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Fig. 1: We propose a new learning-based power-budget rendering framework that selects the optimal rendering settings
to maximize visual quality within a given GPU power budget in real-time. The figure shows the experimental results of
the Bistro scene, wherein our power-optimal settings drastically reduce power consumption yet produce comparable image
quality to the maximum quality setting. The charts on the right show power consumption and quality error (calculated by
the pixel-wise L1 Norm metric).

Abstract—With the prevalence of embedded GPUs on mobile devices, power-efficient rendering has become a widespread concern
for graphics applications. Reducing the power consumption of rendering applications is critical for extending battery life. In this paper,
we present a new real-time power-budget rendering system to meet this need by selecting the optimal rendering settings that maximize
visual quality for each frame under a given power budget. Our method utilizes two independent neural networks trained entirely by
synthesized datasets to predict power consumption and image quality under various workloads. This approach spares time-consuming
precomputation or runtime periodic refitting and additional error computation. We evaluate the performance of the proposed framework
on different platforms, two desktop PCs and two smartphones. Results show that compared to the previous state of the art, our system
has less overhead and better flexibility. Existing rendering engines can integrate our system with negligible costs.

Index Terms—Power-budget rendering, rendering system, neural network

F

1 INTRODUCTION

W ITH the popularity of embedded GPUs in battery-
powered mobile devices, real-time rendering tech-

nologies have been widely used in various mobile applica-
tions, such as mobile games and virtual reality applications.
The rendering quality of these applications and the screen
resolution of mobile devices [1] are also increasing to meet
user preferences.

Given the currently limited progress of commercial bat-
tery techniques, people pay many endeavors to extend the
durability of mobile devices. For example, real-time render-
ing applications consume a massive amount of energy and
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drastically shorten battery life, severely damaging the user
experience.

In light of this background, reducing the energy con-
sumption of rendering applications is an urgent need and an
important challenge in computer graphics. Recently, many
researchers have explored the energy-saving problem of
real-time rendering applications [2], [3], [4], [5], [6]. They
believe that reducing the amount of computation that has
less impact on visual experience is an effective solution.

Among these explorations, power-budget rendering is
an under-explored topic [4], [6] but catches extensive at-
tention in the industry. Wang et al. [4] implemented an
offline power-budget rendering framework requiring time-
consuming initialization, while Zhang et al. [6] presented an
online version using heuristic power and quality estimation
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models. Both of them achieve a good trade-off between
power consumption and visual quality. Still, the initial-
ization and the models employed in these two methods
heavily rely on view- and scene-related power and quality
measurements at runtime. Therefore, these methods require
precomputation for new scenes or time-consuming periodic
refitting and additional error computation for new views,
resulting in low accuracy of power and quality predictions
as well as low adaptivity of changes of scenes and views.

In this paper, we design a new self-tuning rendering
framework with faster and more accurate predictions to bet-
ter balance the rendering quality and the power consump-
tion. This framework presents maximized rendering quality
on a power budget by automatically selecting the optimal
rendering settings for each frame. Our framework requires
users to provide a power budget as input; subsequently, all
operations are transparent to users. Specifically, we:

• Propose a neural network model utilizes GPU’s oper-
ating frequencies and rendering settings to predict the
power consumption of GPUs;

• Present a neural network model that is capable of
predicting the rendering qualities from rendering set-
tings and the occupied image percentages of rendering
effects;

• Train these neural network models with data entirely
from synthesized scenes, thus significantly reduce the
difficulty of preparing datasets;

• Develop a new real-time power-budget rendering
framework with proposed power and quality models,
enabling self-tuning of rendering parameters for each
frame to minimize quality error within a given power
budget.

We use an in-house OpenGL-based rendering system to
implement our prototypical framework. Results from four
test scenes show that our method can continuously keep
the GPU power consumption below the given budget. It
saves 54% relative power consumption at the expense of
21% relative quality error on average (Figure 9).

The remaining part of this paper is organized as follows.
Section 2 describes the related work, Sections 3 and 4 define
the problem that we are attempting to solve and propose the
algorithm overview, respectively. Sections 5 and 6 discuss
the structure and the training of our power and quality
prediction models. Section 7 describes the approach of se-
lecting the optimal rendering settings. Section 8 details the
implementation, and Section 9 shows some of our results.
The last section discusses and summarizes the paper.

2 RELATED WORK

Rendering contains a wide range of studies. Offline ren-
dering is one kind of quality-oriented techniques that pur-
sues physically realistic visual results and usually costs
minutes to hours to render a single image [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17]. On the other
hand, real-time rendering aims to achieve interactive frame
rates for performance-oriented applications [18], [19], [20],
[21], [22], [23], [24]. In recent years, energy conservation
has become an important open issue and inspired a new
rendering topic, power-budget rendering. This topic in-
cludes both hardware- and software-based solutions, such
as energy-saving displays [25], [26], dynamic voltage and

frequency scaling (DVFS) [27], [28], variable-precision ren-
dering [29], variable-rate shading [30], [31], and tile-based
rendering [32], [33]. Other research has explored new direc-
tions, such as GPU power modeling [34], [35] and rendering
with dynamic settings [4], [6]. Given that our method shares
technologies with rendering utilizing neural networks, we
first review rendering methods with neural networks briefly.
Then, we discuss previous work on energy-saving render-
ing, which is highly relevant to the proposed method.

Neural networks in rendering. Neural networks have
been successfully used in various rendering applications,
such as denoising [36], [37], material modeling [38], [39],
[40], material synthesis [41], screen space shading [42],
and global illumination [43], to name a few. While these
approaches take images or material features as input, our
method takes the GPU’s statistics at runtime as input to
predict power consumption and rendering quality. Such
predictions enable a self-tuning power-budget rendering
system.

Energy-saving rendering. The DVFS algorithm is one
of the most extensively used energy-saving algorithms in
integrated circuits and rendering [27], [28]. The key idea
of the DVFS algorithm is to dynamically adjust operating
frequency and the corresponding voltage in accordance
with the current workload. The power consumption of an
integrated circuit can be modeled as follows [44]:

P = CfV 2 + Pstatic, (1)

where P is the power consumed by the integrated circuit;
C denotes the capacitance of transistor gates; f represents
the operating frequency; and V is the applied voltage gov-
erned by f . Pstatic denotes the static power caused by the
leakage current. Given that the operating frequency deter-
mines the required voltage for keeping transistors stable,
the consumed power increases as the cubic of the frequency.
Therefore the DVFS algorithm can achieve high energy ef-
ficiency by quickly adjusting the operating frequency. Most
modern GPUs have integrated the DVFS algorithm on the
hardware level; however, this approach does not reduce the
computation of rendering.

