
Real-Time Rendering of Stereo-Consistent Contours
Dejing He Rui Wang* Hujun Bao

State Key Lab of CAD&CG, Zhejiang University

ABSTRACT

Line drawing is an important and concise method to depict the shape
of an object. Stereo line drawing, a combination of line drawing and
stereo rendering, not only efficiently conveys shape but also provides
users with a visual experience of a stereoscopic 3D world. Contours
are the most important lines to draw. However, contours must be
rendered consistently for two eyes because of their view-dependent
nature; otherwise, they cause binocular rivalry and viewing discom-
fort. This paper proposes a novel solution to draw stereo-consistent
contours in real time. First, we extend the concept of epipolar-
slidability and derive a new criterion to check epipolar-slidability
by the monotonicity of the trajectory of the viewpoints of contour
points. Then, we design an algorithm to test the epipolar-slidability
of contours by conducting an image space search rather than sam-
pling multiple viewpoints. Results show that the proposed method
has a much lower cost than that of previous works, therefore enables
the real-time rendering and editing of stereo-consistent contours for
users, such as changing camera viewpoints, editing object geometry,
tweaking parameters to show contours with different details, etc.

Keywords: Stereo contour rendering, binocular rivalry, stereo
consistency, epipolar-slidability, real-time rendering.

Index Terms: Computing methodologies—Computer graphics—
Rendering;

1 INTRODUCTION

As the simplest form of shape, outline is one of the most strik-
ing features of an object. A number of algorithms have been de-
veloped to generate lines from 3D models automatically and ren-
der them interactively. This process is known as line drawing, a
non-photorealistic rendering (NPR) technique. Two types of lines,
namely, view-independent and view-dependent lines, are commonly
used to convey the shapes of objects. View-independent lines, such
as creases, are defined solely on the basis of the geometry of an ob-
ject, i.e., they are defined statically on the object itself. By contrast,
view-dependent lines, such as contours and suggestive contours, are
dynamic features which are defined by an object’s geometry and
viewpoint.

Stereo rendering is a method used to stimulate the perception
of depth from two eyes. It has been widely used in applications,
such as stereoscopic 3D imaging and virtual reality. Stereo line
drawing provides a unique visual experience for users to perceive
outlines of objects in a 3D world by combining stereo rendering
and line drawing. However, while stereo rendering produces a pair
of images with different viewpoints for eyes, stereo line drawing
may induce stereoscopic artifacts, such as binocular rivalry. This is
mainly because view-dependent lines generated for each eye may be
inconsistent in two different views. The stereo consistency of lines
must be ensured to avoid binocular rivalry.

Kim et al. [11] addressed the problem of stereo line drawing
by erasing contour segments that do not have a fusible counterpart

*e-mail: rwang@cad.zju.edu.cn

in the other view. The key idea of their work is to examine the
epipolar-slidability of one contour by rendering multiple images
at viewpoints between two eyes and check the continuity of the
contour among these images. However, it requires a large number
of viewpoints to reduce the matching error for complex surfaces. As
such, this method has a long rendering time that makes real-time
stereo line drawing infeasible. While Kim et al. [11] solved the
problem in image space, Bukenberger et al. [2] proposed another
solution to draw stereo-consistent contours in object space. However,
their approach relies on the simulation of contours observed from
an arbitrary camera path in a precomputation process, which is not
flexible for real-time applications.

