
IEEE TRANSACTIONS ON VISUALIZATION & COMPUTER GRAPHICS 1

APPENDIX A
THE LINEAR APPROXIMATION OF SPHERICAL
GAUSSIAN

In the following, we give the linear approximation of
the spherical gaussian within a cell.

As the approximation is defined as 1D polynomial
functions respective to the dot product, (v · p), we
first project the cell to that 1D domain to compute a
interval [a, b] and then approximate the Gaussian by
1-order Legendre polynomials.

Given the four corner vertices of the cell,
c0(φ0, θ0), c1(φ1, θ0), c2(φ1, θ1), c3(φ0, θ1), if the lobe
axis does not lie in the cell, the interval is computed
as a = {min(ci ·p)|i = 0 to 3} and b = {max(ci ·p)|i =
0 to 3}. If the lobe axis lies in the cell, then b = 1 and a
is computed as a = {min(ci · p)|i = 0 to 3}. Similarly,
if the opposite of the lobe axis lies in the cell, then
a = −1 and b = {max(ci · p)|i = 0 to 3}.

We need to find optimal coefficients (α, β), so that
the polynomial α+ βx is a optimal approximation of
Guassian G(x) = µeλ(x−1) in the interval x ∈ [a, b]
in the least-square sense. We first map the domain
of the problem from [a, b] to [−1, 1] through variable
substitution x = a+b

2 + b−a
2 t = p + qt, where p =

a+b
2 , q = b−a

2 . Substituting x(t) into the Guassian, we
have G(t) = µeλ(x−1) = µeλ(p+qt−1), the least-square
linear approximation of G(t) is found by projecting it
to the normalized Legendre polynomials:

P0(t) =
1

2
, P1(t) =

3

2
t.

yields

r0 = (P0, G(t)) = c sinh (λq)
λq , where c = µeλ(p−1)

r1 = (P1, G(t)) = 3cλq cosh (λq)−sinh (λq)
λ2q2

(1)

Substituting back t = x−p
q into r0 + r1t, we get the

optimal coefficients of x:

α =

(
r0 −

r1(a+ b)

b− a

)
, β =

(
2r1
b− a

)
(2)

The error of this approximation is measured as

e =
∫ b

a
||µeλ(x−1) − (α+ βx)||2dx (3)

APPENDIX B
THE ANALYTIC DOUBLE PRODUCT INTE-
GRALS

In this section, we derive the analytic formation of
the double product integral (Eq.(8)). As p∗ and n are
vectors in the space, whose Cartesian coordinate is
given by (px, py, pz) and (nx, ny, nz), respectively. The

dot products (p∗ · ω) and (n · ω) are computed as:

p∗ · ω = pxcosφsin θ + pysinφsin θ + pzcos θ

= up sin (φ+ γ)sin θ + vpcos θ

n · ω = nxcosφsin θ + nysinφsin θ + nzcos θ

= un sin (φ+ τ)sin θ + vncos θ

(4)

Substituting these dot products into Eq. (8), we have

Lo ≈
∫ φ1

φ0

∫ kφ+b

θ0
(α∗ + (p∗ · ω)) (n · ω) sin θdθdφ

= α∗∫ φ1

φ0

∫ kφ+b

θ0
(n · ω) sin θdθdφ

+
∫ φ1

φ0

∫ kφ+b

θ0
(p∗ · ω) (n · ω) sin θdθdφ

= α∗A(φ0, φ1, θ0, k, b,n) +B(φ0, φ1, θ0, k, b,n,p∗)

(5)
where

A(φ0, φ1, θ0, k, b,n)

=
∫ φ1

φ0

∫ kφ+b

θ0
(un sin (φ+ τ)sin θ + vncos θ)sin θdθdφ

B(φ0, φ1, θ0, k, b,n,p∗)

=
∫ φ1

φ0

∫ kφ+b

θ0
(up sin (φ+ γ)sin θ + vpcos θ)

(un sin (φ+ τ)sin θ + vncos θ) sin θdθdφ

(6)
Before computing the analytic functions of A and

B, we first give some integrals of functions of φ that
are used in further derivation.

C0(φ0, φ1) =
∫ φ1

φ0
dφ = φ1 − φ0

C1(φ0, φ1, p) =
∫ φ1

φ0
sin (φ+ p)dφ = − cos (φ+ p)|φ1

φ0

C2(φ0, φ1, s, t) =
∫ φ1

φ0
cos (sφ+ t)dφ = sin (sφ+t)

s

∣∣∣φ1

φ0

C3(φ0, φ1, p) =
∫ φ1

φ0
φ sin (φ+ p)dφ

= (sin (φ+ p)− φ cos (φ+ p))|φ1

φ0

C4(φ0, φ1, p, s, t) =
∫ φ1

φ0
sin (φ+ p) sin (sφ+ t)dφ

= 1
2

(
sin ((1−s)φ+p−t)

1−s − sin ((1+s)φ+p+t)
1+s

)∣∣∣φ1

φ0

C5(φ0, φ1, p, q, s, t)

=
∫ φ1

φ0
sin (φ+ p) sin (φ+ q) cos (sφ+ t)dφ

=
(

sin (sφ+t) cos (p−q)
2s − sin ((s−2)φ+t−p−q)

4(s−2)

− sin ((s+2)φ+t+p+q)
4(s+2)

)∣∣∣φ1

φ0

(7)

IEEE TRANSACTIONS ON VISUALIZATION & COMPUTER GRAPHICS 2

where φ0, φ1 are integral interval and p, q, s, t are
function parameters.

