Parallel and Adaptive Visibility Sampling for Rendering Dynamic Scenes with
Spatially-Varying Reflectance

Supplemental Document

Rui Wang', Minghao Pan, Xiang Han, Weifeng Chen, Hujun Bao

State Key Lab of CAD&CG, Zhejiang University

1. Proof of Spherical Distance Transform

In this section, we give the proof of our spherical dis-
tance transform. In [1], Paglieroni gave several condi-
tions to apply dimensionality reduction Euclidean Dis-
tance Transform (EDT) algorithms on a 2D image as,

d(p1,p2) = f(x1 — x2l, Iy1 — ¥20), (D
Yy, 1xil < ol = fAxl, D < fAxal, yD, 2
Y, [yl < lyal = fUxd, y1D) < fxl, y2D, 3)

where p;(x;,y1) and py(x2,y,) are two points defined
on a 2D image, d(pi, p») is the 2D distance between
p1 and p, computed by a distance function f(Ax, Ay).
If the distance function satisfies conditions (2) and (3),
the EDT can be computed in a dimensionality reduction
manner.

However, in the spherical distance transform, un-
der the non-uniform parameterization, the spherical dis-
tance function does not satisfy Eq.(I). The parameter-
ization of sphere is shown in Figure[I] The latitude is
parameterized in 6 and longitude is parameterized in ¢.
The hemisphere used in our paper to parameterize visi-
bility map can be regarded as the right hemisphere under
this parameterization. Given two points on the sphere,
p(61,¢1) and g(6,, ¢»), the spherical distance d(p,) is
computed by

dy(p, q) = arccos(p - q) “4)

where p = (sin#, cos ¢y, sin 6 sin¢;,cosf;) and q =
(sin 8, cos ¢y, sin 6, sin ¢y, cos 6,). Obviously, dy(p, q)
is not the function of A8 = |0, — 6;| and A¢ = |p; — 2.
Thus, the statement in [1] does not hold in the spherical
distance transform.

In this document, we give two theorems to prove that
under the non-uniform parameterization, if we reduce

Preprint submitted to Computers & Graphics

dimensions in a certain order, i.e. first compute along
latitude and then scan the longitude, these two condi-
tions (2) and (3) still hold. In this way, the spherical
distance transform can be computed in a dimensionality
reduction manner and be parallelized.

Before giving these two theorems, we first introduce
some equations that will be used later. We define a
function to compute the longitude distance between two
points on the sphere, p;(6y, ¢1) and p2(6p, ¢2), as

Y(¢1,¢2) = min(|l¢) — ¢|, 2 — |p1 — d2]) (5)

The longitude distance actually is the distance along the
longitude between two points. Obviously, the range of
W(é1, ¢2) is [0, 7]

Then, given a longitude, ¢y, and two points, p; and
P2, on sphere, we define a function to compute the mid-
dle latitude, 6y, so that the point, py(do, Gp) has the same
distance to these two points, p; and p,, (Figure. . 6o
is computed by

6 = 0@, p1,p2)= (6)
7 A=B
arctan cos th—cos 6 cos B —cos 6 >0

arctan COS%ECiOSHl ’+ 7, cosé}fgosé)] <0
where A = sinf; cos Agy, B = sin6, cos Agy, Apy =
¢1 — ¢ and Ag, = ¢, — ¢. Given any two points on
sphere and a longitude, ¢, utilizing Eq.(6), we are able
to find one point on the longitude, ¢, which has the same
distance to these two points.

Given these two functions, we introduce two theo-
rems.

Theorem 1. Given two points on the same latitude,

Pp1(6o, d1) and p(6y, ¢o), for any longitude ¢, if the lon-
gitude distance Y(¢, ¢1) < V(@P, ¢»), then for points at

November 18, 2014

N-1

P(6/b)

Figure 1: Spherical parameterization. The latitude is parameterized in
6 and longitude is parameterized in ¢.

the longitude ¢, p(0, ¢),0 € [0, nr], we have
ds(p, p1) < ds(p, p2)
where equality holds iff sin@ = 0 or siny = 0.

Proof
According to Eq.(), we have

cosds(p, p1) — cos dy(p, p2) @)
= sin@sinfy(cos(¢p — ¢1) — cos(¢ — ¢7))
sin 6 sin Gp(cos(¥(¢ — ¢1)) — cos(P(¢ — ¢2)))

Since 8, 6, are both in [0, 7], sin 8 sin 6 is always pos-
itive. Thus, according to Eq.(7), if W(¢, ¢1) < ¥(¢, ¢»),
we get cosdy(p, p1) > cosdy(p, p2). Given the facts
that the cosine function decreases monotonically at the
range of [0,x], and the range of spherical distance is
[0,], we have d(p, p1) < ds(p, p») and equality holds
iff sin@ =0orsingy = 0. [

Theorem 2. Given two points on the sphere, p(0y, $1)
and py(6>, ¢2), where 0; < 0,, and one longitude, ¢y,
according to Eq.(6), we have the point, po(6y, ¢o), with
the same distance to po and p;. For any other point
p(6, ¢o) on the longitude, ¢y, if 6 < Oy, then

dy(p, p1) < dy(p, p2),
and if 0 > 8y, then

ds(p, p1) > dy(p, p2).

