 32]14

have been proposed to filter normal or visibility maps. In this15

work, we employ Spherical Gaussian(SG) functions to approx-16

imate the lighting, visibility and non-diffuse BRDFs. As such,17

the outgoing radiance can be efficiently computed with visibil-18

ity and normal values fetching values from SATs.19

Our major contributions can be summarized as follows:20

• A novel screen space terrain rendering method that esti-21

mates geometric error bound from SATs (Section 4);22

• A novel high-quality terrain shading method composing23

SG-functions-approximated lighting and BRDFs with pre-24

computed visibility maps to effectively calculate outgoing25

radiance (Section 5);26

• An efficient GPU implementation of terrain rendering us-27

ing SATs. (Section 6).28

2. Related Work29

2.1. Terrain Geometry Rendering30

Terrain rendering has long been an active topic in computer31

graphics and geographical sciences. Please refer to this sur-32

vey [33] for a comprehensive review.33

2.1.1. Geometry Representation34

The geometry representation can be divided into two cate-35

gories. The first category adopts a hierarchy of mesh refine-36

ment operations to control LOD for large terrain heightmap.37

The structures of these hierarchies include irregular meshes,38

bin-tree hierarchies, bin-tree regions, and tiled blocks. Irreg-39

ular meshes [2, 3, 5] approximated a number of faces with the40

tracking of mesh adjacencies and refinement operations. Bin-41

tree hierarchies [6, 7, 8] applied the recursive bisection of right42

triangles to optimize performance and memory dynamically.43

Bin-tree regions [9, 10, 11] used a bin-tree structure to define44

refinement operations. Tiled blocks [12, 13, 14, 16, 20, 21, 34]45

partition the terrain into square patches and then tessellate46

the patches into different resolutions. Recently, several ap-47

proaches [18, 20, 21, 22] adopt the tessellation technique to48

improve the traditional triangulation methods. Moreover, pro-49

cedural details and a noise-by-example method were introduced50

by Kang et al. [34] to enhance the geometric characteristics of51

the height map.52

Rather than defining a world-space hierarchy mesh, Frank 53

Losasso and Hugues Hoppe [23] introduced Geometry 54

Clipmaps, which defines a hierarchy centered around the 55

viewer, and this greatly simplifies inter-level continuity in both 56

space and time. Geometry Clipmaps cache nested rectangu- 57

lar extents of the pyramid for rendering in the video memory. 58

As the viewpoint moves, the clipmap levels shift and the terrain 59

data updates toroidally. The LODs purely depend on the 2D dis- 60

tance from the clipmap’s center. Clasen and Hege [35], Alek- 61

sandar and Dejan [36] further extended the Geometry Clipmaps 62

to spherical terrain and an ellipsoid. With the continuous devel- 63

opment of hardware, Dirk and Klaus [37], Barnard et al. [38] 64

and Ge et al. [22] used GPU-based ray casting and tessellation 65

shader to optimize Geometry Clipmaps. 66

2.1.2. LOD Control 67

LOD control is essential to adjust the terrain tessellation as 68

a function of the view parameters. Viewer distance [16, 23] is 69

the most common metric but it lacks an accurate assessment 70

of screen-space geometric errors. Many related works have 71

been focused on this topic in Mesh Hierarchy. The vertical 72

distance [7, 39] of a removed vertex with respect to its linear 73

interpolation provided by the parent node had been applied to 74

approximate object-space errors. Duchaineau et al. [6] calcu- 75

late the thickness of a bound wedgie for each triangle to ap- 76

proximate object-space errors, and then the thickness could be 77

used to estimate the maximal screen-space distortion. Lind- 78

strom et al. [40, 41, 8] used the screen-space error metric to 79

determine the removal and inclusion of vertices for a given 80

viewpoint. Kang et al. [20] utilized GPU tessellation shader 81

to subdivide the terrain mesh in real-time, and selected the 82

tessellation factors on the basis of screen-space errors. How- 83

ever, these approaches cannot be directly applied to Geometry 84

Clipmaps due to viewer-centric grids. Therefore we prefer to 85

add the screen-space geometric error metric on the Geometry 86

Clipmaps because we still agree with the authors[23] that Ge- 87

ometry Clipmaps has many advantages over Mesh Hierarchy, 88

such as simplicity, optimal rendering throughput, visual conti- 89

nuity, steady rendering. 90

2.2. Terrain Surface Shading 91

The common way of terrain shading is to combine texture 92

maps with lighting. Oat and Pedro [42] proposed an approach 93

that considers ambient light. Technically, it precomputes a 94

spherical cap, which stores average, contiguous regions of visi- 95

bility, and computes how much of their light passes through the 96

spherical cap at runtime. Snyder and Nowr-ouzezahrai [43] pre- 97

computed a horizon map for a group of azimuthal directions in 98

the order-4 spherical harmonic (SH) basis. Therefore it enabled 99

soft-shadowed results by the SH triple product of 16D vectors 100

among lighting, visibility, and diffuse reflectance. Given the 101

fact that SH basis functions only capture low-frequency lighting 102

effects and often cause "ringing" artifacts, high-quality terrain 103

shading with spatially-varying reflectance remains a challeng- 104

ing problem. Chajdas et al. [44] presented a shadow rendering 105

approach that distinguishes between near- and precomputed far- 106

shadows to significantly reduce data access and runtime costs. 107

Author version / Computers & Graphics (2021) 3

Fig. 1. Our method pipeline for rendering. We first fetch the object-space errors from SATs and calculate the corresponding screen space geometry error
bound. Next, we select LOD level for each clipmap’s grid using the geometry error bound. Finally, the LOD mesh, normal SATs, and visibility SATs are
used to perform the shading efficiently.