Then, we decompose A(φ0, φ1, θ0, k, b,n) and com-
pute it as

A(φ0, φ1, θ0, k, b,n) = unA0 + vnA1 (8)

where,

A0 =
∫ φ1

φ0

∫ kφ+b

θ0
sin (φ+ τ) sin2 θdθdφ

=
∫ φ1

φ0
sin (φ+ τ)

(
2θ−sin (2θ)

4

)∣∣∣kφ+b

θ0
dφ

= 1
4

∫ φ1

φ0
2kφ sin (φ+ τ)− sin (2kφ+ 2b) sin (φ+ τ)

+(2b− 2θ0 + sin (2θ0)) sin (φ+ τ)dφ

= 1
4 (2kC3(φ0, φ1, τ)− C4(φ0, φ1, τ, 2k, 2b)

+(2b− 2θ0 + sin (2θ0))C1(φ0, φ1, τ))

(9)

A1 =
∫ φ1

φ0

∫ kφ+b

θ0
cos θsin θdθdφ

=
∫ φ1

φ0
−1

2 cos
2 θ

∣∣kφ+b

θ0
dφ

= −1
2

∫ φ1

φ0
(cos2 (kφ+ b)− cos2 θ0)dφ

= − 2(kφ+b)+sin (2kφ+2b)
8k

∣∣∣φ1

φ0

+ cos2 θ0
2 φ

∣∣∣φ1

φ0

(10)

To simplify the notation, we use A0 and A1 to repre-
sent A0(φ0, φ1, θ0, k, b,n) and A1(φ0, φ1, θ0, k, b,n) re-
spectively. In following, we will use the same notation
on B and Bi that Bi is the simplified notation of
Bi(φ0, φ1, θ0, k, b,n,p∗).

After having A, similarly, we decompose
B(φ0, φ1, θ0, k, b,n,p∗) and compute it as

B(φ0, φ1, θ0, k, b,n,p∗) = upunB0 + upvnB1

+ vpunB2 + vpvnB3

(11)

B0 =
∫ φ1

φ0

∫ kφ+b

θ0
sin (φ+ γ) sin (φ+ τ) sin3 θdθdφ

=
∫ φ1

φ0
sin (φ+ γ) sin (φ+ τ) cos (3θ)−9 cos θ

12

∣∣∣kφ+b

θ0
dφ

= 1
12 (C5(φ0, φ1, γ, τ, 3k, 3b)− 9C5(φ0, φ1, γ, τ, k, b)

−(cos (3θ0)− 9 cos θ0)C4(φ0, φ1, γ, 1, τ))

(12)
As B1 and B2 have similar forms, we only give the

derivation of B1 and directly give the analytic form
of B2.

B1 =
∫ φ1

φ0

∫ kφ+b

θ0
sin (φ+ γ)cos θ sin2 θdθdφ

=
∫ φ1

φ0
sin (φ+ γ) 3 sin θ−sin (3θ)

12

∣∣∣kφ+b

θ0
dφ

= 1
12 (3C4(φ0, φ1, γ, k, b)− C4(φ0, φ1, γ, 3k, 3b)

−(3 sin θ0 − sin (3θ0))C1(φ0, φ1, γ))

(13)

B2 = 1
12 (3C4(φ0, φ1, τ, k, b)− C4(φ0, φ1, τ, 3k, 3b)

−(3 sin θ0 − sin (3θ0))C1(φ0, φ1, τ))

(14)
B3 =

∫ φ1

φ0

∫ kφ+b

θ0
cos2 θsin θdθdφ

=
∫ φ1

φ0
− cos (3θ)+3 cos θ

12

∣∣∣kφ+b

θ0
dφ

= − 1
12 (C2(φ0, φ1, 3k, 3b) + 3C2(φ0, φ1, k, b)

−(cos (3θ0) + 3 cos θ0)C0(φ0, φ1))

(15)

APPENDIX C
ILLUSTRATION OF VISIBILITY BOUNDARY EX-
TRACTION ALGORITHM

To demonstrate the ability of our visibility bound-
ary extraction algorithm, We provide some results of
boundary extraction of complex occluders in Fig. 1. As
explained in Section 5 and detailed in Algorithm 1 of
the paper, we control the quality of visibility extrac-
tion by iterative subdivision. The process is controlled
by a threshold that takes into account the bound-
ary extraction error. Similar approach was taken by
Frisken et al. [18] to approximate shapes by distance
fields. While the proof of conservativeness can be
difficult, in practice we find the approach works well
even for complicated visibility functions. As can be
seen from these examples, by controlling the error
threshold er, we are able to increase the accuracy of
boundary extraction and catch disconnected visibility
regions and some wiggles Fig. 1(b).

APPENDIX D
QUALITY AND PERFORMANCE TRADE-OFF

In our method, we take an adaptive subdivision
scheme to extract visibility boundaries. In such a way,
it allows users to make tradeoff between shadow
quality and performance. In Fig. 2, we show results
with different shadow quality and performance. It
can be observed that by tweaking the error threshold
more cells are generated and higher quality of soft
shadows can be obtained, and performance declines
accordingly.

IEEE TRANSACTIONS ON VISUALIZATION & COMPUTER GRAPHICS 3

(a) Visible region and the SSDF (b) er = 0.2 (c) er = 0.04 (d) er = 0.008

(e) Visible region and the SSDF (f) er = 0.2 (g) er = 0.04 (h) er = 0.008

Fig. 1. Extracting the boundary of complex occluders. (a) and (b) are two visible regions with different complex
boundaries. Cells and extracted boundaries under different threshold er are shown.

(a) navg = 1, FPS 85.0 (b) navg = 3.3, FPS 51.5 (c) navg = 8.5, FPS 35.1 (d) navg = 13.8, FPS 22.7

Fig. 2. Demonstration of the quality and performance trade-off, navg is the average number of cells generated
per pixel.