From a high-level perspective, GPU power can be mod-
eled by considering the scene information. Vatjus-Anttila
et al. [34] proposed a power consumption model based
on the number of draw calls, triangles, and texels. Huang
et al. [35] considered the additional factors of embedded
GPUs, such as occlusion, tiles, the number of shading, and
the execution time of shaders. However, these proposed
models lack usability for multipass rendering frameworks.
Zhang et al. [6] have constructed a power model for energy-
saving rendering with increased accuracy by considering
different rendering processes, such as shadows, reflections,
and anti-aliasing. Generally, these high-level models can
predict the power consumption of any given 3D scene
without considering the characteristics of the underlying
hardware.

Dynamic rendering setting is an under-explored area in
the literature. Wang et al. [4] provided a straightforward
power-budget rendering framework requiring heavy scene-
and device-related precomputations. Zhang et al. [6] pro-
posed an online optimization system, which saves a lot
of time in precomputation but still needs time-consuming
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periodic refitting and additional error computation for new
views. In sum, neither of them is free from view- and scene-
dependent power and quality measurements, resulting in
low accuracy and adaptivity in new scenes and views.

The problem is, if the workload changes drastically,
the GPU’s operating frequency fluctuates considerably due
to the DVFS algorithm. Thus the accuracy of the power
predictions based on the linear regression model [6] de-
creases. As a result, this model has to be periodically refitted,
which leads to optimization gaps in the real-time rendering.
Moreover, fitting this model requires real-time access to
power measurements, which is nearly impossible on many
mobile devices (e.g., Android smartphones without root
permission).

Besides, the latest method [6] has to compute the quality
errors of each rendering pass to select the optimal render-
ing configurations, which causes additional overheads at
runtime. Additionally, it does not reuse any information
among frames. It just selects the optimal configuration for
one frame and then waits until the next trigger comes.

By contrast, we exploit a neural network model to pre-
dict power consumption under various operating frequen-
cies during rendering. This network model is view- and
scene-independent and produces high-accuracy predictions
for any scene on many hardware platforms without the need
for power measurement at runtime. Moreover, we apply a
view- and scene-independent quality prediction model in
predicting the quality errors of different rendering settings.
This quality model reduces the additional computation and
reuses the information, supporting selecting the optimal
settings for each frame.

3 PROBLEM DEFINITION

We regard the real-time rendering process as a set of ren-
dering effects organized in a particular order that produce
different visual effects. In this manner, an image rendering
function f can be abstracted from the entire rendering
process by taking two main parameters (s, c) as input to
produce the final color image.

• Rendering setting s: It defines the rendering effects
(e.g., lighting, shadow mapping, and anti-aliasing) re-
quired for executing function f , as well as the visual
quality settings selected for different effects (e.g., light-
ing model, shadow map resolution, and searching steps
of anti-aliasing). In our implementation, s is a settings
vector that each dimension represents the quality level
of a rendering effect.

• Camera parameter c: It defines the current position and
view of the camera.

Generalizing the rendering processes to function f im-
plicitly includes forward and deferred rendering frame-
works. Technically, given the same camera parameter c,
different settings s produce different images from function
f . Let sbest be the rendering setting that generates the best-
quality image. Similar to a previous work [4], we define the
image quality error e(c, s) of rendered by settings s from
camera c as

e(c, s) =

∫ ∫
uv
||f(c, sbest)− f(c, s)||duv, (2)

TABLE 1: Main symbols used in the paper.

s Rendering setting, a vector with quality levels
for each effect

si Quality level for effect i
sbest Rendering setting that produces the best qual-

ity images
c Camera parameter, including position and

view
f(c, s) Image rendering function with c and s
e(c, s) Image quality error of f(c, s)
P (c, s) GPU power consumption of f(c, s)
Pbgt GPU power budget

d, v, f Vectors of draw calls, vertices, and fragments
of all rendering effects of f(c, s)

a Vector of percentage occupied areas of all ren-
dering effects of f(c, s)

where u and v represent the 2D pixel coordinates of the
image, and || · || indicates a chosen error metric.

Different c and s also produce different energy consump-
tion, which we define as P (c, s). We tested various f(c, s)
and found that rendering the minimum quality images
can reduce power consumption to 16.8% (i.e., save 83.2%
relative power consumption) of rendering the maximum
quality images. Generally, rendering high-quality images
requires high energy consumption, and reducing the energy
of rendering processes increases image artifacts. It generates
a vast two-dimensional space of trade-offs between energy
consumption and image quality. Given a power budget Pbgt,
we attempt to find the optimal s that minimizes e(c, s) and
maintains P (c, s) within the budget, as shown as follows:

s = arg min
s

e(c, s) subject to P (c, s) < Pbgt. (3)

We call this process power-budget rendering. Different from
the state-of-the-art work [6], we use a network model to pre-
dict power consumption at each frame, allowing us to avoid
1) sampling power measurements, 2) refitting the power
prediction model, and 3) checking the model’s accuracy
during rendering. We also use an efficient network model
in sorting e(c, s) to considerably reduce the computational
overhead of the quality error estimation proposed by the
previous work. As a result, we spend considerably less
precomputation time than Wang et al.’s work [4] (mainly
used to generate the training dataset) but achieve better
flexibility and effectiveness than previous work [4], [6].
Table 1 summarizes the symbols used in this paper.

4 ALGORITHM OVERVIEW

The searching of optimal rendering settings in our power-
budget rendering framework is a multiobjective optimiza-
tion problem in the two-dimensional energy-quality space.
Figure 2 shows an overview of our algorithm.

In the neural network training phase, we train the power
and quality prediction models using rendering statistics,
including scene complexity, rendering settings, GPU power
and operating frequency, and quality errors, as well as
scene information. However, we do not use any data from
real scenes for model training. Thus, the training dataset is
entirely generated using dummy scenes, which makes our
models view- and scene-independent.
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Fig. 2: Algorithm overview. Our algorithm is divided into two
phases, namely, the neural network training phase (see Sections 5
and 6) and the following runtime rendering phase (see Section 7).