2.3. Prefiltering Methods for Surface Shading1

Finding nonlinear filtering methods for accurate surface2

shading has been one of the central issues in computer graphics.3

Bruneton and Neyret[26] conducted a comprehensive review4

of this topic. Several approaches [28, 45, 31] introduced new5

kernel functions to convolute with normal distribution function6

(NDF). LEAN mapping[30] transferred normal distribution into7

the slope domain and utilized the shape invariance property of8

Beckmann distribution to linearly filter the normal map. Then,9

Eric Heitz et al.[29] investigated the procedural color map as-10

sociated with the displacement map and slope domain. Later,11

LEADR [27] generalized the LEAN mapping framework to12

jointly consider masking and shadowing functions. Recently,13

SGGX[46] is proposed to consider filtering light transports in14

voxel data. Xu et al.[32] gave a real-time BRDF mip-mapping15

without precomputing. Wu et al. [47] extended LEAN and16

LEDAR to general bi-scale appearance models. However, these17

methods still focus on filtering materials and are unsuitable for18

shading of large-scale scenes. We propose a novel method to19

prefilter terrain surface shading with visibility.20

3. Overview21

3.1. Problem Definition22

In general, algorithms based on Geometry Clipmaps cache23

the terrain in a set of grids centered on the viewer. These grids24

represent filtered versions of the terrain at power-of-two resolu-25

tions and are stored as vertex buffers in video memory. As the26

viewpoint updates, the clipmaps shift and are refilled with fil-27

tered heightmap [23]. The LOD control for filtering each grid’s28

heightmap allows a fast exploration of huge terrain data with29

limited memory.30

The mipmap level rendered at each grid should consider view
parameters [23] and the content of terrain data to avoid noise
and increase efficiency. However, no previous method jointly
considers both factors. Here, we introduce a novel approach to
find a tight and efficient bound on the screen-space geometric
error to guide the LOD control for each grid and reduce the

shading cost. The screen-space geometric error Ei of level i for
the grid B j (j is one index of the grids) is defined as follows:

Ei = max
(x,z)∈B j

|Γ(p0)−Γ(pi)|, (1)

where pi denotes the coordinate (x,Hi(x,z),z), (x,z) is the point 31

in grid B j, Hi is the value of level i of the heightmap, whose 32

level 0 is the highest resolution of the heightmap, and Γ is the 33

perspective projection transformation. 34

The general shading of terrain surface calculates the outgoing
radiance [48] on point x toward outgoing direction ωo:

Lo(x,ωo) =

∫
S2

Li(x,ωi)ρ(x,ωi,ωo)〈n(x),ωi〉dωi, (2)

where S2 represents the upper hemisphere, Li(x,ωi) denotes the 35

incident radiance from direction ωi, ρ represents bidirectional 36

reflectance distribution function (BRDF), n(x) denotes normal 37

at point x, the operator 〈·, ·〉 gives the dot product of two vectors, 38

clamped to zero if it is negative. 39

Given the footprint Ω around the point x, the antialiased in-
tegration [28, 49, 50, 27] can be approximated as follows:

Lo(Ω,ωo) =
1
|Ω|

∫
Ω

∫
S2

Li(y,ωi)ρ(y,ωi,ωo)V (y,ωi)

〈n(y),ωi〉dωidy,
(3)

where |Ω| denotes the surface area of Ω and V (y,ωi) is the vis- 40

ibility function, which returns 1 if y is not blocked along the 41

direction ωi and 0 otherwise. 42

In general, we decompose the integrand of Equation 3 into a
lighting term, Li(x,ωi), a BRDF term, ρ̄n(ωi,ωo), and a visibil-
ity term, ρ̄v(ωi), as follows:

Lo(Ω,ωo) =

∫
S2

Li(x,ωi)ρ̄n(ωi,ωo)ρ̄v(ωi)dωi,

ρ̄n(ωi,ωo) =
1
|Ω|

∫
Ω

ρ(y,ωi,ωo)〈n(y),ωi〉dy,

ρ̄v(ωi) =
1
|Ω|

∫
Ω

V (y,ωi)dy.

(4)

Notice that y has been removed from the integrand by assuming 43

Li(y,ω) ≈ Li(x,ω) for all y ∈ Ω and ω ∈ S2 when Ω is small 44

4 Author version / Computers & Graphics (2021)

neighbor around x. Please refer to supplementary materials for1

more details.2

3.2. Algorithm Overview3

Figure 1 illustrates the pipeline of our terrain rendering algo-4

rithm. Initially, each clipmap’s grids centered at camera posi-5

tion will be generated. Subsequently, two stages, namely geom-6

etry stage and shading stage, will be applied to generate shapes7

and colors of terrain respectively.8

In the geometry stage, each level is chosen by bounding the9

screen-space geometric error Ei, derived from maximum filter-10

ing on SATs that store object-space geometric errors for each11

level of heightmap.12

In the shading stage, SG functions are utilized to approxi-13

mate lighting and BRDFs. Further, we precompute visibilities14

on terrain and use SATs to efficiently filter visibility and normal15

maps. The smoothed visibility (ρ̄v) and normal (ρ̄n) are com-16

bined with approximated lighting and BRDFs to facilitate the17

shading computation of terrain geometry.18

In the following subsections 4 and 5, we describe our ter-19

rain rendering algorithm based on screen-space geometric error20

bound and illustrate the shading process.21

4. Geometric-Error Bounded Rendering in Screen Space22

Geometry Clipmaps [23] proposes to select LOD levels23

based on distance. It builds a multi-level terrain pyramid, repre-24

senting nested extents at successive power-of-two resolutions.25

However, only using the distance to select LOD levels might26

cause artifacts or reduce efficiency. For example, if smooth27

meshes are located near the viewpoint, the coarse-level height28

map is enough to provide visual fidelity with high efficiency;29

in contrast, distant steep slopes might still cause high screen-30

space errors and thus requires a fine-level heightmap. Based on31

these observations, our approach adaptively selects the level of32

heightmap and number of vertices for each grid according to33

screen-space geometric errors, rather than the distance.34

4.1. Error Bound Calculation35

We calculate the screen-space errors by projecting object-36

space geometry errors to the screen space. However, calculating37

the screen-space errors at each point is time-consuming, thus38

for each grid, we compute the upper bound of screen-space er-39

ror, called error bound, to guide the selection of the LOD level.40

The screen-space error is related to two factors, the projec-
tion f that is inversely proportional to the distance to the view-
point, and the object-space geometric error that is related to the
heightmap. Therefore, we can combine the independent maxi-
mum value of each factor to calculate the error bound for grid
B j. Specifically, the maximum object-space geometry error of
level i can be calculated as:

ηi = max
(x,z)∈B j

|H0(x,z)−Hi(x,z)|. (5)

Then we can select the maximum LOD level i of heightmap for
grid B j with Equation 1 that produces geometric error smaller

than a given threshold, ξ, at every pixel:

