
Real-time Rendering on a Power Budget

Rui Wang1∗ Bowen Yu1 Julio Marco2 Tianlei Hu1 Diego Gutierrez2,3 Hujun Bao1∗

1 State Key Lab of CAD&CG, Zhejiang University 2 Universidad de Zaragoza 3 I3A Institute

Figure 1: We propose a novel framework that dynamically yields the optimal rendering settings to minimize power consumption while
maximizing visual quality, in real-time. The figure shows results for the Sun Temple scene, where our Power-Optimal settings yield images
of similar quality as Maximum Quality, but saving up to 34% in power consumption. The charts on the right show power consumption and
image quality (measured with the perceptually-based SSIM metric), respectively.

Abstract

With recent advances on mobile computing, power consumption
has become a significant limiting constraint for many graphics ap-
plications. As a result, rendering on a power budget arises as an
emerging demand. In this paper, we present a real-time, power-
optimal rendering framework to address this problem, by finding
the optimal rendering settings that minimize power consumption
while maximizing visual quality. We first introduce a novel power-
error, multi-objective cost space, and formally formulate power sav-
ing as an optimization problem. Then, we develop a two-step algo-
rithm to efficiently explore the vast power-error space and lever-
age optimal Pareto frontiers at runtime. Finally, we show that our
rendering framework can be generalized across different platforms,
desktop PC or mobile device, by demonstrating its performance on
our own OpenGL rendering framework, as well as the commer-
cially available Unreal Engine.

Keywords: power-optimal rendering, rendering system

Concepts: •Computing methodologies→ Rendering;

1 Introduction

The increasing incorporation of GPUs on mobile, battery-powered
devices during the last years has led to the emergence of many real-
time rendering applications. These applications and the required

∗Corresponding authors: Rui Wang (rwang@cad.zju.edu.cn), Hujun
Bao (bao@cad.zju.edu.cn)
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper, July 24 - 28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925889

computations, however, demand a high energy consumption. This
has a significant impact on battery life, which becomes a limiting
constraint for mobile devices. As a consequence, lowering the en-
ergy requirements on rendering applications has been recently iden-
tified as one of the next challenges in computer graphics [Peddie
2013]. However, a generalized methodology does not exist yet, and
its possibilities remain largely unexplored.

Among the explored strategies to reduce energy consumption for
graphics applications running on battery-powered devices, reducing
the number of computations on the rendering pipeline has proved to
be an effective solution (e.g., [Woo et al. 2002; Pool 2012; Johns-
son 2014; Arnau et al. 2014; Stavrakis et al. 2015]). However,
most existing solutions are based on ad-hoc decisions, tailored to
a particular application. While previous works aiming to reduce
computations in real-time rendering have relied on multi-objective
cost functions defined by visual error, rendering time, or memory
consumption [Pellacini 2005; Sitthi-amorn et al. 2011; Wang et al.
2015; He et al. 2015], we introduce a new cost model based on
visual quality and power usage.

An ideal power-saving framework should have the following char-
acteristics: 1) It guarantees an optimal tradeoff between the quality
of the results and the target energy footprint; 2) The user can ad-
just both a target quality or a target energy consumption to prolong
battery life; 3) It is real-time, and transparent to the user; 4) It gen-
eralizes across platforms and applications.

Finding the optimal settings from the usually huge set of rendering
parameters available in graphics applications is a very challenging
task, which requires an intelligent exploration of the large power-
error space. This is further complicated by the desired real-time
and multi-platform requirements. In this paper, we address these
challenges and present a real-time, power-optimal rendering frame-
work that automatically finds the optimal tradeoffs between power
consumption and image quality, and adapts the required rendering
settings dynamically at run-time. We demonstrate how our adap-
tive exploration of the energy footprint of a rendering application
can be leveraged to reduce power usage while preserving quality
on the results. In particular our contributions are:

• We formally formulate the power vs. error tradeoff as an op-

http://dx.doi.org/10.1145/2897824.2925889


timization problem, and present a multi-objective cost model
defined in a novel power-error space.

• Based on this model, we present a new two-stage rendering
framework that efficiently explores the power-error space, and
adaptively reduces rendering costs at run-time.

• We demonstrate the flexibility and effectiveness of our frame-
work using both a custom-built, OpenGL rendering system,
tested on a smartphone and a desktop PC, and the commercial
renderer integrated in the Unreal Engine, running on a desk-
top PC.

2 Related Work

Energy-aware devices and algorithms are becoming a prolific re-
search topic, with recent examples in fields like data manage-
ment [Beloglazov et al. 2012], systems design [Kyung and Yoo
2014], cloud photo enhancement [Gharbi et al. 2015], or display
technology [Masia et al. 2013], to name a few. This last one is
maybe the field where energy consumption has been more thor-
oughly researched, while power-efficient rendering algorithms are
increasingly drawing attention, largely motivated by the widespread
adoption of mobile devices.