In the runtime rendering phase, when users freely ex-
plore the scene, we first use the power prediction model to
predict the power consumption of all the rendering settings
periodically and find those settings below the given power
budget. Then, we select the optimal rendering settings on
the basis of the quality prediction model to minimizes the
quality error and use it to render the final image.

The following sections detail these two phases. We as-
sume that the developers can obtain the real-time power
measurements of GPUs or mobile devices, as well as the
operating frequencies of GPUs, in the training phase. During
runtime rendering, we only need the users to specify a
power budget, and the rest is automatic and transparent.

5 NEURAL NETWORK MODEL FOR POWER PRE-
DICTION

This section defines the power function and describes the
network structure and the training of the power prediction
model correspondingly. Once the model is trained, we can
integrate it into the rendering system in the runtime render-
ing phase (Section 7).

5.1 Power Function

In a real-time rendering pipeline, when we issue an instruc-
tion to the GPU to draw a list of triangles, such an instruc-
tion is called a draw call. These triangles then go through a
series of stages. First, the vertex shader executes operations
on each vertex. Then, the rasterization performs clipping
and culling to discard the invisible parts and converts the
vertex data to fragments. Finally, the fragment shader runs a
series of instructions to determine the final color for each
pixel.

When the frame rate stays constant, an increase in scene
complexity results in the increment in computational com-
plexity (e.g., more draw calls, shader invocations, and code
complexity of shaders) and power consumption. Besides,
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Fig. 3: (a) Network structure of our power prediction model. The
input is a vector containing d, v, f , s, and g; this vector is used
to represent the state (c, s, g). The auxiliary output is a scalar
denoting the predicted GPU operating frequency, which is an
input of the subsequent subnetwork. The main output is a scalar
representing the predicted GPU power consumption of the given
state. We train the two subnetworks simultaneously. (b) Network
structure of our quality prediction model. The input is a vector
containing a, sj , scur , and e(c, scur). The output is a scalar that
represents the predicted quality error of the given state (c, sj).

multifarious rendering effects and their various quality
levels also cause a vast space of computational complex-
ity. For example, setting a different number of samples of
screen space reflections results in different computational
overheads. In addition, the varieties of camera parameters c
implicitly express different computational complexities. On
this basis, we quantify all the rendering effects into com-
putational complexity and formulate the power function Φ
as

P (c, s, g) = Φ(d,v, f , s, g), (4)

where P (c, s, g) denotes the power consumption of the GPU
g at the camera parameter c using the rendering setting s.
Similar to the previous work [6], d, v, f , and s are vectors
representing draw calls, vertex, fragments, and rendering ef-
fects respectively. The tuple (di,vi, f i, si) denotes the num-
bers of draw calls, vertex invocations, fragment invocations,
and the rendering level setting for the ith rendering effect.
Using this representation, we can implicitly represent the
dynamically changing camera parameter c with d, v, and
f by counting the visible objects and rendering effects in
the scene. Generally, given a rendering setting s, a camera
parameter c, and a specific GPU g, we can obtain all the
inputs of the power function Φ, and then compute the
power consumption corresponding to the state (c, s, g).

5.2 Network Architecture

We design a neural network model to learn the implicit
power function Φ. This model considers the effect of GPU
operating frequency under various workloads for power
prediction, as shown in Figure 3a. This model contains two
subnetworks. The first one consists of four hidden fully-
connected (FC) layers, and each layer has eight nodes. This
subnetwork takes the state (c, s, g) as the input to predict
the corresponding GPU operating frequency. In the imple-
mentation, the input dimension is 20 (see subsection 8.3
and Table 2 for the details). The second subnetwork is also
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Fig. 4: Measured power consumption and corresponding pre-
dictions of the Island (left) and the San Miguel (right) scenes.
Although the two models work well in the simple case, the linear
regression model [6] is less accurate than ours when the scene
complexity changes rapidly.

composed of four hidden FC layers, but each layer has 16
nodes. This subnetwork takes the predicted frequency from
the previous subnetwork and the state (c, s, g) as inputs to
predict the final GPU power consumption. All of the FC
layers in the two subnetworks use the softplus [45] activation
function.

One notable feature of the network model is that we ex-
plicitly predict the GPU frequency as an input of the second
subnetwork. The state-of-the-art work [6] did not consider
the operating frequency of GPU, but we found it helpful to
the prediction accuracy. While the GPU can provide a stable
frame rate without increasing its operating frequency in a
simple scene, it has to increase the operating frequency to
stabilize the frame rate in a complex scene, which results in
a significantly increased power consumption, in accordance
with the power model of integrated circuits (Equation (1)).

Figure 4 depicts the power predictions and measured
power consumption of two scenes (i.e., Island and San
Miguel scenes) running with the same GPU. In the San
Miguel scenario, operating frequency varies significantly
due to the high computational complexity at some view-
ports; this variation ultimately results in a wild fluctuation
in power consumption. In that case, the linear regression
model [6] produces less accurate power predictions and
needs to perform refitting processes at some periods, which
leads to less optimal rendering settings.

5.3 Network Training

In order to train the aforementioned network model, the first
step is to generate the training set. Even though using data
from real scenes can significantly improve the accuracy of
our power prediction network for the corresponding scenes,
in order to enhance the flexibility of our model, we only
use dummy scenes (see the supplementary materials for
examples) to generate the training set on different GPUs.
We progressively increase the complexity of dummy scenes
with uniformly sampled settings s. Then, we collect the
number of invocations of pipeline stages (i.e., draw calls,
vertex, and fragments) and measure the power consumption
and the operating frequencies of GPUs during rendering.
We collect more than 100, 000 training data on four different
GPUs, wherein each data contains a vector of input and two
scalars of output (frequency and power). It takes us less than
two days to generate these synthetic data.

After generating the training set, the second step is to
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Fig. 5: Power and frequency predictions of the Subway scene from
the power prediction model and corresponding measurements. The
scene is rendered by NVIDIA Quadro P4000. Left: Power usages.
Right: Operating frequencies.

train the network model. Given the considerable differences
in computational power and energy consumption between
the mobile and the desktop platforms, we decide to train
the network separately for the two platforms. However,
to improve flexibility, we train an identical network for
different GPUs on the same platform. The training set
mixes data from different types of GPUs to let the network
learn different patterns of power consumption on different
GPUs. Once trained for a platform, no precomputation is
needed for new scenes and views on involved GPUs of
this platform. On new GPUs, our network also exhibits a
certain degree of transferability across similar computation
patterns, by abstracting some of the dependencies of hard-
ware (see Section F of the supplementary document for
details). Specifically, the predicted power consumption of
our network is proportional to the measured one. However,
our network still needs a retrain to accurately predict power
for new GPUs.