In this paper, we present a new real-time solution for efficiently
and flexibly drawing stereo-consistent contours. On the basis of
Kim et al.’s work [11], we design an image space search algorithm
to examine the epipolar-slidabilities of contour points. Technically,
we observe that for each surface point along the epipolar curve,
there exists one corresponding viewpoint lying at the baseline of
the two eyes and seeing the surface point as a contour point. Then,
we can convert the test of the epipolar-slidabilities, i.e., the stereo
continuities of contour points, to checking the trajectory of these
corresponding viewpoints of contour points. When the trajectory
monotonously moves from the left eye to the right eye or vice versa,
these contour points are epipolar-slidable. In this way, we only
need to check some extreme points on the trajectory to guarantee
the monotonicity. This can be performed in image space rather than
sampling multiple viewpoints [11], thereby saving a lot of evaluation
time. Additionally, to avoid missing matches caused by overlaps
of contour points and extreme points, we use the per-pixel linked
list on GPU [18] to keep multiple contour points and extreme points
that may lie in one pixel while searching in image space. Results
show that the proposed method has a much lower cost than that of
previous works, therefore enables real-time rendering and editing
of stereo-consistent contours for users, such as changing camera
viewpoints, editing object geometry, tweaking parameters to show
contours with different details, etc.

The main contributions of our work are summarized as follows:

• A mathematical derivation of epipolar-slidability that the stereo
continuities of contour points along the epipolar curve can be
evaluated by extreme points on the trajectory of the correspond-
ing viewpoints of contour points.

• An image space search algorithm that can be utilized to check
the epipolar-slidabilities of contours in the stereo line drawing.

• A real-time stereo line drawing method that enables stereo
drawing of contours, suggestive contours, and stylized contours
at a real-time rendering rate.

2 RELATED WORKS

Line drawing: To simulate traditional media, such as pen-and-ink
or technical illustration, researchers developed various algorithms
to draw lines from 3D models [4, 16]. In the field of line drawing,
two types of lines are usually used: view-dependent lines and view-
independent lines. Among view-dependent lines, contours [9], in
which two neighboring triangles face in different directions from a
viewpoint, are one of the most important lines to draw. Suggestive

2019 IEEE Conference on Virtual Reality and
3D User Interfaces
23-27 March, Osaka, Japan
978-1-7281-1377-7/19/$31.00 ©2019 IEEE

81

x
i

x
i+1

screen

L R

P
R

P
L

E
i

E
i+1

(a) epipolar-slidable

x
i

E
i

E
i+1

screen

L R

P
L

no contour

(b) not epipolar-slidable

Figure 1: Epipolar-slidability. (a) PL is epipolar-slidable. (b) PL is
not epipolar-slidable. (Figure is modeled after Figure 6 in Kim et
al.’s work [11].)

contours [6], one type of contours that are not only for one viewpoint
but also for nearby viewpoints, are another type of view-dependent
lines that anticipate and extend contours. View-independent lines,
such as creases [15], also reveal important features of a geometrical
shape, but they are not of interest in our work because they are
natively stereo-consistent.

Stereo-consistent NPR: Line drawing is one of non-photorealistic
rendering (NPR) techniques. Studies on NPR have focused on com-
bining stereo rendering to produce stereo-consistent NPR effects.
To avoid artifacts in stereo rendering introduced by stroke-based
rendering algorithms [8], Northam et al. [12, 13] presented algo-
rithms that decompose the left and right views into discretized dis-
parity layers and merge the corresponding layers into one layer,
where the stylization of strokes takes place. In addition to image
stylization techniques, stereo-consistent line drawing from 3D mod-
els has been investigated. Kim et al. [11] described the concept
of stereo-consistent lines and proposed a method to establish the
stereo coherency of lines by checking the fusible counterpart along
the epipolar curve at multiple viewpoints. Bukenberger et al. [2]
proposed a novel solution for stereo-consistent contours that inter-
polates contours in object space between different view positions.
The stylization of lines [10, 14] is also of great concerns. Kim et
al. [11] and Bukenberger et al. [2] both introduced how to stylize
stereo-consistent contours in their works. Kim et al. [11] conducted
stylization by propagating parameters between views via the corre-
spondence between stereo-consistent contour pairs. In Bukenberger
et al.’s work [2], stylization is based on the properties of an object’s
3D shape for temporal coherency. In this paper, we initially dis-
cuss how to ensure the stereo-consistent rendering of contours and
subsequently address the drawing of suggestive contours and the
stylization of stereo-consistent contours.

