
Parallel and Adaptive Visibility Sampling for Rendering Dynamic Scenes with
Spatially-Varying Reflectance

Supplemental Document

Rui Wang1, Minghao Pan, Xiang Han, Weifeng Chen, Hujun Bao

State Key Lab of CAD&CG, Zhejiang University

1. Proof of Spherical Distance Transform

In this section, we give the proof of our spherical dis-
tance transform. In [1], Paglieroni gave several condi-
tions to apply dimensionality reduction Euclidean Dis-
tance Transform (EDT) algorithms on a 2D image as,

d(p1, p2) = f (|x1 − x2|, |y1 − y2|), (1)
∀y, |x1| < |x2| ⇒ f (|x1|, |y|) ≤ f (|x2|, |y|), (2)
∀x, |y1| < |y2| ⇒ f (|x|, |y1|) ≤ f (|x|, |y2|), (3)

where p1(x1, y1) and p2(x2, y2) are two points defined
on a 2D image, d(p1, p2) is the 2D distance between
p1 and p2 computed by a distance function f (∆x,∆y).
If the distance function satisfies conditions (2) and (3),
the EDT can be computed in a dimensionality reduction
manner.

However, in the spherical distance transform, un-
der the non-uniform parameterization, the spherical dis-
tance function does not satisfy Eq.(1). The parameter-
ization of sphere is shown in Figure 1. The latitude is
parameterized in θ and longitude is parameterized in φ.
The hemisphere used in our paper to parameterize visi-
bility map can be regarded as the right hemisphere under
this parameterization. Given two points on the sphere,
p(θ1, φ1) and q(θ2, φ2), the spherical distance ds(p, q) is
computed by

ds(p, q) = arccos(p · q) (4)

where p = (sin θ1 cos φ1, sin θ1 sin φ1, cos θ1) and q =

(sin θ2 cos φ2, sin θ2 sin φ2, cos θ2). Obviously, ds(p, q)
is not the function of ∆θ = |θ1 − θ2| and ∆φ = |φ1 − φ2|.
Thus, the statement in [1] does not hold in the spherical
distance transform.

In this document, we give two theorems to prove that
under the non-uniform parameterization, if we reduce

dimensions in a certain order, i.e. first compute along
latitude and then scan the longitude, these two condi-
tions (2) and (3) still hold. In this way, the spherical
distance transform can be computed in a dimensionality
reduction manner and be parallelized.

Before giving these two theorems, we first introduce
some equations that will be used later. We define a
function to compute the longitude distance between two
points on the sphere, p1(θ0, φ1) and p2(θ0, φ2), as

Ψ(φ1, φ2) = min(|φ1 − φ2|, 2π − |φ1 − φ2|) (5)

The longitude distance actually is the distance along the
longitude between two points. Obviously, the range of
Ψ(φ1, φ2) is [0, π].

Then, given a longitude, φ0, and two points, p1 and
p2, on sphere, we define a function to compute the mid-
dle latitude, θ0, so that the point, p0(φ0, θ0) has the same
distance to these two points, p1 and p2, (Figure. 2). θ0
is computed by

θ0 = Θ(φ, p1, p2) = (6)
π
2 , A = B
arctan cos θ2−cos θ1

A−B , cos θ2−cos θ1
A−B ≥ 0

arctan cos θ2−cos θ1
A−B + π, cos θ2−cos θ1

A−B < 0

where A = sin θ1 cos ∆φ1, B = sin θ2 cos ∆φ2, ∆φ1 =

φ1 − φ and ∆φ2 = φ2 − φ. Given any two points on
sphere and a longitude, φ, utilizing Eq.(6), we are able
to find one point on the longitude, φ, which has the same
distance to these two points.

Given these two functions, we introduce two theo-
rems.

Theorem 1. Given two points on the same latitude,
p1(θ0, φ1) and p2(θ0, φ2), for any longitude φ, if the lon-
gitude distance Ψ(φ, φ1) < Ψ(φ, φ2), then for points at

Preprint submitted to Computers & Graphics November 18, 2014

Figure 1: Spherical parameterization. The latitude is parameterized in
θ and longitude is parameterized in φ.

the longitude φ, p(θ, φ), θ ∈ [0, π], we have

ds(p, p1) ≤ ds(p, p2)

where equality holds iff sin θ = 0 or sin θ0 = 0.

Proof
According to Eq.(4), we have

cos ds(p, p1) − cos ds(p, p2) (7)
= sin θ sin θ0(cos(φ − φ1) − cos(φ − φ2))
= sin θ sin θ0(cos(Ψ(φ − φ1)) − cos(Ψ(φ − φ2)))

Since θ, θ0 are both in [0, π], sin θ sin θ0 is always pos-
itive. Thus, according to Eq.(7), if Ψ(φ, φ1) < Ψ(φ, φ2),
we get cos ds(p, p1) > cos ds(p, p2). Given the facts
that the cosine function decreases monotonically at the
range of [0, π], and the range of spherical distance is
[0, π], we have ds(p, p1) ≤ ds(p, p2) and equality holds
iff sin θ = 0 or sin θ0 = 0. �

Theorem 2. Given two points on the sphere, p1(θ1, φ1)
and p2(θ2, φ2), where θ1 < θ2, and one longitude, φ0,
according to Eq.(6), we have the point, p0(θ0, φ0), with
the same distance to p0 and p1. For any other point
p(θ, φ0) on the longitude, φ0, if θ < θ0, then

ds(p, p1) < ds(p, p2),

and if θ > θ0, then

ds(p, p1) > ds(p, p2).