We use the measured operating frequencies and power
consumption of GPUs to supervise the first and second sub-
networks, respectively. For the first subnetwork, we use the
mean absolute percentage error (MAPE) as the loss function
during training. The second subnetwork takes the logcosh
as the loss function. We use the stochastic gradient descent
(SGD) algorithm as the network optimizer with a learning
rate of 0.0003 to train the two subnetworks simultaneously,
spending approximately 15 epochs (which takes less than
1 minute) to converge. The validation set (a subset of the
original training set) reports that the MAPEs of predicted
power and frequency are less than 4% and 3%, respectively.
Figure 5 shows some predictions.

6 NEURAL NETWORK MODEL FOR QUALITY PRE-
DICTION

This section describes the quality prediction model of our
real-time power-budget rendering framework. This model
shares training scenes with our power prediction model, but
has different training data and architecture.

6.1 Quality Function

In addition to the vast space of computational complexity,
various rendering settings usually produce different render-
ing qualities, forming an enormous space of quality errors.
It is a very challenging work to quickly select high-quality
rendering settings at a small cost. Previous methods [4],
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Fig. 6: Computed quality errors and corresponding predictions
Left: Subway scene with a rendering setting s = (max, min,
min, min, min, mid). Right: Bistro scene with a rendering setting
s = (min, max, max, max, max, max).

[6] have attempted to entirely and accurately obtain accu-
rate quality errors e(c, s), but have the disadvantages of
requiring long preprocessing time or heavy computational
overheads. Instead, we propose a new quality function Ψ to
express a mapping between the quality errors of any two
rendering settings. Thus, it can calculate quality errors of
all other settings at the same frame through the error of the
current setting.

Specifically, this function takes scene information a, ren-
dering setting sj , and current rendering setting scur and its
image error e(c, scur) as inputs to predict the error e(c, sj),
which can be formulated as follows:

e(c, sj) = Ψ (a, sj , scur, e(c, scur)) , (5)

where e(c, sj) represents the quality error at the camera pa-
rameter c using the rendering setting sj . Scene information
a is a vector denoting the percentage occupied areas of all
rendering effects. Each dimension of a represents how much
percentage area an effect occupies in the current viewport c.

6.2 Network Architecture and Training

The image quality function Ψ is highly nonlinear and hard
to compute. Therefore, we design a neural network model
to express function Ψ approximately. A visualization of the
architecture of this model is shown in Figure 3b. In the im-
plementation, the input dimension is 19 (see subsection 8.3
and Table 2). This model contains four hidden FC layers. The
first layer has 64 nodes, and each subsequent layer is half of
the previous layer. All the layers use the softplus activation
function.

The generalization across various viewports and scenes
is an essential feature of the quality prediction model. Be-
cause the model directly maps the quality errors between
different rendering settings at the same camera parameter
c, the problem is therefore significantly decoupled from
the changes of viewports and scenes. It narrows down the
problem space and makes the training easier. Given that
the mapping is conducted at the same c that leads to the
same image structure, we use a relative pixel-wise error
metric instead of the previously used SSIM algorithm [4],
[6] to calculate quality errors for different rendering settings.
Particularly, we choose the arithmetic mean of the numerical
difference of each pixel, which we call the standardized L1
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Fig. 7: Timeline illustrating power usage during rendering, and
how our algorithm works. Given an Error Computation Interval,
our algorithm computes and stores the quality error of current
frame periodically (dark green box). At each frame except those of
the temporal filtering, we select the optimal rendering setting sopt
on the basis of the latest quality error (dark green and light green
box). Our algorithm reuses the previous quality error when the
current frame has not performed an error computation. If the new
setting is different from the old one, then our algorithm performs
temporal filtering to transition to the new setting smoothly. Please
refer to the text for details.

norm metric, as shown as follows:

e(c, s) = L

(
1

N

N∑
i=1

∣∣∣∣ P sbest
i − P s

i

L(P sbest
i ) + ε

∣∣∣∣
)
, (6)

where e(c, s) denotes the quality error of rendering setting
s at the camera parameter c. Function L converts the RGB
color to luminance, and N is the number of pixels. P s

i

represents the RGB color of the ith pixel when rendering
with s, and sbest is the best quality rendering setting. ε is
a small positive number (we set ε = 10−3). |·| returns the
absolute value.

Similar to the training phase of the power prediction
model, we train our quality model on a dataset consisting
entirely of dummy scenes (see the supplementary materi-
als). In addition to further enhance the generalization of
the quality prediction model, we also rotate the camera
to increase the variety of training data. We uniformly took
samples from 196 rendering settings to generate more than
48M pairwise combinations as the training set. This quality
prediction model takes the mean square error as the loss
function and the SGD algorithm as the optimizer, with a
learning rate of 0.1. The mean absolute error of predicted
quality errors is less than 0.005 in our validation set (20% of
the original training set).

To evaluate our quality network on real scenes, we
compare the predicted quality errors with the computed
quality errors, of given rendering settings in two scenes.
Most of the time, the quality errors inferred by our quality
prediction model are highly close to the computed quality
errors. Figure 6 shows some experimental results of the
comparison between predicted errors and computed errors.
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7 REAL-TIME POWER-BUDGET RENDERING FRA-
MEWORK

In the previous sections, we described the network architec-
tures of the power and quality prediction models and their
training processes. We demonstrate that our power predic-
tion model has higher accuracy and flexibility compared
with the regression model [6]. Moreover, our quality pre-
diction model has fewer GPU overheads than the previous
method. With such trained network models, we can get rid
of the time-consuming precomputation for new scenes [4] or
the runtime periodic refitting and additional error compu-
tation [6]. We now describe how to integrate them into the
rendering system to predict power consumption and quality
errors and then select the optimal settings within a power
budget during real-time rendering. Generally, we select the
optimal rendering settings for each frame and perform a
temporal filtering process for a smooth transition from the
current setting to the new one. Figure 7 illustrates the entire
process of our power-budget rendering.