Per-pixel linked list: Linked lists are a common data structure in
computer science. They are used in various CPU algorithms, but
non-trivial to implement on GPU. Yang et al. [18] introduced a fast
method to construct linked lists on GPU. They used one buffer to
store all linked list nodes and another buffer to store head pointers
per pixel. Per-pixel linked list is the most general method to handle
multiple fragments per pixel. To avoid problems that arise from
overlaps, we use per-pixel linked lists to access data of multiple
fragments at the same pixel. We only build linked lists on contour
points or extreme points. As such, the memory consumption of
per-pixel linked lists is considerably low.

E
i

E
i+1

screen

L R

P
R

P
L

x
i

x
i+1

(a) epipolar-slidable

screen moves in another direction

L R

P
L x

i

x
i+1

E
i

E
i+1

(b) not epipolar-slidable

Figure 2: Corollary of epipolar-slidability. (a)PL is epipolar-slidable.
(b)PL is not epipolar-slidable

3 MATHEMATICAL FORMULATION

In this section, we briefly describe the concept of epipolar-slidability
introduced by Kim et al. [11] and present our derivation for the
epipolar-slidability.

3.1 Epipolar-Slidability

Epipolar-slidability is defined as follows: let L and R denote left and
right eyes, respectively, whereas PL and PR are the corresponding
contour points (Fig. 1). While the viewpoint E moves from L to
R, the corresponding contour point should move from PL to PR
along a curve called epipolar curve [7]. If the contour points on
the epipolar curve continues from PL to PR, PL is epipolar-slidable
(Fig. 1(a)). Otherwise, PL is not epipolar-slidable and no stereo
fusion is possible (Fig. 1(b)), indicating that PL should not be drawn
in stereo rendering.

Kim et al. [11] presented a method to examine the epipolar-
slidability of PL. Specifically, their method initially inserts multiple
viewpoints between two eyes and subsequently renders the contours
of the model for each viewpoint. When all adjacent contour points,
for example xi and xi+1 in Fig. 1(a), are within a certain vicinity, PL
is epipolar-slidable.

3.2 Corollary of Epipolar-Slidability

In our approach, we extend the idea of epipolar-slidability and pro-
vide a corollary by checking the trajectory of the corresponding
viewpoints of contour points from PL to PR instead of evaluating at
multiple viewpoints between L to R [11].

Our approach is based on the observation shown in Fig. 2. Sup-
pose that a contour point x moves along the epipolar curve from PL
to PR. If PL is epipolar-slidable, the corresponding viewpoint for x
moves monotonously from L to R (Fig. 2a). If PL is not epipolar-
slidable, the movement of the corresponding viewpoint E is not be
always incremental before it reaches R (Fig. 2b).

Based on this observation, the attempt to examine the epipolar-
slidability can be technically converted to examining the monotonic-
ity of the trajectory of viewpoints. Theoretically, as long as the
contour point x moves along the epipolar curve, the corresponding
viewpoint E seeing it as a contour point can be computed as follows:

(E−P) ·N = 0 (1)

where P and N denote the position and normal of the contour point
x, respectively.

Considering that E is on the baseline between L and R, we can
parameterize it by a variable t as follows:

E = (1− t)L+ tR (2)

82

screen

L R

Extreme Points

d

screen

L R

Contour Points

a

b

c

I. Computing Contour and Extreme Points

screen

L R

Epipolar-Slidability

b

c

d

II. Testing Epipolar-Slidability

screen

L R

Stereo-Consistent Contour Points

b

c

III. Rendering Stereo-Consistent Contours

a

Figure 3: Illustration of our algorithm. For simplicity, we only show the process to compute view-dependent contours from L to R. First,
contour points a, b, and c and an extreme point d are computed. Second, our algorithm tests the epipolar-slidability of a and b in image space,
where a fails in the test by encountering the extreme point d, and b passes the test by finding the corresponding contour point c from the right
eye. Finally, these stereo-consistent contour points b and c are rendered.

