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Abstract

Fast rendering of dynamic scenes with natural illumination, all-frequency shadows and spatially-varying reflections
is important but challenging. One main difficulty brought by moving objects is that the runtime visibility update of
dynamic occlusion is usually time-consuming and slow. In this paper, we present a new visibility sampling technique
and show that efficient all-frequency rendering of dynamic scenes can be achieved by sampling visibility of dynamic
objects in an adaptive and parallel way. First, we propose a two-level adaptive sampling scheme to distribute sample
points spatially and compute visibility maps angularly on each sample point. Then, we present a parallel hemispher-
ical distance transform to convert these visibility maps into spherical signed distance fields. Finally, using such a
distance-based visibility representation, we integrate our visibility sampling algorithm in the all-frequency rendering
framework for scenes with spatially-varying BRDFs. With an entire GPU-based implementation, our algorithm en-
ables interactive all-frequency rendering of moderate dynamic scenes with environment lighting and spatially-varying
reflectance.

1. Introduction

Natural illumination, complex shadows and detailed
reflections are all important in realistic image synthesis,
but usually require high rendering costs. Precomputed
radiance transfer (PRT) [1, 2], or precomputation-based
rendering, has shown that such rendering costs can be
greatly reduced by precomputing the light transport in
static scenes. Various basis functions, such as spheri-
cal harmonics (SH) basis [1], wavelet basis [2], poly-
nomials [3], spherical radial basis functions [4, 5], etc.,
have been proposed to approximate complex lighting,
all-frequency visibility and spatially-varying BRDFs.
However, the requirement of static scenes has so far ex-
cluded a lot of PRT methods from many important ap-
plications with dynamic objects.

One main challenge brought by dynamic scenes is
that the runtime visibility update of dynamic occlusion
is usually time-consuming. Some work has been done
to extend the PRT framework to dynamic scenes [6, 7,
8, 9]. However, those methods more or less have some
restrictions, such as handling only movements of rigid
objects, rendering with low-frequency shadows, or re-
quiring preprocess on scene’s geometry. These restric-
tions make these methods unable to truly support all-
frequency rendering of fully dynamic scenes.

Figure 1: Rendering results of a dynamic scene at average 5.9 FPS.
Both the cowboy hat and the piece of cloth are textured by spatially-
varying reflectance and illuminated by local and environment lights.

In this paper, we present a new visibility sampling
technique and show that efficient all-frequency render-
ing of dynamic scenes can be achieved by sampling vis-
ibility of dynamic objects in an adaptive and parallel
way. Based on the observation in [10] that the light
transportation in a scene is local and low rank, we first
propose a two-level adaptive runtime visibility sampling
scheme to distribute sample points spatially, and com-
pute visibility maps angularly on these sample points.
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Then, we convert these sampled visibility maps into
hemispherical signed distance fields and interpolate be-
tween them for shading points. A parallel hemispheri-
cal distance transform algorithm is presented to make
this conversion fast. Finally, using such a distance-
based visibility representation, we integrate our visibil-
ity sampling in the all-frequency rendering framework
for scenes with spatially-varying BRDFs. With an entire
GPU-based implementation, our algorithm enables in-
teractive all-frequency rendering of moderate dynamic
scenes.

2. Related Work

Our paper focuses on all-frequency rendering of dy-
namic scenes. Our work is based on a PRT rendering
framework and extends the precomputation of visibility
to a runtime adaptive visibility sampling. Thus, we start
with a briefly review of the PRT technique and then in-
troduce some techniques that are most relevant to our
work.

Precomputation-based rendering. PRT tech-
nique [1, 2] enables real-time rendering under natu-
ral lighting, complex shadowing and detailed materi-
als. Various basis functions, such as spherical har-
monics (SH) basis [1], wavelet basis [2], polynomi-
als [3], spherical radial basis functions [4], etc., have
been proposed to approximate lighting, visibility and
BRDFs. A comprehensive survey of current PRT tech-
niques can be found in [11]. Our work is based on
the all-frequency rendering framework proposed in [5]
and then extended in [12]. By approximating lighting
and BRDFs into spherical Gaussians and representing
visibility into signed spherical distance fields, real-time
rendering is achieved for scenes with spatially-varying
BRDFs. In our method, we replace the visibility pre-
computation by a parallel and adaptive visibility sam-
pling algorithm so as to enable fast rendering of dy-
namic scenes.