Proof
For simplicity, we assume φ0 = 0. If φ0 , 0, we can

set a new coordinate with the x-axis at φ0 = 0 and rotate
all points into the new coordinate. Then, we define a
function F(θ) as,

F(θ) = cos ds(p, p1) − cos ds(p, p2) (8)

Figure 2: Illustration of middle latitude, θ0, in Eq.(6). The point, p0,
is the intersection point of the longitude, φ, with two Voronoi regions
defined by these two points, p1 and p2.

Thus,

F(θ) = ((sin θ1 cos φ1, sin θ1 sin φ1, cos θ1)
− (sin θ2 cos φ2, sin θ2 sin φ2, cos θ2))
· (sin θ, 0, cos θ)

⇔


F(θ) = C sin θ + D cos θ
C = sin θ1 cos φ1 − sin θ2 cos φ2
D = cos θ1 − cos θ2

Because θ1 < θ2, we have D > 0. We then formulate
F(θ) as

F(θ) =
√

C2 + D2 cos(γ − θ) (9)

where γ = arccos(C/D). When we take θ0 into the F(·)
function, we have F(θ0) = 0. Thus, γ − θ0 = ±π/2.
Because D > 0, γ ∈ (−π/2, π/2) and θ0 ∈ (0, π), we
have γ − θ0 = −π/2. By defining θ = θ0 + ∆θ, we have

F(θ) =
√

A2 + B2 cos(
π

2
+ ∆θ) (10)

Since ∆θ ∈ (−π, π) and the cos(π/2 + ∆θ) has the same
sign with ∆θ, we have{

F(θ) > 0⇔ ds(p, p1) < ds(p, p2), θ < θ0
F(θ) > 0⇔ ds(p, p1) > ds(p, p2), θ > θ0

(11)

�
Theorem 1 indicates that the condition (2) is true,

when we take the LatitudeScans. Theorem 2 indicates
that the condition (3) is true, when we take the Lon-
gitudeScans. Actually, Theorem 2 also proves that the
point, p0 computed from Eq.(6), is the intersection point
of a longitude, φ, with two Voronoi regions defined by
these two points, p1 and p2, Figure. 2. Using such inter-
section points, the scan on LongitudeScans can be con-
servatively taken out [2]. Combining these two theo-
rems, we prove our spherical distance transform algo-
rithm is a valid EDT algorithm on sphere.

2

2. Algorithm Details of Spherical Distance Trans-
form

We list our spherical distance transform (SDT) algo-
rithm in Algorithm 1 in the paper. It is extended from
a 2D EDT algorithm [3]. Note that in our paper, the
hemisphere distance transform is a special case of the
spherical distance transform that only computes the dis-
tance filed at hemispheres. Our SDT algorithm takes
two phases, the LatitudeScans and the LongitudeScans,
to convert visibility maps into SSDFs. We represent
SSDF in a square image with N × N resolutions, where
one dimension represents φ j, and the other dimension
represents θi.

In LatitudeScans, the computation is taken in parallel
for each θi. In each thread, we first scan φ j from 0 to 3π
and then backward. A temporary array, g[i, j], is used
to store the closest visible boundary point along latitude
for each (θi, φ j). The first scan will find the closest visi-
ble boundary point from forward direction and then up-
date from backward direction. The scan range from 0
to 3π is to conservatively compute the distance on the
sphere [4].

In LongitudeScans, for each φ j, a forward scan and
a backward scan are taken on θi to extend all closest
visible boundary in the latitude dimension to the lon-
gitude dimension, and obtain final distance field. The
algorithm is similar with that in [5], but we use Eq.(6)
to compute the intersection point of regions in spheri-
cal Voronoi diagram, which is different from that in 2D
EDT.

References

[1] D. Paglieroni, A unified distance transform algorithm and archi-
tecture, Machine Vision and Applications 5 (1) (1992) 47–55.

[2] J. Maurer, C.R., R. Qi, V. Raghavan, A linear time algorithm for
computing exact euclidean distance transforms of binary images
in arbitrary dimensions, Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 25 (2) (2003) 265–270.

[3] J. B. T. M. R. A. Meijster, W. H. Hesselink, A general algorithm
for computing distance transforms in linear time, Computational
Imaging and Vision 18 (8) (2008) 331–340.

[4] T. Michikawa, H. Suzuki, Spherical distance transforms, in: Pro-
ceedings of the 2008 International Conference on Computational
Sciences and Its Applications, 2008, pp. 405–412.

[5] A. Meijster, J. Roerdink, W. Hesselink, A general algorithm for
computing distance transforms in linear time 18 (2002) 331–340.

3

	Proof of Spherical Distance Transform
	Algorithm Details of Spherical Distance Transform