From Equation 1 and Equation 2 we have:

t =
(P−L) ·N
(R−L) ·N

(3)

t is a function of surface point x. While x moves along the epipolar
curve, t(x) is the trajectory function of the corresponding viewpoint
of the contour point x. To check the monotonicity of the trajectory
function t(x), we compute the derivative of t(x) as follows:

t ′ =
(P′ ·N +(P−L) ·N′)((R−L) ·N)− (R−L) ·N′)((P−L) ·N)

((R−L) ·N)2

(4)
where we omit x at both sides of the equation for simplicity. For each
extreme point, when t ′(x) = 0, the monotonicity of the trajectory
may break. We then derive a simpler form of t ′(x) as

t ′(x) =
C(x)|P(x)−L||R−L|sinθ

((R−L) ·N(x))2 (5)

where C(x) is the curvature on the epipolar curve and θ is the angle
between P−L and R−L. A full derivation is provided in the Supple-
mental Material. Note that t ′(x) = 0 may not be continuous because
of the discrete representation of 3D models. Therefore, we com-
pute extreme points where t ′(x−)t ′(x+)< 0 instead of computing
t ′(x) = 0.

We project each contour point on the epipolar curve onto the
left and right image and search along the epipolar line instead of
the epipolar curve. In this way, we can compute and store extreme
points on images and realize the test of epipolar-slidability in image
space.

4 ALGORITHM

Based on our derivation, the epipolar-slidability can be examined
in image space by checking the extreme points of the trajectory
function t(x). Accordingly, we design an algorithm to enable real-
time stereo line drawing with runtime epipolar-slidability tests. In
this section, we summarize the overall pipeline of the algorithm,
provide more details for each stage, and extend our solution to draw
suggestive contours and stylized lines.

An illustration of our algorithm is shown in Fig. 3. It mainly
involves three steps:

I. Computing Contour and Extreme Points: For each frame,
we start with rendering basic contours and extreme points into
per-pixel linked lists in one rendering pass.

II. Testing Epipolar-Slidability: We apply image space searches
for contours computed in the previous step to test their epipolar-
slidabilities.

III. Rendering Stereo-Consistent Contours: We render all
epipolar-slidable contours onto stereo images.

On the basis of the algorithm, we design a real-time rendering
system, which is shown in Fig. 4.

4.1 Computing Contour and Extreme Points
At the first stage, we rasterize the model and compute contours
and extreme points. We largely follow the established rendering
procedure outlined by Kalinins et al. [17] to find all visible contours
for each eye. Generally, we compute all corresponding surface
points of pixels where N ·V = 0 in a rendering pass. These pixels
are contour pixels in image and surface points are contour points.

To compute extreme points, where t ′(x−)t ′(x+)< 0, we observe
that all of the terms, except C(x) in Equation 5, are positive (Supple-
mentary Document). As such, we compute extreme points, where
C(x−)C(x+) < 0, instead of computing on t ′(x). Note that C(x)
is the curvature at x, which can be computed at each triangle in
a manner similar to determining contour points, where N ·V = 0.
However, we design a more sophisticated algorithm to compute
extreme points because of two following reasons. First, after 3D
models are rasterized, normals of fragments are interpolated from
vertex normals using barycentric coordinates. Accordingly, if an
epipolar curve is projected to a triangle, the normal varies linearly
along the projected line, indicating that C(x) is a constant value
inside a triangle. Therefore, extreme points only occur at edges
of adjacent triangles. Second, all extreme points, including those
occluded at one view, should be identified because they may be
visible at the other view. Therefore, we are unable to directly use the
shader derivative functions supported by the modern graphics APIs
to compute C(x−) and C(x+) because these functions are operable
for visible pixels only.