The light transport response of vertices in a scene is
local and of low rank [13]. It can be highly compressed
by clustered principal component analysis (CPCA) [14]
or wavelets [2]. Huang and Ramamoorthi [10] proposed
a precomputing method to sample the light transport
matrix adaptively and sparsely. Although they demon-
strated faster precomputation time than previous meth-
ods, their sampling and reconstruction method is still
too slow for dynamic scenes. Our work is inspired by
their work but focuses on runtime update of visibility.

Rendering Dynamic Scenes under Complex light-
ing. The PRT technique has been extended to render dy-
namic scenes. Zhou et al. [6] proposed shadow fields to

generate soft shadows in scenes with moveable objects.
Sun et al. [15] generalized the idea to wavelet product
to render scenes with dynamic glossy objects. How-
ever, these methods only handle the movement of rigid
objects. Zonal spherical harmonics [7] with spheres ap-
proximation [8] enable rendering of deformable objects,
but is limited to SH-represented low-frequency shad-
ows. Iwasaki et al. [9] presented an all-frequency ren-
dering method for dynamic scenes. But, their method
still relies on a precomputed spheres approximation,
which is unable to handle arbitrary movement of ob-
jects. Our adaptive visibility sampling method does not
have such restrictions on scenes.

With the rapid development of computational power
of GPU, some methods using GPU-based point lights
rendering techniques have been proposed for dynamic
scenes. Annen et al. [16] proposed a real-time method
for all-frequency shadows in dynamic scenes based on
convolution shadow maps. Ritschel et al. [17] presented
imperfect shadow maps to compute indirect illumina-
tions from a point approximation of the scene. Besides
their work, there is a large body of recent work on GPU-
based global illumination, such as [18, 19, 20]. These
techniques use GPU to achieve fast illumination, thus
support dynamic scenes. However, similar to most real-
time point-based shadow map techniques, these meth-
ods do not support integrating the BRDF across the
area light source domain, which limits its usage in all-
frequency rendering of non-diffuse BRDFs, especially
spatially-varying BRDFs.

Euclidean Distance Transformation. In this paper,
we present a GPU-based parallel hemispherical distance
transformation algorithm to generate spherical signed
distance fields for visibility interpolation. Our work is
inspired by the Euclidean distance transform (EDT) al-
gorithms on 2D images. EDT is an important method
in computer vision and geometry processing. A com-
prehensive survey on 2D image can be found in [21].
Generally, fast EDT algorithms are designed in a di-
mensionality reduction manner that it first computes
in one dimension, e.g. for each row, and then com-
putes in the second dimension, e.g. for each column.
Such a dimensionality reduction idea was first proposed
in [22] and then improved in [23, 24, 25, 26]. Recently,
Cao et al. [26] has further extended the idea to GPUs
and achieved fast 2D EDTs by dividing data into dif-
ferent bands. However, due to a non-uniform spheri-
cal parameterization, it is non-intuitive to directly ap-
ply these 2D EDT algorithms to the hemispherical do-
main. Michikawa and Suzuki [27] proposed a sequen-
tial algorithm for the spherical EDT but it is too slow
for our application. In this paper, we introduce a new
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Figure 2: (a) Hemispherical parameterization of (θ, φ). (b) A visible
region, Φ, on the hemisphere. (c) The visibility boundary approxima-
tion of the visible region Φ.

parallel distance transformation algorithm, which is de-
signed specifically for the distance transform on the
hemisphere.

3. Overview

Our visibility sampling algorithm is based on the
all-frequency rendering framework for spatially-varying
BRDFs, which was first proposed in [5] and then ex-
tended in [12] for better visibility approximations. In
this section, we first briefly describe the all-frequency
rendering framework and then introduce our visibility
sampling algorithm.