Ei ≤ Êi < ξ,

Êi = max{|P(x0,y0,z0)−P(x0,y0 +ηi,z0)|,

|P(x0,y0,z0)−P(x0,y0−ηi,z0)|}

(6)

where Êi is the maximum screen-space error of grid B j with 41

level i. (x0,y0,z0) is the closest point to the viewpoint in grid 42

B j. Ei is the true screen-space error of grid B j with level i, 43

which has been denoted in Equation 1. 44

4.2. Efficient ηi Calculation using SFAMF and SATs 45

An efficient algorithm to calculate object-space geometry er- 46

ror ηi is critical for reducing the overhead of our algorithm. 47

Because the change of the viewpoint produces a dynamic grid 48

layout on the clipmap, we cannot precompute ηi as Kang et 49

al. [20] did. Instead, we adopt Simple Fast approximation Min- 50

imum/Maximum filter (SFAMF) [51] algorithm to calculate the 51

maximum object-space error for each clipmap’s grid. SFAMF 52

is an efficient algorithm for estimating the minimum/maximum 53

value of a region by using p-norm to approximate the infinity 54

norm in constant time with SATs. 55

Specifically, given a 1D vector x ∈ RN , when 0 < xi < 1 and 56

p >> 1, the p-norm can approximate the infinity norm, i.e., the 57

maximum element, as: 58

N
max
i=1

xi ≈ (
1
N

N

∑
i=1

xp
i)

1
p . (7)

We apply SFAMF in 2D texture data with SATs. The value 59

at any point in the SATs is the sum of all the pixels above and to 60

the left of the point. Therefore the sum of a rectangle sub-region 61

can be directly calculated from the SATs as [1]: 62

TΘ = ∑
x0<x≤x1
y0<y≤y1

T (x,y) = S(x1,y1)−S(x0,y1)−

S(x1,y0)+S(x0,y0).

(8)

where Θ denotes the region Θ , {x,y;x0 < x ≤ x1,y0 < y ≤ y1}, 63

T (x,y) means the value on the point (x,y) of the original table, 64

S(x,y) represents the value on the point (x,y) of SATs. 65

Then we can calculate the mean AΘ = 1
(x1−x0)(y1−y0)

TΘ and 66

the maximum value MΘ = [AΘ]
1
p in the rectangle sub-region. 67

In conclusion, our approach selects levels of the clipmap’s 68

grids by bounding the maximum screen-space errors under a 69

given threshold. The maximum screen-space errors are esti- 70

mated by projecting object-space geometric errors to the screen 71

space. We precompute object-space geometric errors for each 72

level and store in the SATs, then SFAMF is utilized to estimate 73

maximum object-space geometric errors of each clipmap’s grid 74

in constant time. 75

5. Terrain Shading 76

To compute the integration in Equation 4 efficiently in real- 77

time, we process each term separately. Similar to previous re- 78

lated works [52, 53, 32], we adopt spherical Gaussian (SG) 79

Author version / Computers & Graphics (2021) 5

functions to approximate lighting terms L(x,ωi) and BRDF1

terms ρ̄n(ωi,ωo). Subsequently, we prebake the visibility from2

a few directions for each texel of the heightmap and store these3

values as textures. Furthermore, we split the hemisphere of the4

integration in Equation 4 into a few rectangle patches and sum5

each patch’s result as the final integration. The visibility term6

ρ̄v(ωi) of each patch will be estimated with the prebaked visi-7

bility maps.8

Technically, BRDFs can be represented as von Mishes-
Fisher(vMF) distribution [28, 32]. Then, a more compact ap-
proximation can be achieved by merging vMF lobes into a few
representatives to reduce the integration overhead [32]. There-
fore, the BRDF term ρ̄n(ωi,ωo) in Equation 4 can be shown as
follows:

ρ̄n(ωi,ωo) = vMF(ωi,ωo;rM), (9)

where the vMF distribution is characterized by an unnormalized9

vector rM ∈ R3. The detailed derivation is in supplementary ma-10

terials.11

Since a vMF lobe rM can be regarded as a normalized SG
function and the lighting term L(x,ω) can also be represented
as multiple SG functions, meanwhile, the vector product of two
SG function is still represented as another SG, Equation 4 can
be represented as the sum of the integrations of multiple SG
functions over the hemisphere:

Lo(Ω,ωo) =
T

∑
t=0

∫
S2

SGt(ω; p,λ,µ)ρ̄vdω, (10)

where T is the number of SG function, which is the product12

of the numbers of light SG and BRDF SG; SGt(ω; p,λ,µ) =13

µeλ(ω·p−1); p ∈ S2 is the lobe axis; λ ∈ (0,∞) is the lobe sharp-14

ness; µ ∈ R is the lobe amplitude; ω denotes ωi under diffuse15

components and ωh under specular components respectively. A16

spherical warp [52] is needed to transform light space to half17

vector space.18

Wang et al. [52] introduced SSDF to represent visibility and19

approximated Equation 10 through parameterizing the interior20

of the visible region, Iwasaki et al. [53] introduced integral21

SG to solve Equation 10. Both of them are complex, time-22

consuming and unsuitable for large-scale scenes.23

Instead, we construct local spherical coordinates for each SG24

function by aligning the SG axis as z axis, where the direction ω25

can be parameterized by a polar angle θ, and an azimuthal angle26

ϕ, as ω(θ,ϕ) = (sinθcosϕ,sinθsinϕ,cosθ). The integration of27

SG function can be represented as follows:28

ft(θ1,θ2,ϕ1,ϕ2) =

∫
θ2

θ1

∫
ϕ2

ϕ1

SGt(ω(θ,ϕ);z,λ,µ)sinθdϕdθ

=
µ(ϕ2−ϕ1)

λ
(eλ(cosθ1−1)− eλ(cosθ2−1)).