Our algorithm for computing extreme points is illustrated in Fig. 5,
where 4ABC and 4ACD are two adjacent triangles. We use a ge-
ometry shader to emit the edge AC and pass the vertex positions and
normals of two adjacent triangles to the next shader stage. Then, in
the fragment shader, we shoot two rays from camera towards the
points slightly jittered from the point x, i.e., to obtain two neighbor-
ing points x+∆x and x−∆x around x. Given the surface normals
of x, x+∆x and x−∆x, we can compute C(x−) and C(x+) and
determine whether the extreme point exists. Extreme points are
separately computed and stored for two eyes.

83

left eye

right eye

3D

models

contour

rendering

epipolar-

slidability

test

I. II. III.

per frameinitialization

contours epipolar-

slidabilities of

contours

extreme

point

rendering

contours

extreme

points

extreme

points

epipolar-

slidabilities of

contours

stereo-

consistent

contour

rendering

stereo-

consistent

contours

stereo-

consistent

contours

Figure 4: System overview. Boxes in blue/red stand for the instances of the left/right eye. 3D models are loaded, and cameras for two
eyes are set up at initialization. For each frame, contour points and extreme points are initially rendered into per-pixel linked lists. Then,
epipolar-slidability tests are performed on these linked lists. Finally, stereo-consistent contours are rendered based on epipolar-slidabilities
obtained at the former stage.

screen

L R

A

B

C

D
x

x+∆∆x
x-∆∆x

(a) left eye

screen

L R

A

B

C

D
x

x+∆∆x
x-∆∆x

(b) right eye

Figure 5: Computation of extreme points. 4ABC and 4ACD are
two adjacent triangles. We perform extreme point test for each
fragment of edge AC. (a) compute extreme points for left eye. (b)
compute extreme points for right eye.

Some overlaps may exist among contour points and extreme
points, i.e., multiple contour points and extreme points may lie in
one pixel; as such, we use the per-pixel linked lists [18] to keep all
of them. Given that contour points and extreme points occupy a
small proportion of the image space, the memory consumption of
per-pixel linked lists is considerably low.

4.2 Testing Epipolar-Slidability

We use two separated full screen post processes to examine the
epipolar-slidabilities of contours at two views (left eye and right eye).
Our search algorithm to test epipolar-slidability mainly involves
three steps:

1. Reproject the contour point from the current view to the other
view.

2. Determine the search direction (left or right) based on which
side the contour point’s surface normal points to.

3. Search in image space pixel by pixel. For each pixel, we
iterate and check each point stored in the per-pixel linked list.
The search process stops when we reach the pixel having the
corresponding contour point of the other view or when we find

that the monotonicity of the trajectory function t(x) breaks at
some extreme points.

Fig. 6 illustrates two search processes that reach the corresponding
contour point from right to left and vice versa. Fig. 7 shows two
search processes that stop at an extreme point. We now take the
search process from L to R as an example to explain the details of
these steps. The process of searching from R to L is similar.

Search direction: The search direction is determined by which side
the contour point’s surface normal points to. Formally, if the cross
product of the view ray and the surface normal, i.e., cross(N,V),
points to the upward direction of the epipolar plane, then the contour
point’s surface normal points to the left. In this way, we search from
the reprojected point towards the left. Otherwise, we search towards
the right.

False matches exclusion: False matches may occur when an epipo-
lar curve is occluded by other objects. Fig. 8 shows such a case,
where P∗R is a contour point from another object, and p∗R is its
projection in image space. In this case, the search process stops at
p∗R rather than at pR. As a result, contour points that should have
been erased may be retained in the final result. Likewise, contour
points that should have been kept may be falsely erased. To exclude
these false matches, we store the mesh ID of each contour point
and extreme point in per-pixel linked lists. With these IDs, we can
ensure that the search processes can be stopped at contour points or
extreme points from the same mesh.