3.1. Rendering Framework

The direct lighting at point x in view direction ωo can
be computed by the following integral:

Lo(x, ωo) =

∫
Ω2π

Li(x, ω) f (x, ω, ωo)V(x, ω) (n · ω)dω

(1)
where Lo is the outgoing radiance, Li is the incident
lighting, f (x, ω, ωo) is the BRDF, V(x, ω) is the visi-
bility function, and (n · ω) is the cosine term. To han-
dle the all-frequency rendering with spatially-varying
reflectance, Wang et al. [5] approximated the lighting
and BRDFs by spherical Gaussians, and represented the
visibility into spherical signed distance functions. In
this paper, we follow the formation, where the incident
lighting and BRDFs are computed as,

Li(ω) ≈
∑

l

Gl(ω; pl, λl, µl),

f (ω,ωo) ≈
∑

m

Gm(ω; pωo
m , λωo

m , µωo
m ).

(2)

in which a spherical Gaussian G has the following form:

G(ω; p, λ, µ) = µ.eλ(p·ω−1) (3)

where p is the lobe direction, λ is the lobe sharpness and
µ is the lobe amplitude. The spherical signed distance
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Figure 3: Our visibility sampling algorithm is split up into two steps:
adaptive visibility sampling (described in Section 4) and hemispheri-
cal distance fields transformation (described in Section 5).

function (SSDF) [28] is used as an intermediate visibil-
ity representation, where for a direction v, it stores a
signed angular distance to the closest visibility bound-
ary. The sign of the function encodes whether the direc-
tion v is occluded or not. It is defined as

D(v) =


+ min

V(t)=0
arccos(t · v), if V(v) = 1

− min
V(t)=1

arccos(t · v), if V(v) = 0
(4)

where v and t are vectors on a unit sphere, V(·) is the vis-
ibility function that returns 0 when being occluded and 1
otherwise. To better represent the visibility, in [12], the
SSDF, D(v), is extended to adaptively sampled distance
field [29], where the domain of the SSDF is adaptively
divided into a set of cells, and visibility boundaries are
approximated by iso-lines in these cells, Figure 2(c). In
this way, in each cell, the rendering integral is

Li j
o =

∫ ϕi+1

ϕi

∫ kϕ+b

θ j

∑
l,m

Gl,m(ω)(n · ω) sin θdθdϕ. (5)

where (ϕ, θ) is the 2D parameterizations of a sphere,
Figure 2(a), ϕi, ϕi+1, θ j, θ j+1 are upper and lower bounds
of a cell, and kϕ + b is the iso-line function in the cell,
Figure 2(c). The final outgoing radiance of Eq. (1) can
be computed by summing radiance from all cells. In this
rendering framework, binary visibility maps are sam-
pled at vertices and converted into distance functions to
be interpolated for per-pixel shading.

Both in [5, 12], the spatially-varying field of SSDFs
on vertices are computed in a preprocess. This makes
them only applicable for static scenes. Our goal is to
speed up the computation of these SSDFs.

3.2. Visibility Sampling for Dynamic Scenes

Based on the observation that these spatially-varying
SSDFs on vertices can be heavily compressed by
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PCA [5], the full visibility computation on all vertices
is unnecessary and redundant.

We present a new parallel and adaptive visibility sam-
pling algorithm that computes the visibility of dynamic
scenes fast as well as updates the SSDFs at runtime. Our
algorithm is split up into two main steps: adaptive vis-
ibility sampling and hemispherical distance transform
(Figure. 3). In adaptive visibility sampling, we take a
two-level adaptive scheme to compute the visibility spa-
tially and angularly. At the first level, a set of sample
points are initially distributed on vertices of objects, and
then spatially refined in iterations. New sample points
are placed in areas with high visibility variations. At
the second level, on each sample point, rays are gener-
ated adaptively to compute the hemispherical visibility
map according to sampled visible boundaries. The goal
of these steps is to generate spatial sample points and
angular rays to approximate the visibility distribution in
the scene such that the visibility can be computed as
close as possible to the real disctribution while using
as few samples as possible. After computing visibility
maps on sample points, we present a parallel hemispher-
ical distance transformation (HSDT) algorithm to con-
vert visibility maps into SSDFs. These SSDFs are inter-
polated per pixel to compute the render integral Eq. 5.
We will discuss more details of these steps in following
sections.