(11)

Given this parameterization, we can split the hemisphere into
a few rectangle patches and easily sum each patch’s result and
calculate the final integration as follows:

Lo(Ω,ωo) ≈
T

∑
t=0

M

∑
m=0

N

∑
n=0

ft(Ωm,n)ρ̄v(Ωm,n), (12)

where the patch number is M×N, Ωm,n denotes the patch region 29

Ωm,n , {θ,φ;0 ≤ θm ≤ θ ≤ θm+1 ≤
π

2 ,0 ≤ φn ≤ φ ≤ φn+1 ≤ 2π}, 30

and ρ̄v(Ωm,n) is the average visibility in this region. 31

Finally, we utilize SATs to store and acquire unnormalized 32

vectors r and visibilities according to the current pixel footprint 33

Ω. rM in Equation 9 can directly be acquired through SATs. 34

Moreover, since we prebake the visibility in the object space, a 35

coordinate transformation is necessary to estimate ρ̄v for each 36

patch because Equation 11 is applied in the local coordinate of 37

the SG axis. 38

6. Implemention 39

We now outline the implementation of our approach de- 40

scribed in Section 4 and Section 5 regarding the following as- 41

pects: 42

1. Preprocessing; 43

2. LOD selection of clipmap’s grids (Section 4); 44

3. Terrain shading (Section 5); 45

4. Performance Optimization. 46

Preprocessings: For the geometry stage, we calculate errors 47

between each level and the finest level of the heightmap and 48

build SATs for p-norm errors of the heightmap. Then we tes- 49

sellate each clipmap’s grid into several levels and caching data 50

in the video memory. 51

For the shading stage, we store extra two types of precom- 52

puted data with the heightmap. First, we sample 16 directions 53

and store visibility values as bits. Then, we employ the nor- 54

mal and BRDF filtering technique [32] to handle normals and 55

BRDFs by storing a unnormalized r values (please refer to Xu 56

et al. [32] for more details). We build SATs for the visibility and 57

r map with six 32-bit floating-point textures, four for visibility 58

map and two for r map (diffuse and specular). All these tex- 59

tures have the same parameterization as the height map, where 60

the range of each footprint is acquired by the differential func- 61

tions dFdx and dFdy in GLSL. 62

LOD selection of the clipmap’s grid: As the viewer moves, 63

the structures of the clipmap’s grids change accordingly, and 64

thus each grid’s LOD selection needs to be updated at run-time. 65

Our approach traverses from the coarsest level to the finest level 66

of the heightmap for each grid. The screen-space errors of each 67

level will be calculated through the projection of the precom- 68

puted object-space errors stored in the SATs. With the help 69

of SATs, the maximum object-space error for each grid can be 70

efficiently acquired through our SFAMF [51] algorithm. If a 71

screen-space error is less than a predefined threshold ε, set to 72

4 pixels as default in our implementation, the current level is 73

chosen as the grid’s LOD level. Moreover, we add flanges [54] 74

around grids to avoid visual crack due to different resolutions 75

of neighboring grids. Algorithm 1 illustrates the whole pro- 76

cess about how to select an accurate LOD level of the clipmap’s 77

grid. For the selection of p-norm in Equation 7 to approximate 78

the infinity norm, we tested various values and compared the 79

corresponding errors in the SFAMF algorithm. While large p 80

6 Author version / Computers & Graphics (2021)

Fig. 2. Comparison of the estimated maximum value between the SFAMF
and the Ground Truth in clipmap’s grids.

yields accurate estimates, it will cause a bug related to numeri-1

cal overflow, i.e., the intermediate output is too small for float-2

ing numbers. We tested various values and found that p = 603

is a balanced choice for our experimental terrain data. Figure 24

shows that we randomly choose 16 climpap’s grids and calcu-5

late the maximum height in each grid through the SFAMF al-6

gorithm and Ground Truth. The horizontal axis is the index of7

the tested grid. The Root Mean Square Error (RMSE) between8

the SFAMF algorithm and Ground Truth is about 4.96, while9

the average height is 298.94. The tolerance is about 1.66%,10

validating that the SFAMF algorithm can well approximate the11

maximum value. Moreover, we randomly choose 100 regions12

near the bottom of the image, where the average error is 0.44%.13

Algorithm 1 Selection of LOD level of clipmap’s grid
Input: terrain heightmap’s SATs; grid; threshold ε

Output: level of clipmap’s grid
1: level←MAXGridLOD
2: uvlb = grid.center− vec2(grid.size/2,grid.size/2)
3: uvrb = grid.center+ vec2(grid.size/2,−grid.size/2)
4: uvlt = grid.center+ vec2(−grid.size/2,grid.size/2)
5: uvrt = grid.center+ vec2(grid.size/2,grid.size/2)
6: area = grid.size∗grid.size
7: while level ≥ 1 do
8: value = (SAT slevel [uvrt] − SAT slevel [uvlt] −

SAT slevel [uvrb]+SAT slevel [uvlb])/area
9: max_ob ject_error = pow(value,1.0/p)

10: max_screen_error = Pro ject(grid,max_ob ject_error)
11: if max_screen_error ≤ ε then
12: return level
13: end if
14: level← level−1
15: end while
16: return level

14

Terrain shading: Outgoing radiance is calculated as de-15

scribed in Section 5. The lighting, clamped cosine and BRDF16

terms are fitted by SG functions. SATs are represented as a 2D17

four-channel 32-bit floating texture, which can be uploaded to18

the GPU for shading and applied to filter visibility map and nor-19

mal map in real-time. Algorithm 2 denotes the pseudocode for 20

filtering texture through SATs in the fragment shader.

Algorithm 2 Filter texture through SATs
Input: SATs for texture; uv coordinate
Output: filtering texture’s value;

1: dx = dFdx(uv)
2: dy = dFdy(uv)
3: bbox = vec2(max(dx.x,dy.x),max(dx.y,dy.y))
4: vec4 ret = texture(SAT s,uv + vec2(−0.5 ∗ bbox.x,−0.5 ∗

bbox.y))
5: ret = ret − texture(SAT s,uv + vec2(0.5 ∗ bbox.x,−0.5 ∗

bbox.y))
6: ret = ret − texture(SAT s,uv + vec2(−0.5 ∗ bbox.x,0.5 ∗

bbox.y))
7: ret = ret + texture(SAT s,uv + vec2(0.5 ∗ bbox.x,0.5 ∗

bbox.y))
8: return ret/(bbox.x ∗bbox.y)