Proof

For simplicity, we assume ¢ = 0. If ¢9 # 0, we can
set a new coordinate with the x-axis at ¢y = 0 and rotate
all points into the new coordinate. Then, we define a
function F(0) as,

F(0) = cosd(p, p1) — cosdy(p, p2) ¥

Po(B5, o)

Py (Byy)

Figure 2: Ilustration of middle latitude, 6y, in Eq.(@). The point, po,
is the intersection point of the longitude, ¢, with two Voronoi regions
defined by these two points, p; and p».

Thus,

F) = ((sin 8y cos ¢y, sin 8y sin ¢y, cos O)
— (sin#, cos ¢y, sin B, sin ¢,, cos 6>))
(sin 6, 0, cos 6)
F() =Csinf+ Dcosé
S C = sin6; cos ¢y — sin 6, cos ¢,
D = cos 6 —cos b,

Because 6, < 6,, we have D > 0. We then formulate
F(6) as

F(6) = VC2 + D% cos(y — 6) 9)
where y = arccos(C/D). When we take 6 into the F(-)
function, we have F(6y) = 0. Thus, y — 6y = +n1/2.
Because D > 0, v € (—n/2,7/2) and 6y € (0,7), we
have y — 6y = —n/2. By defining 6 = 6, + A6, we have

F) = VA + B cos(7—2r +A6) (10)

Since A8 € (—m,) and the cos(rr/2 + Af) has the same
sign with A6, we have

{ F(6) >0 & dy(p, p1) < dy(p, p2),
F() >0 dy(p, p1) > dy(p, p2),

6 < 6y
o>0, D

(|

Theorem 1 indicates that the condition @ is true,
when we take the LatitudeScans. Theorem 2 indicates
that the condition (3) is true, when we take the Lon-
gitudeScans. Actually, Theorem 2 also proves that the
point, py computed from Eq.(6)), is the intersection point
of a longitude, ¢, with two Voronoi regions defined by
these two points, p; and p», Figure.[2] Using such inter-
section points, the scan on LongitudeScans can be con-
servatively taken out [2]. Combining these two theo-
rems, we prove our spherical distance transform algo-
rithm is a valid EDT algorithm on sphere.

2. Algorithm Details of Spherical Distance Trans-
form

We list our spherical distance transform (SDT) algo-
rithm in Algorithm 1 in the paper. It is extended from
a 2D EDT algorithm [3]. Note that in our paper, the
hemisphere distance transform is a special case of the
spherical distance transform that only computes the dis-
tance filed at hemispheres. Our SDT algorithm takes
two phases, the LatitudeScans and the LongitudeScans,
to convert visibility maps into SSDFs. We represent
SSDF in a square image with N X N resolutions, where
one dimension represents ¢;, and the other dimension
represents 6;.

In LatitudeScans, the computation is taken in parallel
for each 6;. In each thread, we first scan ¢; from 0 to 37
and then backward. A temporary array, g[i, j], is used
to store the closest visible boundary point along latitude
for each (6;, ¢;). The first scan will find the closest visi-
ble boundary point from forward direction and then up-
date from backward direction. The scan range from 0
to 37 is to conservatively compute the distance on the
sphere [4].

In LongitudeScans, for each ¢;, a forward scan and
a backward scan are taken on 0; to extend all closest
visible boundary in the latitude dimension to the lon-
gitude dimension, and obtain final distance field. The
algorithm is similar with that in [5]], but we use Eq.(6)
to compute the intersection point of regions in spheri-
cal Voronoi diagram, which is different from that in 2D
EDT.

References

[1] D. Paglieroni, A unified distance transform algorithm and archi-
tecture, Machine Vision and Applications 5 (1) (1992) 47-55.

[2] J. Maurer, C.R., R. Qi, V. Raghavan, A linear time algorithm for
computing exact euclidean distance transforms of binary images
in arbitrary dimensions, Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 25 (2) (2003) 265-270.

[3] J.B. T. M. R. A. Meijster, W. H. Hesselink, A general algorithm
for computing distance transforms in linear time, Computational
Imaging and Vision 18 (8) (2008) 331-340.

[4] T. Michikawa, H. Suzuki, Spherical distance transforms, in: Pro-
ceedings of the 2008 International Conference on Computational
Sciences and Its Applications, 2008, pp. 405-412.

[S] A. Meijster, J. Roerdink, W. Hesselink, A general algorithm for
computing distance transforms in linear time 18 (2002) 331-340.

	Proof of Spherical Distance Transform
	Algorithm Details of Spherical Distance Transform