4. Adaptive Visibility Sampling

In this section, we introduce our two-level parallel
and adaptive visibility sampling algorithm. One level is
at adaptively inserting or erasing sample points on sur-
face to spatially approximate the visibility distribution.
The other level is at adaptively computing the visibility
map, Vx, of visibility sample point x. To compute the
visibility map efficiently, we use adaptive ray-tracing
to evaluate the binary visibility map at spatial sample
points and then estimate visibility differences among
these sample points to adaptively insert new sample
points or erase old sample points.

4.1. Generate Initial Sample Points
Before we start the adaptive sampling, a set of sample

points are initially generated on geometry surfaces. To
simplify the computation, we select sample points from
geometry vertices. Since at this stage information of
visibility is unavailable, we employ a geometric error
metric proposed in [19], eg, to find best candidates from
vertices for sample points as,

eg(xi, xk) = α ||xi − xk || +
√

2 − 2(~ni · ~nk) (6)

(a) 16 × 16 (b) 32 × 32

(c) 64 × 64 (d) 128 × 128

Figure 4: Adaptive angular visibility sampling. (a)∼(d) are visibility
maps with different resolution. Only boundary rays (in red) are gen-
erated for further visibility tests. In (d), we visualize the SSDF after
our hemispherical distance transform.

where xi and xk are two vertices, ~n denotes a surface
normal and α is a weighting factor that determines
the relative importance of position and normal incurred
changes, which typically varies between 0.1 ∼ 0.5 in
our experiments (after the scene geometry scale is nor-
malized). Based on such an error metric, we cluster ver-
tices into groups by an iterative GPU-based KMean al-
gorithm. After the clustering, we select the vertex that
is closest to each cluster center as the sample point, in
order to guarantee every sample point is on the surface.

4.2. Adaptively Compute Visibility Function

To adaptively sample visibility maps on sample
points, we use a GPU-based ray-tracing method [30] to
generate visibility rays. To utilize the parallel compu-
tational power, a multi-pass algorithm is taken. In the
first pass, a small number, e.g 16×16, of rays, which are
uniformly distributed on hemisphere, are generated for
intersection tests. At following passes, these rays, pro-
ducing visible boundaries, are sampled densely until the
required resolution is reached. These boundary rays are
detected from 8-neighborhood search on the visibility
map generated in previous pass. If one neighbor pixel
has different intersection status, e.g. the neighbor pixel
is unocclued when the center pixel is occluded or the
neighbor pixel is occluded when the center pixel is un-
occluded, the center pixel is regarded as boundary pixel
and the ray represented by the center pixel is regarded
as a boundary ray. In Figure 4, we illustrate an exam-
ple of the adaptive angular visibility sampling. It can be
seen that our method only samples visibility at bound-
ary regions, which are usually much sparser than the en-
tire hemisphere space. However, if there are some small
or slim objects in the scene, at the first pass, the initial
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(a) Initial (b) Iteration 1 (c) Iteration 2 (d) Reference

Figure 5: Adaptive spatial sample points

16×16 may be not enough to capture all detailed occlu-
sions. To improve the visibility sampling at each pass,
we not only use visibility rays generated from this sam-
ple point but also use rays from adjacent sample points
to detect boundary rays. Compared with local visibil-
ity rays, rays from adjacent sample points provide a
good supplementary and reduce the possibility of miss-
ing small occluders. Furthermore, in some scenes, we
increase the initial visibility rays from 16×16 to 32×32
to improve the sampling of visibility maps.

4.3. Adaptively Distribute Visibility Sample Points

After having the visibility maps on each sample point,
we use these visibility information to update the spatial
distribution of sample points. Our goal is to insert new
sample points at regions with large visibility variations
and erase sample points at places that has been approx-
imated well by other sample points.