21

Algorithm 3 shows the pseudocode for computing diffuse/ 22

specular radiance, where m and n are tessellation factors of 23

spherical space. In our implementation, we set m, n as 4 and 24

8 respectively. The function "TransferVis" in Line 12 of Al- 25

gorithm 3 is to transfer the pre-sampled visibility to the local 26

coordinate system. Then, "PatchVis" function in Line 16 is to 27

average the pre-sampled visibility in the region of each rectan- 28

gle patch and regard this value as the approximated visibility. 29

Algorithm 3 Diffuse/Specular radiance
Input: visibility/r map;
Output: diffuse/specular radiance Ld/Ls;

1: r = SATs(r map)
2: µ = r

||r|| ,κ = 3||r||−||r||3

1−||r||3

3: ρ̄n = vMF(ω;µ,κ)
4: vis = SATs(visibility map)
5: for i in SG light numbers do
6: if Isspecular then
7: localSG = warpSG(SGlight[i], ωh)
8: else
9: localSG = SGlight[i]

10: end if
11: tempSG← SGProduct(localSG, ρ̄n)
12: newvis← TransferVis(vis, tempSG)
13: L← 0
14: for j in range(0,m) do
15: for k in range(0,n) do
16: ρ̄v←PatchVis(newvis)
17: L = L+ ρ̄v · f (θ j,θ j+1,ϕk,ϕk+1, tempSG)
18: end for
19: end for
20: Ld/Ls+= kd/ks ∗L
21: end for

30

Performance Optimization: First, we employ backface 31

culling and frustum culling for performance optimization. We 32

use a bounding box representing a grid, where the height of 33

Author version / Computers & Graphics (2021) 7

a bounding box is the precomputed maximum and minimum1

height in the grid.2

Furthermore, we use Virtual Texture [55] to manage terrain3

texture data, which can reduce the video memory cost due to4

a sparse representation and improves rendering performance.5

A terrain chunk is regarded as a "page" in the virtual texture,6

and a 2D three-channel 32-bit floating texture as a page table.7

The size limit of the terrain depends on the real terrain data. In8

our case, we use a 4096 * 4096 texture as a page table, Least9

Recently Used (LRU) is utilized as our basic data scheduling10

strategy to manage the texture data, consuming at most 64MB11

GPU memory for each texture. The size limit of the terrain12

depends on the real terrain data.13

7. Results14

The algorithms represented in this paper are implemented in15

OpenGL on a 3.4GHz Intel Core i7-3770 CPU with an NVIDIA16

GeForce GTX 1080Ti GPU. The terrain data is a 163852 grids17

of the Puget Sound area with 16-bit height values at 10m spac-18

ing and represents a wide range of 160km×160km. The entire19

terrain is subdivided into 32×32 terrain chunks, and each chunk20

contains a 5122 grid. The texture is a 16384×16384 image and21

the screen resolution is 1280×720.22

7.1. LOD Selections on Gentle vs. Steep Slopes23

Figure 3 represents a comparison between gentle and steep24

slope terrain rendering. There are two pictures for each group:25

Figure 3(a) and 3(b) show the rendering results, Figure 3(c) and26

3(d) represent the levels of clipmap’s grids. We use the red27

color to represent the highest level and black color to denote28

the lowest level. In this paper, the 0th level is regarded as the29

finest result.30

In general, low levels of clipmap’s grids are used at posi-31

tions close to the viewpoint, while high levels are applied for32

distant positions. However, our approach will choose levels ac-33

cording to the screen-space errors. As shown in Figure 3(b),34

low levels are even adopted in some distant grids to preserve35

more geometric details for mountains in the distance. The re-36

sults demonstrate that the screen-space error works better than37

screen distance for LOD level selections.38

7.2. Different Error Thresholds39

Figure 4 denotes three results with different error thresholds.40

The top images are shading results, while the bottom images41

are the difference between each result and the ground truth.42

The red pixels of the error image express different locations43

with Ground Truth. The RMSE of 1/2/4 pixel error threshold44

is 0.0068, 0.014, 0.026, respectively. Besides, our method also45

supports on-line interactive adjustments on error thresholds.46

In addition, we also take a user study to ask 20 volunteers,47

including females and males, to sort the pictures in the four48

scenes according to the similarity with the example picture49

(each group contains four images, three images are generated50

by our methods with 2/4/8 pixel error threshold and one im-51

age is produced by Geometry Clipmaps [23]). The users are52

Fig. 3. Comparison of LODs between terrain with gentle slope and steep
slope. Darker color means heightmap with lower levels. (a) A gentle
slope terrain result, (b) a steep slope terrain result, (c),(d) the levels of the
clipmaps’ grids.

requested to score the images from 4 to 1 concerning the per- 53

ceptual similarity to the ground truth. As shown in Figure 5, the 54

blue/orange/green bar denote the average scores in each scene 55

of our method with 2/4/8 pixel error threshold respectively, 56

while the red bar denotes the average score in each scene of 57

Geometry Clipmaps [23]. The results validate that our method 58

with a 2/4 pixel error threshold gets more scores than Geometry 59

Clipmaps [23]. 60

7.3. Our Method vs. Geometry Clipmaps 61

Both methods are based on screen space but differ in the 62

mechanism of LOD determination. Our method uses screen- 63

space geometric error rather than distance as the criterion to 64

determine the LOD levels of clipmap’s grids. Our method suits 65

especially well for cliffy terrain rendering, preserving enough 66

details even for distant mountains. Figure 7 illustrates two 67

groups of images for comparison, where each image contains 68

four insets about local details or one difference image between 69

the method and Ground Truth. The red pixels of the difference 70

image on the bottom right corner express error locations. Ge 71

et al. [22] had combined the Geometry Clipmaps with novel 72

hardware techniques, which was considered as one of the lat- 73

est improvement methods of Geomtry Clipmaps. In the distant 74

mountain areas, our method depicts mountain gullies and ridges 75

vividly, while the mountains of Geometry Clipmaps [23, 22] are 76

overly smoothened without details. 77

We choose three typical scenes with different pixel error 78

thresholds in the experiment. As can be seen from Table 1, for 79

Geometry Clipmaps [23] and Ge et al. [22], triangle counts and 80

time remain relatively stable among three scenes, while these 81

two attributes change reasonably with pixel errors in different 82

scenes for our method. Our method outperforms Geometry 83

Clipmaps [23, 22] in a flat terrain scene since we have lower 84

triangle counts. Although the time is reduced in the steep ter- 85

rain scene, there is still enough room for interactive rendering, 86

yet we preserve better details. Also, modern high-performance 87

GPU gives us an edge over other terrain-rendering algorithms. 88

89

8 Author version / Computers & Graphics (2021)

Fig. 4. Comparison of geometric details between different error thresholds. SSIM values are shown in the bracket.