4.3 Stereo-Consistent Contour Rendering

After the epipolar-slidability test stage, we can obtain all epipolar-
slidable contours. Then, we launch another rendering pass to draw
all contours of the 3D models with the desired line width and remove
non-epipolar-slidable contours. Additionally, on the basis of the
spine test method from a previous work on line visibility [3], we
apply a similar strategy that uses multiple epipolar-slidable probes
along the tangent direction of the contour to reduce artifacts, such as
aliasing and broken lines. The contour point with the closest depth
is selected as a sample if multiple contour points are in the per-pixel
linked list at one pixel.

84

screen

L R

p
R

p
L

P
R

P
L

(a) search to the left

screen

L R

P
R

p
R

P
L

p
L

(b) search to the right

Figure 6: Search processes that reach corresponding contour point.
pL and pR are projections of PL and PR, respectively.

screen

L R

p
F

p
L

P
F

P
L

(a) search to the left

screen

L R

P
L

p
L

p
F

P
F

(b) search to the right

Figure 7: Search processes that stop at an extreme point. PF is an
extreme point. pL and pF are projections of PL and PF , respectively.

4.4 Suggestive Contours
Suggestive contours are points where the radial curvature is zero
when viewed from the convex side [6], so they are considered as
view-dependent lines. However, unlike contours, suggestive con-
tours are partly view-independent because the radial curvatures of
a point for two eyes can both be zero. Therefore, we erase sugges-
tive contours that are not view-independent to ensure their stereo
consistency. In this way, some suggestive contours that are stereo-
consistent but not view-independent may be erased. In our experi-
ments, we find that such a loss is insignificant, and view-independent
portions are sufficient to convey the features of suggestive contours.

Specifically, suggestive contours are rendered into per-pixel
linked lists, along with the contours at stage I. A tag is written
in the linked list node to indicate which type of view-dependent line
it stores. Then, at stage II, we reproject the suggestive contour points
to another view and determine their consistency by checking the
per-pixel linked lists without searching the entire epipolar curve like
contours. Considering that suggestive contours visually anticipate
and extend contours, we allow suggestive contours to be matched
with contours, and vice versa.

4.5 Stylized Contours
Kim et al. [11] conducted stylization by propagating style parameters
from one view to another, whereas Bukenberger et al. [2] extracted
the stylization features in their object space solution. Our method
also supports the stylized rendering of contours. Specifically, we
apply a heuristically combined solution that propagates texture co-
ordinates in image space and determines other parameters in object
shape to draw stylized contours. Texture coordinates are propagated
by contour point matching at stage II, and the properties of object
shape are extracted and applied at stage III.

p
Rscreen

L R

P*
R

p*
R

P
L

p
L

P
R

stop at p*
R

Figure 8: A false match caused by occlusion. We exclude such a
case by mesh IDs.

5 RESULTS

5.1 Quality

To evaluate our method, we compare stereo-consistent anaglyphs
produced by our algorithm with those rendered individually for two
eyes (Fig. 9). Three zoomed regions are highlighted for detailed
comparisons. Our method effectively erases portions of contours
and suggestive contours that are not stereo-consistent.

To further demonstrate the effectiveness of our algorithm, we
show the comparisons of our results and those from previous works
[2, 11] in Fig. 10. However, we do not know the exact parameters
that they used in their methods. As such, we manually tweaked
the parameters to approximate their results. Although results are
different in some details, the qualitative comparisons reveal that
our real-time stereo contour rendering algorithm achieves a similar
stereo consistency.

Although our approach operates solely in image space, the hidden
lines are matched correctly without any special treatment because the
occluded contour points are stored in per-pixel linked lists. Fig. 11
shows a result that is similar to the one shown in a previous study [2]
but is generated with our method.

Our method does not rely on any precomputation, so it supports
dynamic scenes with changing viewpoints and real-time tweaked
parameters. A supplemental video is provided to demonstrate these
advantages of our method. Note that the parameter called “sc thresh-
old” we tweaked in the video is a threshold to control the amount of
suggestive contours.