7.1 Selecting Optimal Rendering Setting

Given a scene, a camera parameter c, the power prediction
model Φ, and the quality prediction model Ψ, our goal is
to find an optimal rendering setting sopt with the minimum
quality error below the power budget, as mentioned in the
algorithm overview (Section 4). Algorithm 1 gives the pseu-
docode of the setting selection process, where S denotes the
set of all rendering settings.

Algorithm 1 Selecting the Optimal Rendering Setting sopt

Input: d,v, f , S, g, Pbgt,a, scur, e(c, scur)
Output: sopt

1: S
′

= ∅
2: for each si in S do
3: Ppredict(c, si, g) = Φ(d,v, f , si, g)
4: if Ppredict(c, si, g) ≤ Pbgt then
5: S

′
= S

′ ∪ {si};
6: end if
7: end for
8: for each si in S

′
do

9: epredict(c, si) = Ψ (a, si, scur, e(c, scur))
10: end for
11: Sort S

′
in ascending order by epredict(c, si)

12: sopt = the first element of S
′

First, we collect the pipeline statistics of the current
state (c, s, g). Then, for a given power budget, we infer
the power consumption of all the rendering settings at
the current viewport using our power prediction model
and then discard any settings wherein the predicted power
exceeds the budget.

Thereafter, we compute and store the quality error of the
current frame periodically. The interval during this period
is called the Error Computation Interval. Frames without
an error computation utilize the previous quality error as
the current one. For the remaining settings that meet the
power budget, we infer their quality errors using the quality
prediction model and then sort them in ascending order on
the basis of their errors. Finally, we select the optimal render-
ing settings with the minimum predicted error among these

settings. In this manner, we separate the two-dimensional
spatial search into two linear searches, eliminating the need
to generate the Pareto frontier in the power-error space.

7.2 Runtime Power-budget Rendering

We have detailed how to find the optimal rendering settings
under a given power budget in the previous subsection.
Here, we describe how to use them for real-time rendering.
At the beginning of rendering, we can instantly select the
optimal setting. That is, we can start our power-budget
rendering immediately. Subsequently, we perform the se-
lection process for each frame but compute the quality error
periodically. To avoid sudden changes in visual quality after
having selected a different setting, we perform a temporal
filtering process mentioned by Wang et al. [4] to smoothly
transit to the newly selected setting. During a time window
T for filtering, the currently used setting, scur , is computed
by a temporal interpolation:

scur =

[(
1− t

T

)
sold +

t

T
snew

]
, (7)

where the brackets represent the closest integer. sold and
snew denote the previously and newly selected optimal
setting, respectively. t is the time elapsed after applying a
new rendering setting. Note that narrowing T may result
in sudden changes in visual quality, but expanding T may
lead to obsolete selections.

8 IMPLEMENTATION

We have described the details of the power and quality pre-
diction models and the power-budget rendering framework.
In practice, we implemented an OpenGL-based rendering
system and tested it on four devices. Two of them belong
to the desktop platform, one of which is a PC with Intel
Core i7-3770K CPU and NVIDIA Quadro P4000 graphics
card; the other consists of Intel Core i7-7700 and NVIDIA
GeForce RTX 2080Ti. The rest belong to the mobile platform,
one of which is a smartphone with an 8-core Kryo CPU
and an Adreno 630 GPU; the other has an 8-core Cortex
CPU and a Mali-G76 GPU. The PCs were both running on
Microsoft Windows 10, and the smartphones were running
on Android 9.0.

8.1 Power Measurement

We set the rendering system to a constant frames-per-second
rate to avoid the influence of frame rate on power consump-
tion. Thus, the power consumption of GPU depends only on
scenes, rendering settings, and camera parameters. For the
desktop platform, we fixed the memory frequency of the
graphics card to reduce the potential influence. The specific
power measurement method varies by the platform.

Desktop Platform: We used the C-based API in NVIDIA
Management Library (NVML) [46] to directly measure the
instantaneous power of the GPU. The document reports
an error of the API within ±5%. To reduce variance, we
read power back 20 times per second and spent 2 seconds
measuring and averaging them for each sample in our
dataset. The interval between the power measurements of
each sample is 2 seconds to reduce any residual influence.

Mobile Platform: We used the built-in shell commands
of the Android system to read back the battery’s real-time
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TABLE 2: Lists of parameters used in rendering settings.

Effects Parameters Values (max, mid, min)
Resolution buffer resolution 100%, 80%, 60%
Reflections (samples, kernel) (64,9), (16,1), off
Shadows map resolution 2048, 1024, 512
Base shading lighting model microfacet, Lambert, cheap
Metals samples 60, 6, 2
Anti-aliasing presets good, fast, off

voltage and current values recorded in the system file,
and then calculate the instantaneous power. As a result,
we obtained the total power of the smartphone instead
of the GPU. Thus, we closed all nonessential applications
and services before measuring to minimize interference.
Nonetheless, power measurements on the mobile platform
have a more significant variance than those on the desk-
top. We read back once per second and averaged over 10
seconds. The interval between the power measurements of
each sample is 5 seconds.

8.2 Rendering Framework

We implemented an in-house OpenGL rendering system
in C++, which can be easily modified to OpenGL ES and
then port to the mobile platform. Our rendering framework
supports six configurable rendering effects, including res-
olution, Screen Space Reflection (SSR), shadow mapping,
base shading, metal shading, and Fast Approximate Anti-
aliasing (FXAA). Each effect has three different quality
levels (i.e., maximum, middle, and minimum) determined
by controllable parameters, which amounts to a total of 729
rendering settings. The complete set of parameters and their
values is shown in Table 2. We enabled the View Frustum
Culling and the Back-face Culling to reduce overheads.

The resolution effect sets the size of buffers, changing the
number of fragment invocations of all other effects except
the shadow mapping effect. Technically, the resolution effect
is not a real rendering pass; however, it has a significant
contribution to the power consumption and visual quality.
Thus, we treated it as a rendering effect and implemented
different levels for convenience. The SSR effect provides re-
flections for some objects with specular materials. Lowering
the quality level reduces the number of ray-tracing steps
and the kernel sizes of color filtering [47]. The minimum
level turns off this effect. For shadow mapping, we took the
shadow map resolution to represent its quality level. This ef-
fect only considers the generation of shadow maps, whereas
the shadow map lookup is considered in the resolution
effect. For base shading, we implement three lighting mod-
els. The highest quality is based on the microfacet model,
followed by the Lambert shading model, and the minimum
quality uses a cheap lighting algorithm. The metal shading
effect is a lighting algorithm of GPU-based importance
sampling. We varied the number of samples for different
quality levels. The FXAA effect is a morphological anti-
aliasing algorithm [48]. The good preset has more search
steps than the fast preset, and the lowest level turns off this
effect.