Fig. 5. Results of user study about our method with different error thresh-
olds and Geometry Clipmaps [23].

7.4. Our Method vs. Mesh Hierarchy1

In Table 1 with the same scenes, we also compare the perfor-2

mance of our method and quadtree-based terrain rendering al-3

gorithm [20], which is the state of art in Mesh Hierarchy. Both4

two methods share the same basis of the geometric error bound,5

so we have similar results. Both Kang et al. [20] and Ge et6

al. [22] tessellate the mesh in real-time, which also are limited7

by tessellation factors and may result in additional time, while8

our method could pre-store the level of grids as vertex buffers in9

the video memory. Therefore as shown in Table 1, our method10

outperforms than Kang et al. [20] in many configurations under11

the same screen-space error threshold. Moreover, we also have12

implemented an Android version of our method in OpenGL ES13

3.0, which doesn’t support tessellation shader.14

7.5. Our Method vs. Other Shading Filtering Methods15

To evaluate our shading algorithms, we compared images16

rendered by our methods with those generated through direct17

sampling, non-linear filtering method. The ground truth image18

is generated by 256× super-sampling.19

Scene
GC[23] Ge[22]

ε
Our method Kang[20]

Time Tris. Time Time Tris. Time

general 0.286 1065k 0.286

4 0.312 1658k 0.322

2 0.439 2459k 0.455

1 0.535 3150k 0.662

steep 0.278 1059k 0.303

4 0.408 2341k 0.382

2 0.5 3133k 0.469

1 0.625 4238k 0.671

gentle 0.263 1269k 0.286

4 0.238 842k 0.312

2 0.270 1112k 0.344

1 0.361 1762k 0.404

Table 1. Performance comparison. ε is the screen-space error threshold
and the time unit is milliseconds. The chosen scenes are shown in Figure 8

On the top of Figure 9, we take the visibility term into ac- 20

count to conduct an experiment using a plane with a heightmap. 21

However, Xu et al. [32] cannot handle the visibility term. 22

LEDAR [27] works better on microfacet theory but it doesn’t 23

have any effect on macroscopic visibility. Moreover, it lacks 24

the ability to handle multi-lobe BRDFs. 25

In order to validate our shading model, we extend our exper- 26

iments to some common models. As shown in Figure 9, our 27

results are closer to Ground Truth. 28

Furthermore, we demonstrate our approach in real complex 29

terrain datasets, as shown in Figure 10. Our experiments com- 30

pare three algorithms in the Puget Sound datasets. Similarly, di- 31

rect sampling will be brighter than other methods and quadtree 32

structure will blur the scenes. The bottom insets in Figure 10 33

demonstrate the difference between each method and Ground 34

Truth. The red pixels show color differences between the two 35

images are beyond the shading error metric. Our experiments 36

indicate that our method produces fewer errors than others. Fi- 37

nally, we choose ten positions in the scenes to evaluate the per- 38

cent of error pixels and the SSIM of each algorithm (Figure 6). 39

As shown in Figure 6, our approach has nearly three times of 40

Author version / Computers & Graphics (2021) 9

(a)

(b)

Fig. 6. Comparison of shading errors of different algorithms, (a) denotes
the percentage of different pixels, (b) represents the similarity between
each algorithm and ground truth.

improvements in the shading errors. SSIM [56] algorithm is1

also applied in our experiments, we could conclude that our re-2

sults closely resemble the ground truth. The average frame rate3

of our shading method with dynamic lighting and shadows is4

50-90 fps depending on terrain slopes, which is still enough for5

real-time rendering.6

8. Conclusion and Future Work7

In this paper, we introduce a new screen-space terrain ren-8

dering algorithm optimized over the Clipmaps. Firstly, our ap-9

proach uses the precomputed object-space geometric errors and10

the proposed 2D SFAMF method to select the LOD level of11

clipmap’s grids adaptively. SATs are adapted to conservatively12

estimate geometric errors in real-time. Secondly, SG functions13

are applied to approximate the lighting, BRDFs and clamped14

cosine components, and the outgoing radiance is acquired in15

real-time by integrating the SG functions and visibility terms,16

where visibility and normal values are fetched from SATs.17

We demonstrate interactive terrain rendering over the Puget18

Sound area model with a wide range of 160km× 160km. Our19

method preserves more geometric details in comparison with 20

Geometry Clipmaps while still maintaining relatively high per- 21

formance. Moreover, our approach supports shadow effects, 22

dynamic lighting, and different kinds of BRDFs. SATs enable 23

general texture filtering to acquire more accurate terrain surface 24

signals. Experiments reveal that, in terms of rendering quality, 25

our method outperforms direct sampling and quadtree structure. 26

In conclusion, any existing academic or commercial applica- 27

tions employing the Clipmaps could benefit from our method.. 28

In the future, we would like to investigate more sophisti- 29

cated methods for filtering the overall rendering equation to 30

reduce shading errors and explore more photorealistic terrain- 31

rendering algorithms. Also we would like to investigate our 32

algorithms for rendering terrain with additional factors such as 33

buildings or forests. 34

Acknowledgements 35

This work was supported in part by NSFC (No. 61872319), 36

Zhejiang Provincial NSFC (No. LR18F020002) and National 37

Key R&D Program of China (No. 2017YFB1002605). 38

References 39

[1] Crow, FC. Summed-area tables for texture mapping. In: ACM SIG- 40

GRAPH computer graphics; vol. 18. ACM; 1984, p. 207–212. 41

[2] De Floriani, L, Marzano, P, Puppo, E. Multiresolution models for 42

topographic surface description. The Visual Computer 1996;12(7):317– 43

345. 44

[3] Cohen-Or, D, Levanoni, Y. Temporal continuity of levels of detail in 45

delaunay triangulated terrain. In: Proceedings of Seventh Annual IEEE 46

Visualization ’96. 1996,. 47

[4] Fioriani, LD, Magillo, P, Puppo, E. Building and traversing a surface at 48

variable resolution. Proceedings IEEE Visualization 1997;:103–110. 49

[5] Hoppe, H. Smooth view-dependent level-of-detail control and its appli- 50

cation to terrain rendering. In: Proceedings of the Conference on Visual- 51

ization ’98. 1998,. 52

[6] Duchaineau, M, Wolinsky, M, Sigeti, DE, Miller, MC, Aldrich, C, 53

Mineev-Weinstein, MB. Roaming terrain: Real-time optimally adapting 54

meshes. In: Proceedings. Visualization ’97 (Cat. No. 97CB36155). 1997,. 55

[7] Pajarola, R. Large scale terrain visualization using the restricted quadtree 56