In order to fast evaluate the spatially-varying visibil-
ity among visibility sample points, we project visibility
maps on sample points to spherical harmonics (SH) and
then use the difference of SH coefficients to be the spa-
tial visibility error, ev.

ev(xi, xk) =
∑
l,m

‖ cl,m
i − cl,m

k ‖ (7)

where cl,m are SH coefficients and l and m are the band
and index. In our method, we use total 16 SH coeffi-
cients.

Given the spatial visibility error, ev, we take three
steps to adaptively update visibility sample points. First,
we build a KD-tree on existing sample points. Then, for
a sample point, xi, we take range search to find adjacent
neighbors, x j. From these neighbors, we interpolate a
new sample point xavg at the spatial position of current
sample point xi as

xavg =

n∑
j=1

w jx j,w j =

1
eg(xi,x j)∑n

p=1
1

eg(xi,x j)

(8)

where w j is an inverse distance weighting function
based on the geometric error metric, eg. Given the inter-
polated xavg, we use Eq.(7) to compute the spatial vis-
ibility error between xavg and xi as ev(xi, xavg). If the
error is larger than a threshold, Ev,max, it indicates that
there might be larger visibility variation between this
sample point and its adjacent neighbors. In this case,
new sample points will be added. If the error is smaller
than a threshold, Ev,min, it indicates that this sample
point xi can be well interpolated by adjacent neighbors.
In this case, it is marked as a candidate to be erased. If
the error is between Ev,max and Ev,min, this sample point
will be kept in this iteration and without going through
further operations.

The final step is to insert new sample points or erase
sample points. When inserting new sample points, we
first compute pairwise visibility error, ev, between xi

and all its neighbors. The neighbors that produce er-
rors larger than Ev,max are collected. For each pair of
xi and the neighbor with large error, we average their
spatial positions to obtain a candidate position, and se-
lect the vertex closest to the candidate position to be the
new sample point. When erasing sample points, all can-
didates to be erased are collected. But we only erase
one sample point, of which all neighbors are not in the
candidate list. This is to avoid erasing too many sample
points at one time. After erasing these sample points,
further computations related to these samples, such as
new sample point insertions and distance field interpo-
lations, can be saved.

Figure 5 shows several iterations of our adaptive dis-
tribution of visibility sample points. Points in red are
sample points generated in previous iteration and green
ones are sample points inserted after one iteration. It
can be observed that with more spatial sample points
generated, the shadow under the hat gets improved.

5. Parallel Hemispherical Distance Transform

Given the visibility map Vx and the definition of the
distance field in Eq. 4, our algorithm requires a fast dis-
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tance transform method. The state-of-the-art EDT al-
gorithm with best performance is computed in a dimen-
sionality reduction manner. However, in our paper, the
2D parameterization from spherical visibility map to 2D
dimensional domain is non-uniform. This makes us un-
able to directly apply these 2D dimensionality reduction
EDT algorithms to our hemisphere distance transform.
Fortunately, we observe that in the spherical cse, if we
reduce dimensions in a certain order, i.e. first scan lat-
itude and then scan longitude, the distance inequalities
used in dimensionality reduction of 2D EDT algorithm
still hold. Proofs can be found in our supplementary
document. In this way, we restrict the scanning order
in dimensions of latitude (parameterized in θ in our pa-
per) and longitude (parameterized in φ), and use the
spherical distance as the Euclidean distance to extend
the EDT algorithm [24] from the 2D Euclidean space to
the hemispherical space.

The main steps of the algorithm are listed in Algo-
rithm 1. It takes two phases, the LatitudeScans and the
LongitudeScans, to convert visibility maps into SSDFs.
In our paper, each SSDF is represented in a square im-
age with a 128 × 128 resolution, where one dimension
is parameterized in latitude, φ j, and the other dimension
is in longitude, θi. In the LatitudeScans, the computa-
tion is taken in parallel for each θi. At each θi, we first
scan φ j from 0 to π and then scan backward. A tem-
porary array, g[i, j], is used to store the closest visible
boundary point along latitude for each (θi, φ j). The first
scan will find the closest visible boundary point from
one direction and then update from another direction.
In the LongitudeScans, at each φ j, a forward scan and
a backward scan are taken on θi to extend all closest
visible boundary in the latitude dimension to the longi-
tude dimension. After these two phases, we obtain final
distance field. In both phases, these scans can be paral-
lelized and computed efficiently. More algorithm details
can be found in the supplementary document.