8.3 Network Inputs

The input of power prediction network is a vector contain-
ing draw calls d, vertices v, fragments f , quality settings s,
and GPU model g, with a total of 20 dimensions. Specifically,

parameters of six rendering effects compose the input vector
as: reflections (d1,v1, f1, s1), shadows (d2,v2, f2, s2), base
shading (d3,v3, f3, s3), metals (d4,v4, f4, s4), anti-aliasing
(f5, s5), and resolution (s6). All effects share scalar g (see
Equation (4)). In our implementation, the resolution effect
acts as a scaling factor without draw calls, vertices, and
fragments. The anti-aliasing effect has constant draw calls
and vertices. Thus, effects resolution and anti-aliasing have
fewer parameters as inputs compared with other effects.

Our quality prediction network takes another input vec-
tor with 19 dimensions containing a, sj , scur , and e(c, scur).
For six rendering effects, each effect i (i = 1, 2, ..., 6) has a
tuple of input parameters (ai, sij , s

i
cur), and scalar e(c, scur)

is shared by all effects (see Equation (5)).
When the number n of rendering effects increases, the

number of settings grows exponentially (O(3n)), but input
parameters increase linearly (O(4n + 1) for power model
and O(3n + 1) for quality model).

Compared with the previous work [6], we did not ex-
plicitly use the number of instructions and texel accesses as
input parameters but implicitly encode it into quality levels,
i.e., shader with long instructions usually has a high-quality
level.

8.4 Quality Error Computation

We calculated the per-pixel difference on the basis of Equa-
tion (6) between two textures in the fragment shader of
the last rendering pass. Then, we generated the 1 × 1
mipmap (the average difference of all pixels) using GPU
to determine the final image error. This method takes an
average of 0.5 ms on the desktop platform, which is 100×
faster than the previously used SSIM algorithm [4], [6] but
with proportional similarity in quality.

8.5 Rendering Statistics

Collecting the number of invocations on the desktop plat-
form by using OpenGL query objects is convenient. On the
mobile platform, we had to count the number of vertices
from models instead of from the pipeline due to the lack of
support from the OpenGL ES APIs. In addition, we rendered
a mask to the alpha channel and generated 1× 1 mipmaps,
which represent the percentages of shaded pixels, to count
the fragments. We assume invocations of two consecutive
frames are similar so that they are queried in the previous
frame and used in the current frame.

Calculating the percentage occupied areas of partial-
screen effects (including reflections, shadows, base shading,
and metals) is similar to counting the fragments on the mo-
bile platform. For the full-screen effects (i.e., resolution and
anti-aliasing), we performed a fast edge detection algorithm
[49] based on the luminance of each pixel and generated
mipmaps to obtain the percentage area of edges.

8.6 Implementation Details

We perform the network inferences on the CPU to predict
the power consumption of all the 729 rendering settings
each time, with an average cost of 1.5 ms and 4 ms on the
desktop and the mobile platform, respectively. Predicting
quality errors and selecting the optimal rendering setting
on the CPU takes approximately 0.8 ms and 2.1 ms on
the corresponding platforms. Besides, increasing framerates
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Fig. 8: Real-time demo for the San Miguel scene, executed on a desktop PC with the RTX 2080Ti graphics card. We compare the
maximum and minimum quality levels against our power-budget rendering system with different power budgets of 10 W and 14 W .
Images generated by our method under the higher budget are nearly indistinguishable from those produced with the maximum quality,
whereas energy savings achieved by our method under the lower budget are considerable. The plots on the top-right show power
consumption and image errors during approximately 110 seconds of free camera navigation. Our method minimizes quality errors
(bottom-right) while guaranteeing that power usage almost stays below the given budget. Please refer to the supplementary video for
more details.

TABLE 3: Statistics of the six demo scenes, including the number
of triangles, number of objects, and size on disk with textures.

Scenes #Triangles #Objects Scene Size Platform
San Miguel 5.608 M 1,463 733 MB Desktop
Bistro 3.858 M 1,285 2.73 GB Desktop
Island 716.8 K 665 1.83 GB Desktop
Subway 526.6 K 453 1.27 GB Desktop
Valley 143.3 K 198 15.1 MB Desktop & Mobile
Hall 229.4 K 22 338 MB Desktop & Mobile

and resolutions will not affect the performance and quality
of network inferences since our networks do not take images
as input. Given that frequent computations of quality errors
can affect user experience and result in additional over-
heads, we set the Error Computation Interval to 3 seconds
(90 frames). Here the main overhead on GPU is 1/90 ≈ 1.1%
for rendering a reference frame and computing the error.
The time window of temporal filtering is 2 seconds.

Given that inferences are computed at CPU, the costs
of networks are negligible for GPU-bounded rendering. We
did not observe significant improvement after implement-
ing our networks on GPU but experience some impacts on
the GPU’s frequency and power consumption. Therefore,
we only integrated the CPU implementation into our frame-
work.

9 RESULTS

To demonstrate the flexibility and effectiveness of our ren-
dering framework, we performed a series of experiments
with several scenes on different devices. In all experiments,
we set a fixed frame rate of 30 FPS on the desktop platform.
The frame rate for mobile devices is 10 FPS due to its limited
computational power. The resolution is 1280×720 on both of
the platforms. We tested six scenes with varying complexity.
Their statistics are shown in Table 3. More details of these
scenes are described in Section D of the supplementary
document.

Our framework allows users to explore freely in the
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Fig. 9: Average quality error (left) and power (right) per frame
in our four desktop demos. The Bistro and the Island scenes are
run on the Quadro P4000 graphics card, whereas the San Miguel
and the Subway scenes are run on the RTX 2080Ti graphics card.
The quality error of the maximum setting is zero, and the power
budget used for the San Miguel scene in this figure is 10 W .

scene. For convenience, we designed a predefined camera
path for each scene for measurement and comparison, and
each path lasted at least 60 seconds. We used arbitrarily-
chosen various power budgets to test our framework, with
the maximum and the minimum rendering qualities as
benchmarks. On the desktop platform, the reported power
is subtracted from a baseline power measured on an empty
scene because we focus on the net power of different render-
ing effects rather than the overall power of GPU. Figure 9
shows the average power consumption and quality error for
the four scenes on the desktop platform. It can be seen that
our framework can significantly reduce power consumption
while keeping the error at a low level.