triangulation. In: Proceedings Visualization ’98 (Cat. No.98CB36276). 57

1998,. 58

[8] Lindstrom, P, Pascucci, V. Terrain simplification simplified: a general 59

framework for view-dependent out-of-core visualization. IEEE Transac- 60

tions on Visualization and Computer Graphics 2002;. 61

[9] Levenberg, J. Fast view-dependent level-of-detail rendering using cached 62

geometry. In: IEEE Visualization, 2002. VIS 2002. 2002,. 63

[10] Cignoni, P, Ganovelli, F, Gobbetti, E, Marton, F, Ponchio, F, Scopigno, 64

R. Bdam batched dynamic adaptive meshes for high performance terrain 65

visualization. Computer Graphics Forum 2003;. 66

[11] Cignoni, P, Ganovelli, F, Gobbetti, E, Marton, F, Ponchio, F, Scopigno, 67

R. Planet-sized batched dynamic adaptive meshes (p-bdam). In: Proceed- 68

ings of the 14th IEEE Visualization 2003 (VIS’03). VIS ’03; 2003,. 69

[12] Hitchner, LE, McGreevy, M. Methods for user-based reduction of model 70

complexity for virtual planetary exploration. In: Electronic Imaging. 71

1993,. 72

[13] Bishop, L, Eberly, D, Whitted, T, Finch, M, Shantz, M. Designing a pc 73

game engine. IEEE Computer Graphics and Applications 1998;18(1):46– 74

53. 75

[14] Wagner, D. Appeared in shader-x 2 terrain geomorphing in the vertex 76

shader 2004;. 77

[15] Bösch, J, Goswami, P, Pajarola, R. Raster: Simple and efficient terrain 78

rendering on the gpu 2009;. 79

[16] Strugar, F. Continuous distance-dependent level of detail for rendering 80

heightmaps. Journal of graphics, GPU, and game tools 2009;14(4):57–74. 81

10 Author version / Computers & Graphics (2021)

Fig. 7. Comparison of geometric details between Our Methods, Geometry Clipmaps [23] and Ge et al. [22].

Fig. 8. Scenes of Table 1

[17] Dick, C, Krüger, J, Westermann, R. Gpu-aware hybrid terrain rendering.1

Proceedings of IADIS computer graphics, visualization, computer vision2

and image processing 2010;10:3–10.3

[18] Cantlay, I. Directx 11 terrain tessellation. Nvidia whitepaper4

2011;8(11):3.5

[19] Ripolles, O, Ramos, F, Puig-Centelles, A, Chover, M. Real-time6

tessellation of terrain on graphics hardware. Computers Geosciences7

2012;41(none):147–155.8

[20] Kang, H, Jang, H, Cho, CS, Han, J. Multi-resolution terrain rendering 9

with gpu tessellation. The Visual Computer 2015;31(4):455–469. 10

[21] Zhai, R, Lu, K, Pan, W, Dai, S. Gpu-based real-time terrain rendering: 11

Design and implementation. Neurocomputing 2016;171:1–8. 12

[22] SONG, G, YANG, H, JI, Y. Geometry clipmaps terrain rendering using 13

hardware tessellation. IEICE Transactions on Information and Systems 14

2017;E100.D(2):401–404. 15

[23] Asirvatham, A, Hoppe, H. Terrain rendering using gpu-based geometry 16

Author version / Computers & Graphics (2021) 11

Fig. 9. Comparison of renderings of three models with (a) Ground Truth, (b) Direct sampling, (c) LEDAR [27], and (d) Our method.