6. Rendering

Our adaptive visibility sampling algorithm naturally
fits in the all-frequency rendering framework proposed
in [5, 12]. In this section, we introduce the implementa-
tion to integrate the visibility sampling algorithm in the
rendering of dynamic scenes.

Before the runtime computation, in a preprocess, we
approximate all environmental lighting and BRDFs by
a set of spherical gaussians [5]. At runtime, we first up-
date the KD-tree of the scene using the GPU-based KD-
tree construction [30]. Then, we rasterize the dynamic
scene into several frame buffers, where for each pixel,

Algorithm 1 Hemispherical Euclidean Distance Trans-
form

procedure LatitudeScans()
for each θi in parallel do

for φ j = 0 to π do
if V(θi, φ j) is visible then

g[i, j] = (θi, φ j)
else

g[i, j] = g[i, j − 1]
for each θi in in parallel do

s = (θi, π)
for φ j = π to 0 do

if D(g[i, j], (θi, φ j))¿D(s, (θi, φ j)) then
g[i, j] = s

else
s = g[i, j]

end

procedure LongitudeScans()
for each φ j in parallel do

q = 0, t[0] = (0, φ j), s[0] = (0, φ j)
for θi = 0 to π do

while q ≥ 0&&D(t[q], s[q])¿D(t[q], (θi, φ j)) do
q = q − 1
if q < 0 then

q = 0, s[0] = (θi, φ j)
else
θw = Θ(φi, s[q], g[i, j])
q = q + 1, s[q] = g[i, j], t[q] = (θw, φ)

for each φ j in parallel do
for θi = π to 0 do

if θi ≥ w[q] then
d[i, j] = D((θi, φ j), s[q])

else
d[i, j] = D((θi, φ j), s[q − 1]), q = q − 1

end

we store the spatial position, local coordinate frame,
texture coordinate and the material index. After that,
we apply the visibility sampling algorithm introduced
in this paper to adaptively compute visibility maps and
transform them into SSDFs. By interpolating these SS-
DFs from sample points to shading points, we compute
the final rendering integral as that in [12]. At interpolat-
ing SSDFs, for each shading point, a local range search
is employed to find adjacent sample points. The weight
used in interpolation is the weight in Eq. 8.

Optimization. To efficiently compute the SH coef-
ficients of visibility maps, we tabulate the SH basis on
hemisphere into multi-resolution images and use short
float (16 bits) to store them. We load higher levels of
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this tabulated basis images in constant memory of GPU
for fast data fetch, and try to keep lower levels in L2
cache to speedup the computation. Additionally, ob-
serving that shading points may not require all sam-
ple points generated in the initial step, we use raster-
ized frame buffer to collect sample points. Only these
points that may be used for shading are taken for fur-
ther adaptive computation. In each stage, computation
in the rendering is organized into bathes. We always try
to launch enough threads to utilize the parallel compu-
tational power and hide the latency.

7. Results

All results are generated in an image resolution of
640×480 and computed on a PC with an Intel CoreTM i7
3770 CPU and a NVIDIA GeForce 680 GTX graphics
card with 1G memory. The lighting probes are from
[31]. The spatially-varying BRDF textures are available
from [32, 33].

Our algorithm mainly introduces two kinds of param-
eters. One kind is the spatial visibility error thresholds
to control the distribution of visibility sample points,
Ev,max and Ev,min. In our implementation, we use relative
error thresholds, where Ev,min < ev(xi, xavg)/ev(xi, xi) <
Ev,max. The other kind is the resolution of visibility
maps, r. To better visualize the changes of shadows un-
der different parameters, we setup a simple scene that
contains all diffuse objects and has one area light light-
ening from the top. Figure 6 shows some rendering re-
sults of such a scene under different parameter settings.
From left to right, with the decrease of spatial visibil-
ity error threshold, Ev,max, more visibility sample points
are generated to better capture the shadow under the hat.
From top to bottom, two different resolutions, 64 × 64
and 128×128 of visibility maps are used. It can be seen
that with the increase of resolutions of visibility maps,
shadows are better generated and with less ringing ef-
fects. In our following results, we use Ev,max = 10%
and Ev,min = 5%, and r = 128 × 128 as default.