5.2 Performance

We implement our stereo-consistent contour rendering system using
OpenGL 4.6 on a PC with an Intel Xeon E3 CPU and an NVIDIA
GeForce GTX 960 graphics card. We render the results at a resolu-
tion of 1024×768. Table 1 presents the rendering performance for
Fig. 9 and Fig. 10. These timings are reported by disabling the styl-
ization rendering. By contrast, the system implemented by Kim et
al. [11] runs at 3 FPS with 30,000 vertices using GPU. Bukenberger
et al. [2] implemented a more efficient system that reaches 24 FPS
for meshes with 20,000 faces on CPU, but the GPU version is not
mentioned in their paper. However, such a performance is achieved
without correctly considering the view-dependent occlusions. The
view graph algorithms of their approach take about 0.25 s for the
contours of a small mesh, such as Utah Teapot (2464 faces), and
about 5 s for a large mesh, such as Stanford Bunny, to establish
correct view-dependent occlusions. In comparison with previous
works, our method is faster and offers correct view-dependent con-
tour rendering.

85

Figure 9: Comparisons of anaglyphs generated with a naive method (individual) and our method (consistent). 3D red (left)-cyan (right) glasses
are recommended to view these anaglyphs correctly. Stylized anaglyphs based on consistent results are shown on the right. Models are from
DeCarlo et al’s gallery [5].

Kim et al. Bukenberger et al. Ours Kim et al. Bukenberger et al. Ours

Figure 10: Comparisons of our results with previous results [2, 11]. Parameters were tweaked manually to approximate the results, but the
results still differ in some details because of differences in the models and the implementation of contour rendering. The figure of Pegasus is
stylized with stroke width scaled by z-depth. Models are provided courtesy of IMATI and CNR by the AIM@SHAPE-VISIONAIR Shape
Repository [1].

Ours Bukenberger et al.

Figure 11: Matching with hidden lines. Boxes and arrows are used
to point out the hidden lines. A similar result from another study [2]
is provided on the right.

Table 1: Statistics of example scenes. From left to right: scene,
number of vertices, number of faces, and the performance of stage I,
II, III and all. Timings are recorded with the stylization rendering
off.

Scene Verts. Faces
Performance (ms / FPS)

I II III Total
Bunny (Fig. 9) 35947 69451 6.1 5.6 2.9 14.7/67.7

Max Planck (Fig. 9) 49132 98260 5.8 5.7 2.0 14.3/69.8
Homer (Fig. 10) 5103 10202 1.2 5.1 0.3 6.7/148.2
Pegasus (Fig. 10) 63544 127095 12.0 4.9 6.0 24.0/41.1

5.3 Limitations and Future Work

Although our method can render stereo-consistent contours in real
time, it has some limitations. First, using mesh IDs to exclude false

86

matches may be unreliable when false matches are from the same
mesh. A more reliable solution to exclude wrong matches should
be developed in future works. Second, the temporal coherency of
contours has not been considered yet. Therefore, contours may
flicker in the video, especially when the stylization rendering is
on. This is because that there may exist conflicts between stereo
consistency and temporal coherency in terms of propagating style
parameters or directly stylizing based on the properties of an object
shape. An appropriate solution that considers the temporal coherency
of contours worths exploring in the future.

6 CONCLUSION

We present a real-time rendering technique to draw stereo-consistent
contours. Our basic idea is to examine contour continuity along
an epipolar curve by conducting an image space search instead of
sampling multiple viewpoints in a previous work. Specifically, we
extend the concept of epipolar-slidability and derive a new criterion
to check epipolar-slidability by the monotonicity of the trajectory of
the viewpoints of contour points. On the basis of this derivation, we
propose a multi-stage rendering algorithm that initially computes
contours and extreme points of the trajectory function, and subse-
quently tests the epipolar-slidabilities of contours in image space.
Our algorithm also supports for suggestive contours and stylized
line drawing. Experiments demonstrate that our technique can erase
portions of view-dependent lines that are not stereo-consistent while
preserving high-quality stereo-consistent ones. The whole algorithm
is GPU friendly and has been implemented using shaders. Since
everything is computed from scratch in each frame, our approach
is free of precomputation and allows users to manipulate objects
interactively and tweak the parameters of contours as desired.