clipmaps. GPU gems 2005;2(2):27–46.1

[24] OGRE - Open Source 3D Graphics Engine. ???? URL: https://www.2

ogre3d.org/.3

[25] Cozzi, P, Ring, K. 3D Engine Design for Virtual Globes. 1st ed.; CRC4

Press; 2011. ISBN 978-1568817118.5

[26] Bruneton, E, Neyret, F. A survey of nonlinear prefiltering methods for6

efficient and accurate surface shading. IEEE Transactions on Visualiza-7

tion and Computer Graphics 2012;18(2):242–260.8

[27] Dupuy, J, Heitz, E, Iehl, JC, Poulin, P, Neyret, F, Ostromoukhov, V.9

Linear efficient antialiased displacement and reflectance mapping. ACM10

Transactions on Graphics (TOG) 2013;32(6):211.11

[28] Han, C, Sun, B, Ramamoorthi, R, Grinspun, E. Frequency domain nor-12

mal map filtering. ACM Transactions on Graphics (TOG) 2007;26(3):28.13

[29] Heitz, E, Nowrouzezahrai, D, Poulin, P, Neyret, F. Filtering color14

mapped textures and surfaces. In: Proceedings of the ACM SIGGRAPH15

Symposium on Interactive 3D Graphics and Games. ACM; 2013, p. 129–16

136.17

[30] Olano, M, Baker, D. Lean mapping. In: Proceedings of the 2010 ACM18

SIGGRAPH symposium on Interactive 3D Graphics and Games. ACM;19

2010, p. 181–188.20

[31] Toksvig, M. Mipmapping normal maps. journal of graphics tools21

2005;10(3):65–71.22

[32] Xu, C, Wang, R, Zhao, S, Bao, H. Real-time linear brdf mip-mapping.23

In: Computer Graphics Forum; vol. 36. Wiley Online Library; 2017, p.24

27–34.25

[33] Pajarola, R, Gobbetti, E. Survey of semi-regular multiresolution models26

for interactive terrain rendering. The Visual Computer 2007;23(8):583–27

605.28

[34] Kang, H, Sim, Y, Han, J. Terrain rendering with unlimited detail and29

resolution. Graphical Models 2018;97:64 – 79.30

[35] Clasen, M, Hege, HC. Terrain rendering using spherical clipmaps. In:31

Proceedings of the Eighth Joint Eurographics/IEEE VGTC conference on32

Visualization. Eurographics Association; 2006, p. 91–98.33

[36] Dimitrijevic, AM, Rancic, DD. Ellipsoidal clipmaps - a planet-sized34

terrain rendering algorithm 2015;.35

[37] Feldmann, D, Hinrichs, K. Gpu based single-pass ray casting of large36

heightelds using clipmaps. 2012,.37

[38] Barnard, C. Applying tessellation to clipmap terrain rendering 2014;.38

[39] Evans, W, Kirkpatrick, D, Townsend, G. Right-triangulated irregular39

networks 2001;30(2).40

[40] Lindstrom, P, Koller, D, Ribarsky, W, Hodges, LF, Faust, N, Turner,41

GA. Real-time, continuous level of detail rendering of height fields. In:42

Proceedings of the 23rd Annual Conference on Computer Graphics and43

Interactive Techniques. SIGGRAPH 96; 1996,.44

[41] Lindstrom, P, Pascucci, V. Visualization of large terrains made easy.45

In: Proceedings of the Conference on Visualization 01. VIS 01. ISBN 46

078037200X; 2001,. 47

[42] Oat, C, Sander, PV. Ambient aperture lighting. In: Proceedings of the 48

2007 symposium on Interactive 3D graphics and games. ACM; 2007, p. 49

61–64. 50

[43] Snydre, J, Nowrouzezahrai, D. Fast soft self-shadowing on dynamic 51

height fields. In: Computer Graphics Forum; vol. 27. Wiley Online Li- 52

brary; 2008, p. 1275–1283. 53

[44] Chajdas, MG, Reichl, F, Dick, C, Westermann, R. High-quality shad- 54

ows for streaming terrain rendering. In: Proceedings of Eurographics 55

2015 - Short Papers. 2015, p. 57–60. 56

[45] Tan, P, Lin, S, Quan, L, Guo, B, Shum, H. Filtering and rendering of 57

resolution-dependent reflectance models. IEEE Transactions on Visual- 58

ization and Computer Graphics 2008;14(2):412–425. 59

[46] Heitz, E, Dupuy, J, Crassin, C, Dachsbacher, C. The sggx microflake 60

distribution. ACM Transactions on Graphics (TOG) 2015;34(4):48. 61

[47] Wu, L, Zhao, S, Yan, LQ, Ramamoorthi, R. Accurate ap- 62

pearance preserving prefiltering for rendering displacement-mapped sur- 63

faces. ACM Trans Graph 2019;38(4). URL: https://doi.org/10. 64

1145/3306346.3322936. doi:10.1145/3306346.3322936. 65

[48] Kajiya, JT. The rendering equation. In: ACM Siggraph Computer Graph- 66

ics; vol. 20. ACM; 1986, p. 143–150. 67

[49] Wu, H, Dorsey, J, Rushmeier, H. Characteristic point maps. Computer 68

Graphics Forum 2009;28(4):1227–1236. 69

[50] Iwasaki, K, Dobashi, Y, Nishita, T. Interactive bi-scale editing of highly 70

glossy materials 2012;. 71

[51] Tulleken, H. Simple fast approximate minimum/maximum 72

filters. http://code-spot.co.za/2010/04/16/ 73

simple-fast-approximate-minimum-maximum-filters; 74

2010. 75

[52] Wang, J, Ren, P, Gong, M, Snyder, J, Guo, B. All-frequency render- 76

ing of dynamic, spatially-varying reflectance. In: ACM Transactions on 77

Graphics (TOG); vol. 28. ACM; 2009, p. 133. 78

[53] Iwasaki, K, Furuya, W, Dobashi, Y, Nishita, T. Real-time rendering 79

of dynamic scenes under all-frequency lighting using integral spherical 80

gaussian. In: Computer Graphics Forum; vol. 31. Wiley Online Library; 81

2012, p. 727–734. 82

[54] Ulrich, T. Rendering massive terrains using chunked level of detail con- 83

trol. SIGGRAPH Course Notes 2002;. 84

[55] van Waveren, J. Software virtual textures 2012;. 85

[56] Wang, Z, Bovik, AC, Sheikh, HR, Simoncelli, EP. Image quality as- 86

sessment: from error visibility to structural similarity. IEEE transactions 87

on image processing 2004;13(4):600–612. 88

https://www.ogre3d.org/
https://www.ogre3d.org/
https://www.ogre3d.org/
https://doi.org/10.1145/3306346.3322936
https://doi.org/10.1145/3306346.3322936
https://doi.org/10.1145/3306346.3322936
http://dx.doi.org/10.1145/3306346.3322936
http://code-spot.co.za/2010/04/16/simple-fast-approximate-minimum-maximum-filters
http://code-spot.co.za/2010/04/16/simple-fast-approximate-minimum-maximum-filters
http://code-spot.co.za/2010/04/16/simple-fast-approximate-minimum-maximum-filters

12 Author version / Computers & Graphics (2021)

(a) Ground Truth (b) Direct Sampling (c) Nonlinear filtering with Mip-
mapping

(d) Our method with SATs

(a) Ground Truth (b) Direct Sampling (c) Nonlinear filtering with Mip-
mapping

(d) Our method with SATs

Fig. 10. Comparison of renderings of Puget Sound areas with (a) Ground Truth, (b) Direct sampling, (c) non-linear filtering with quadtree, and (d) Our
methods. The middle insets show two close-up views of two local regions, the bottom insets show the difference between each method and Ground Truth

	Introduction
	Related Work
	Terrain Geometry Rendering
	Geometry Representation
	LOD Control

	Terrain Surface Shading
	Prefiltering Methods for Surface Shading

	Overview
	Problem Definition
	Algorithm Overview

	Geometric-Error Bounded Rendering in Screen Space
	Error Bound Calculation
	Efficient i Calculation using SFAMF and SATs

	Terrain Shading
	Implemention
	Results
	LOD Selections on Gentle vs. Steep Slopes
	Different Error Thresholds
	Our Method vs. Geometry Clipmaps
	Our Method vs. Mesh Hierarchy
	Our Method vs. Other Shading Filtering Methods

	Conclusion and Future Work