The statistics of our test scenes are listed in Table 1.
The visibility map is computed with a resolution of
128 × 128 on each sample point. In order to reduce
the storage sizes of visibility maps and SSDFs, we store
visibility maps in 1 bit arrays and SSDFs in short float
(16 bits) arrays. Hence, the total memory consump-
tion for one sample point is 2KB of the visibility map
and 32KB of the SSDF. To perform the GPU-based ray
tracing, we keep a kd-tree in the memory, which con-
sumes 15MB to 22MB for different scenes used in this
paper. The total memory usage is reported in Table 1.
For adaptive visibility sampling, we measure the time to

compute visibility maps and that to take hemispherical
distance transforms separately. It can be observed that
most time is spent at computing visibility maps, tV . The
time to compute rendering integration, tI , relates to the
number of pixels. The time to take hemispherical dis-
tance transforms, tS , is proportional to sample points.

To validate our method, we make further compar-
isons with two existing methods, the shadow map-based
approach that replaces our adaptive visibility sampling
by rendering shadow maps, and the GPU-based Monte
Carlo ray tracing that directly computes the rendering
equation by sampling rays. To compare with the shadow
map-based approach, we use the scene shown in Fig-
ure 1 as the test scene and only compare the perfor-
mance of computing visibility maps. Three different
resolutions, 64×64, 128×128 and 256×256, of visibil-
ity maps are used and evaluated. Results are plotted in
Figure 7. It can be seen that the shadow map-based ap-
proach has better performance when the resolution of
visibility map is low. However, when the resolution
of visibility map increases, our parallel and adaptive
visibility sampling algorithm outperforms. It demon-
strates the better scalability of our method. To compare
with the GPU-based Monte Carlo ray tracing, we use
the scene shown in Figure 9(a) as the test scene. We
adapt the multiple importance sampling [34] to increase
the sampling efficiency of Monte Carlo integration in
scenes with environment maps and glossy BRDFs. Re-
sults generated by two methods are shown in Figure 8. It
can be seen that at the same rendering time, our method
has much less noise, and at the similar rendering qual-
ity, our method has about 10× speedup. The reason is
mainly because our method only computes the visibil-
ity maps on certain visibility sample points, whereas in
Monte Carlo ray tracing, for each pixel, a set of rays are
required to generate for integration.

Figure 1 and Figure 9 show some screen shots of dif-
ferent dynamic scenes. The first scene is a deformed
cowboy hat model on a piece of folded cloth. Both hat
and cloth are textured by spatially-varying reflectance.
Note the self shadow on the hat, and on the cloth and
the shadow changes while hat deforms. Second scene
is two balls rolling on a dish. Balls are rendered us-
ing Blinn-Phong model and the dish is used in Cook-
Torrance model. Note the shadow changes while posi-
tions of balls move. Third scene is a walking man with
a hat. Man and hat are both in diffuse BRDF and the
plane is textured by spatially-varying reflectance. Due
to different BRDFs, the specular shadows and diffuse
shadows are different. Please refer to the supplemen-
tary video for the entire sequences of dynamic scenes.
For these three scenes, our algorithm achieves interac-
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Scene #Pixels #Verts #Samples Total Memory tI tV tS FPS
Figure. 1 104k 21k 1282 57.5 MB 47ms 95ms 28ms 5.9
Figure. 9(a)-(c) 127k 30k 1824 81.5 MB 56ms 183ms 40ms 3.6
Figure. 8 and 9(d)-(f) 117k 32k 3527 139.1 MB 53ms 557ms 77ms 1.5

Table 1: Statistics of test scenes. From left to right, columns present different scenes, the number of average view pixels, vertices and average
sample points, the average times to take integration, tI , sample visibility, tV , and take hemispherical distance transform, tS . The final column is the
average FPS.