Generally, our two prediction networks trained from
dummy scenes worked very well for the six test scenes
with quite a different environment, lighting, geometry, etc.
Figure 1 shows the Bistro scene running on the Quadro
P4000 graphics card on a power budget pbgt = 25.5 W . The
zoomed-in insets show that the results of our framework
have minor differences compared with those of the maxi-
mum quality, whereas the minimum quality produces nu-
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Fig. 11: Comparison between our power-budget rendering frame-
work and the previous online method [6] on a power budget of
20 W . This San Miguel scene is running on the P4000 graphics
card. Plots on the right show power usage and quality errors
during an approximately 48-second shot. The zoomed-in insets
are shown on the middle left, and the difference between rendered
images is shown on the right bottom.

merous artifacts, such as blurred images and low-resolution
shadows. The plots on the right show that the measured
power of our method is mostly below the given budget,
whereas the image error is significantly small. When the
power usage of maximum quality is lower than the budget,
our framework directly selects the best rendering setting to
minimize quality error.

Figure 8 shows the San Miguel scene running on the RTX
2080Ti graphics card. During two explorations with different
power budgets (10 W and 14 W ), our framework generates
optimal rendering settings continuously. At 48-60s, many
leaves appeared in the camera viewport. However, a lot of
fragments of these leaves were early discarded due to the
alpha test. Our training dataset does not contain such an

extreme case, so the selected setting went over the budget
(Pbgt = 10 W ). Specializing the dataset could ameliorate this
situation.

Figure 10 shows the Subway scene executed with the RTX
2080Ti graphics card on a power budget pbgt = 3.5 W .
We compared the optimized settings based on our quality
prediction model with the globally optimal settings. To find
the globally optimal settings, we computed quality errors
of all rendering settings whose predicted power was below
the budget and then selected the one with minimum error
as the globally optimal setting. In this case, the image errors
produced by our framework is significantly close to the
globally optimal settings, confirming the high usability of
our quality prediction model.

We also compared our framework with manually set
trade-offs. We set up a middle setting in which all of its
quality levels are middle. As shown in Figure 9, our frame-
work has similar energy consumption but fewer quality
errors compared with the middle setting. On average, in the
Island scene, our framework achieves a 55% improvement
in visual quality at the expense of negligible power usage
(0.1 W ). In the San Miguel and Subway scenes, we reach
44% and 76% improvement in quality, respectively, with
nearly equal or less power consumption. These results fully
demonstrate that our power-efficient framework can bal-
ance quality and power consumption automatically, which
is a highly challenging work for manually adjusting the
settings.

In addition, we made several comparisons with the
previous online method [6]. Figure 11 shows one of the
comparisons executed with the P4000 graphics card in the
San Miguel scene. The power budget is set to 20 W . The
linear prediction model of the previous method cannot
be updated at each frame, which leads to wrong power
predictions. Thus, the previous method fails to select the
optimal rendering setting (i.e., directly select the maximum
quality setting) at 8-15s, which reveals the weakness of
linear regression and periodic fitting strategy. While the
scene and view are changing, the linear regression based
on the image quality from dozens of frames ago produces
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Fig. 12: Comparison of the Bistro scene between our power-budget
rendering framework and the previous method [6] on a budget of
12 W , running on the RTX 2080Ti graphics card.

significant errors. Two visual examples are the staircase
and the plant, where the wrongly chosen quality levels of
resolution, metals, and anti-aliasing cause visual artifacts,
such as the blurring and the loss of shine. In contrast, our
learning-based per frame approach is robust on both power
prediction and image error control, even if the scene and
power usage dramatically change.

Figure 12 shows the Bistro scene running with the RTX
2080Ti graphics card on a power budget pbgt = 12 W . The
previous method fails to predict power accurately, resulting
in worse rendering settings selected around the 12th second.
Figure 13 shows the Subway scene using the Quadro P4000
graphics card with a power budget pbgt = 10 W . Although
the rendering settings selected by our method are of worse
quality at 22-24s, the power consumption of the previous
method goes over budget during this period.

Figure 14 shows a more representative scenario of cur-
rent PC gaming requirements, wherein we set a fixed frame
rate of 60 FPS. This Island scene was executed with the RTX
2080Ti graphics card on a power budget pbgt = 12 W . Like
the previous comparison, Zhang et al. [6] go over the power
budget at 36-44s. On the contrary, our approach almost
always stays within budget while providing competitive
rendering results.

In these comparisons, we still use the standardized L1

norm metric to select the optimal rendering settings, but
calculate the SSIM error of the selected settings to quantita-
tively compare quality errors.

More evaluations are shown in Section E of the sup-
plementary document. Combined with all these results, we
believe the proposed method can find the optimal rendering
settings of various budgets on different GPUs using an
identical network model with the same weights.

10 DISCUSSION

Our power-budget rendering framework overcomes three
limitations of the previous works [4], [6]. First, it no longer
relies on view- and scene-related power measurements,
which highly decreases the difficulty of collecting datasets.
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Fig. 13: Comparison of the Subway scene between our power-
budget rendering framework and the previous method [6] on a
budget of 10 W , running with the Quadro P4000 graphics card.

Besides, our power prediction model utilizes GPU’s operat-
ing frequencies to provide high-accuracy predictions under
various workloads. Finally, our framework achieves frame-
by-frame power-budget rendering the first time in history,
which self-tunes rendering parameters for each frame in
any new scene or view. We show the optimization results
of six typical scenarios with high-accuracy predictions and
selections when the workload changes significantly. These
results demonstrate the effectiveness and flexibility of our
framework. Our rendering system does not introduce any
frame rate loss, as shown in the supplementary video.

Setting the power budget to an absolute value is useful in
many cases. For example, when running video games on a
smartphone, one can estimate the minimum duration of the
battery by setting a reasonable power budget. Additionally,
an absolute budget also provides the rendering system an
opportunity to select the best quality setting.

In some cases, the measured power consumption may
slightly deviate from the power budget because of the
accuracy of the generic power prediction model. Given that
the current power measurement method cannot guarantee
a sufficiently small variance, the generated dataset contains
errors. Using such a dataset to train a highly flexible net-
work will slightly reduce the prediction accuracy. However,
our power prediction model can specialize in customized
scenes or specific hardware platforms for increased accu-
racy.