ACKNOWLEDGMENTS

We would like to thank all reviewers for their insightful comments.
This research was partially funded by National Key R&D Program
of China (No. 2017YFB1002605), NSFC (No. 61872319) and
Zhejiang Provincial NSFC (No. LR18F020002).

REFERENCES

[1] Inria: Models from visionair shape repository.
http://visionair.ge.imati.cnr.it/ontologies/shapes/, 2004.
Accessed: 1-October-2018.

[2] D. R. Bukenberger, K. Schwarz, and H. P. Lensch. Stereo-
consistent contours in object space. In Computer Graphics
Forum, vol. 37, pp. 301–312. Wiley Online Library, 2018.

[3] F. Cole and A. Finkelstein. Two fast methods for high-quality
line visibility. IEEE transactions on visualization and com-
puter graphics, 16(5):707–717, 2010.

[4] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros,
A. Finkelstein, T. Funkhouser, and S. Rusinkiewicz. Where do
people draw lines? In ACM Transactions on Graphics (TOG),
vol. 27, p. 88. ACM, 2008.

[5] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz,
and A. Santella. Suggestive contour gallery.
http://gfx.cs.princeton.edu/proj/sugcon/models/, 2003.
Accessed: 1-October-2018.

[6] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella.
Suggestive contours for conveying shape. ACM Transactions
on Graphics (TOG), 22(3):848–855, 2003.

[7] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and
binocular stereo. International Journal of Computer Vision,
14(3):211–226, 1995.

[8] A. Hertzmann. Painterly rendering with curved brush strokes
of multiple sizes. In Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, pp. 453–460.
ACM, 1998.

[9] A. Hertzmann and D. Zorin. Illustrating smooth surfaces.
In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, pp. 517–526. ACM
Press/Addison-Wesley Publishing Co., 2000.

[10] R. D. Kalnins, P. L. Davidson, L. Markosian, and A. Finkel-
stein. Coherent stylized silhouettes. In ACM Transactions on
Graphics (TOG), vol. 22, pp. 856–861. ACM, 2003.

[11] Y. Kim, Y. Lee, H. Kang, and S. Lee. Stereoscopic 3d line
drawing. ACM Transactions on Graphics (TOG), 32(4):57,
2013.

[12] L. Northam, P. Asente, and C. S. Kaplan. Consistent stylization
and painterly rendering of stereoscopic 3d images. In Proceed-
ings of the Symposium on Non-Photorealistic Animation and
Rendering, pp. 47–56. Eurographics Association, 2012.

[13] L. Northam, P. Asente, and C. S. Kaplan. Stereoscopic 3d
image stylization. Computers & Graphics, 37(5):389–402,
2013.

[14] J. Northrup and L. Markosian. Artistic silhouettes: A hybrid
approach. In Proceedings of the 1st international symposium
on Non-photorealistic animation and rendering, pp. 31–37.
ACM, 2000.

[15] R. Raskar. Hardware support for non-photorealistic rendering.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, pp. 41–47. ACM, 2001.

[16] S. Rusinkiewicz, F. Cole, D. DeCarlo, and A. Finkelstein. Line
drawings from 3d models. In ACM SIGGRAPH 2008 classes,
p. 39. ACM, 2008.

[17] N. WYSIWYG. Drawing strokes directly on 3d models. ACM
Trans. on Graphics, 2002.

[18] J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz. Real-time
concurrent linked list construction on the gpu. In Computer
Graphics Forum, vol. 29, pp. 1297–1304. Wiley Online Library,
2010.

87