(a) Ev,max = 20%, r = 64 × 64 (b) Ev,max = 10%, r = 64 × 64 (c) Ev,max = 5%, r = 64 × 64

(d) Ev,max = 20%, r = 128 × 128 (e) Ev,max = 10%, r = 128 × 128 (f) Ev,max = 5%, r = 128 × 128

(g) Zoomed in areas (h) Reference image

Figure 6: Results comparison using different parameters. From left to right, (a) to (c) and (d) to (f), with the decrease of spatial visibility error
threshold, Ev,max, more visibility sample points are generated to better capture the shadow under the hat. From top to bottom, (a) to (d), (b) to (e),
and (c) to (f) , two different resolutions, 64 × 64 and 128 × 128, of visibility maps are used. It can be seen that with the increase of resolutions,
shadows are better produced and with less ringing effects. (g) shows the zoomed in areas. (h) shows the reference image generated by per pixel
shading with 256 × 256 visibility maps.

tive rendering at average 5.9, 3.6 and 1.5 FPS.
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Figure 7: Performance comparison between our method and the
shadow map-based approach in rendering the scene shown in Figure 1.

8. Discussion and Conclusion

In this paper, we propose an adaptive visibility sam-
pling algorithm for all-frequency rendering of dynamic

scenes. Our approach mainly takes two steps, adaptive
visibility sampling and hemispherical distance transfor-
mation. In the adaptive visibility sampling, we take
a two-level adaptive scheme to compute the visibility
spatially and angularly. The goal of such an adaptive
sampling is to distribute spatial sample points and an-
gular rays to represent true visibility in the scene while
using as few samples as possible. In the hemispher-
ical distance transform, we extend the 2D EDT algo-
rithm to hemispherical space and achieve fast transfor-
mation. With an entire GPU-based implementation, our
algorithm enables interactive all-frequency rendering of
moderate dynamic scenes with environmental lighting
and spatially-varying reflectance.

Some limitations imposed in our method might be
good directions for future work. First, our method can-
not handle semi-transparent surfaces. The visibility map

8



(a) Our result (b) Result of MC with the same rendering time (c) Result of MC with a similar quality

Figure 8: Comparison with GPU-based Monte Carlo ray tracing. (a) is generated by our method. The rendering time is about 253ms. (b) is
generated by GPU-based Monte Carlo ray tracing with the same rendering time. The average samples per pixel is about 128. It can be seen that the
image has much more noise than our result. For such a scene with glossy BRDF and environment lighting, it takes 2.48s and requires about 1024
samples per pixels to obtain a result with similar quality as ours, which is shown in (c). Our method has about 10× speedup.

(a) (b) (c)

(d) (e) (f)

Figure 9: Rendering results of more dynamic scenes.

only records visible status. It will be an interesting di-
rection to integrate semi-transparent surfaces or multi-
bounces light transports in our framework. Potential
ways might be using separate or different visibility maps
for different semi-transparent objects or multi-bounces.
Second, we used the difference of SH coefficients as the
spatial visibility error metric. Such an error metric may
miss some high-frequency directional variations and re-
sult in insufficient sampling in some cases. It produced
some slight flickering effects in rendering the entire se-
quences of dynamic scenes. More elegant error criteria
will be an interesting topic in future. Third, since the
compression and uncompression cost on SSDFs is high,
we stored raw SSDFs for each sample point, which took
tens to hundreds of megabytes storage size for our test
scenes. In the future, fast compression or dynamic stor-
age of SSDFs on sample points may be required to ex-

tend our method for a scene with a large number of sam-
ple points. Finally, the adaptive visibility sampling in
our method is non-conservative. In some cases, slim or
small occluders may be missed. But, given the com-
plexity and computational cost of conservative visibil-
ity sampling algorithms, it is with great difficulties and
challenges to adapt them for rendering scenes with nat-
ural illumination, all-frequency shadows and spatially-
varying reflections. We believe that our adaptive visibil-
ity sampling algorithm provides an effective approxima-
tion on the visibility of the scene, and the fast computa-
tion of our method will be benefit for many applications.
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