Typically, fixing the Error Computation Interval to an ap-
propriate value can satisfy various situations. This interval
can also be adjusted automatically at runtime. For example,
the framework can perform an error computation process
only when the framework detects that the percentage occu-
pied areas of the current frame are highly different from the
previous frame.

Some parts of our framework can still be studied fur-
ther. Our power prediction network only considers the
three pipeline stages of draw calls, vertices, and fragments.
However, the latest rendering pipeline, such as DirectX
Raytracing [50], has included some new rendering stages
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Fig. 14: Comparison tested at 60 FPS for the Island scene between
our power-budget rendering framework and the previous online
method [6] on a budget of 12 W , running with the RTX 2080Ti
graphics card.

such as ray tracing. Extending our framework to a new
pipeline is an interesting research topic for future work. In
addition, further reducing the costs of quality error predic-
tion remains a topic to be explored.

Our system can be integrated into the rendering engine
like an add-on. For various applications using the same
engine and rendering settings, our networks can generalize
across them without any retraining. However, a retraining
step is needed for applications using different engines or an
identical engine with different rendering settings.

In sum, our real-time power-budget rendering frame-
work satisfies the following requirements of an ideal power-
saving framework [4]: 1) it finds the optimal trade-off be-
tween energy and quality; 2) users can specify the target
energy consumption to extend the battery life; 3) it is real-
time and transparent to the users; and 4) it generalizes
across different platforms and scenes. We show the results
of six scenes on four devices of two platforms. We also
demonstrate that our framework outperforms hand-setting
configurations. Fewer overheads and better flexibility of
our system allow the integration with existing rendering
engines at negligible costs.
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D. Adler, M. Meyer, and J. Novák, “Denoising with kernel predic-
tion and asymmetric loss functions,” ACM Transactions on Graphics
(TOG), vol. 37, no. 4, pp. 1–15, 2018.

[13] Y. Huo, R. Wang, R. Zheng, H. Xu, H. Bao, and S.-E. Yoon,
“Adaptive incident radiance field sampling and reconstruction
using deep reinforcement learning,” ACM Transactions on Graphics
(TOG), vol. 39, no. 1, pp. 1–17, 2020.

[14] D. Gao, X. Li, Y. Dong, P. Peers, K. Xu, and X. Tong, “Deep inverse
rendering for high-resolution svbrdf estimation from an arbitrary
number of images,” ACM Transactions on Graphics (TOG), vol. 38,
no. 4, p. 134, 2019.

[15] R. Wang, Y. Huo, Y. Yuan, K. Zhou, W. Hua, and H. Bao, “Gpu-
based out-of-core many-lights rendering,” ACM Transactions on
Graphics (TOG), vol. 32, no. 6, pp. 1–10, 2013.

[16] Y. Huo, R. Wang, S. Jin, X. Liu, and H. Bao, “A matrix sampling-
and-recovery approach for many-lights rendering,” ACM Transac-
tions on Graphics (TOG), vol. 34, no. 6, pp. 1–12, 2015.

[17] K. Xu, W.-L. Sun, Z. Dong, D.-Y. Zhao, R.-D. Wu, and S.-M. Hu,
“Anisotropic spherical gaussians,” ACM Transactions on Graphics
(TOG), vol. 32, no. 6, pp. 1–11, 2013.

[18] Y. He, Y. Gu, and K. Fatahalian, “Extending the graphics pipeline
with adaptive, multi-rate shading,” ACM Transactions on Graphics
(TOG), vol. 33, no. 4, pp. 1–12, 2014.

[19] P. Lecocq, A. Dufay, G. Sourimant, and J. Marvie, “Analytic
approximations for real-time specular area lighting,” IEEE Trans-
actions on Visualization & Computer Graphics, vol. 23, no. 05, pp.
1428–1441, may 2017.

[20] M. McGuire and M. Mara, “Phenomenological transparency,”
IEEE Transactions on Visualization & Computer Graphics, vol. 23,
no. 05, pp. 1465–1478, may 2017.

[21] E. Heitz, J. Dupuy, S. Hill, and D. Neubelt, “Real-time polygonal-
light shading with linearly transformed cosines,” ACM Trans.
Graph., vol. 35, no. 4, Jul. 2016.

[22] J. Dupuy, E. Heitz, and L. Belcour, “A spherical cap preserving
parameterization for spherical distributions,” ACM Trans. Graph.,
vol. 36, no. 4, Jul. 2017.

[23] L. Belcour and P. Barla, “A practical extension to microfacet theory
for the modeling of varying iridescence,” ACM Trans. Graph.,
vol. 36, no. 4, Jul. 2017.



ZHANG et al.: POWERNET: LEARNING-BASED REAL-TIME POWER-BUDGET RENDERING 13

[24] A. Silvennoinen and J. Lehtinen, “Real-time global illumination by
precomputed local reconstruction from sparse radiance probes,”
ACM Trans. Graph., vol. 36, no. 6, Nov. 2017.

[25] M. Dong and L. Zhong, “Power modeling and optimization for
oled displays,” IEEE Transactions on Mobile Computing, vol. 11,
no. 9, pp. 1587–1599, Sep. 2012.

[26] W. Chen, W. Chen, H. Chen, Z. Zhang, and H. Qu, “An energy-
saving color scheme for direct volume rendering,” Computers &
Graphics, vol. 54, pp. 57 – 64, 2016.

[27] M. Weiser, B. Welch, A. Demers, and S. Shenker, Scheduling for
Reduced CPU Energy. Boston, MA: Springer US, 1996, pp. 449–
471.

[28] S. Kim, T. Harada, and Y. J. Kim, “Energy-efficient global illu-
mination algorithms for mobile devices using dynamic voltage
and frequency scaling,” Computers & Graphics, vol. 70, pp. 198–
205, 2018.

[29] J. Pool, A. Lastra, and M. Singh, “Precision selection for energy-
efficient pixel shaders,” in Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graphics, ser. HPG ’11. New York,
NY, USA: ACM, 2011, pp. 159–168.

[30] J. Ragan-Kelley, J. Lehtinen, J. Chen, M. Doggett, and F. Durand,
“Decoupled sampling for graphics pipelines,” ACM Trans. Graph.,
vol. 30, no. 3, pp. 17:1–17:17, May 2011.

[31] P. Clarberg, R. Toth, J. Hasselgren, J. Nilsson, and T. Akenine-
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