Power Saving for Displays In the last decade or so, many ex-
isting works have focused on reducing energy consumption in dis-
plays [Moshnyaga and Morikawa 2005; Shearer 2007]. For back-lit
LCD displays, most of the light is converted to heat, a problem that
is aggravated for HDR displays [Masia et al. 2013]. Dimming is the
most common energy-saving strategy, e.g., simply by reducing the
intensity of the background light [Narra and Zinger 2004], dark-
ening inactive regions [Iyer et al. 2003], or by concurrent bright-
ness and contrast scaling [Cheng and Pedram 2004]. More modern
OLED displays allow energy control at individual pixel level [For-
rest 2003; Dong and Zhong 2012], which enables more sophisti-
cated strategies like saliency-based dimming [Chen et al. 2014].
Energy-efficient color schemes have been proposed, for instance
as a set of distinguishable iso-lightness colors guided by percep-
tual principles [Chuang et al. 2009], or by finding a suitable color
palette by means of energy minimization [Dong et al. 2009]. Chen
et al. [2016] present an optimization approach for volume render-
ing, optimizing color sets in object space instead of image space.
Vallerio and colleagues [2006] and Ranganathan et al. [2006] ex-
plore energy efficiency for displays in the context of designing user
interfaces.

Power Saving for GPUs With the establishment of GPUs and
mobile devices, several specific pipeline designs and hardware im-
plementations have been developed to optimize resources and re-
duce power usage during rendering (see for instance [Woo et al.
2002; Pool 2012; Stavrakis et al. 2015]). Möller and Ström [2008]
presented a survey about GPU design, where power consumption
plays a key role, while the recent thesis by Johnsson [2014] offers
for a more detailed discussion of hardware-related aspects concern-
ing power usage. Arnau et al. [2014] reduce mobile GPUs energy
consumption by removing redundancy of fragment shaders oper-
ations at hardware level. Instead, we present a purely software-
driven power optimization strategy, agnostic to the underlying hard-
ware being used.

Tile-based deferred rendering (TBDR) [PowerVR 2012] identifies
the portions of the scenes that can be ignored in the very early
stages of rendering, therefore saving GPU computation and power
consumption. Johnsson et al. [2012] compared the power effi-
ciency of three rendering and three shadow algorithms on differ-

Figure 2: Illustration of the power-optimal rendering. With Pareto-
optimal rendering settings, it is possible to obtain the optimal
tradeoffs between power and visual error. Two rendering settings,
marked in blue and green, are the optimal rendering settings with
respect to the error budget ebgt and the power budget pbgt. One
achieves the minimum power under the error budget, and the other
obtain the minimum visual error under the power budget.

ent GPUs, although they do not provide new energy-efficient al-
gorithms. Recently, Cohade and Santos [2015] presented their ef-
forts on optimizing the power usage in the Lego Minifigures game,
and Mavridis and Papaioannou [2015] reported energy savings on
GPU-implementation of coarse shading techniques [Vaidyanathan
et al. 2014]. Different from these works, our approach makes use
of actual energy consumption and error measurements, to drive a
real-time power-optimal rendering system.

Complementary to power optimization, other rendering resources
such as memory bandwidth or computation time have been the fo-
cus of different optimization schemes [Wang et al. 2015; He et al.
2015], aiming for a good tradeoff between image quality and ren-
dering budgets. Complementary to these works, we aim to find an
optimal compromise between image quality and a new challenging
and constraining budget: energy consumption.

3 Problem Definition

In our context, it is useful to think about the rendering process
as a function f that performs multiple rendering passes1, and re-
turns a color image. Each rendering function takes as input, on
the one hand, the rendering settings s, defining the visual effects
(shadow mapping, screen-space ambient occlusion, etc) and the
specific parameters used for each one (such as map resolutions or
kernel sizes); and on the other hand, the camera parameters c (po-
sition and view). It is clear that different rendering settings yield
images with different quality for a given camera.

Let sbest denote the rendering settings that generate the best qual-
ity image. We can define the quality error e of any other image
produced by different rendering settings as

e(c, s) =

∫ ∫
xy

‖ f(c, sbest)− f(c, s) ‖ dxy (1)

where x, y define the pixel domain of the image, and ‖ · ‖ indicates
the chosen norm.

Rendering with different functions f(c, s) also has an impact on
power usage. We can denote the power consumed during rendering
of one frame as p(c, s). In general, higher-quality images require
more power, while rendering a minimum quality image can save

1Generalizing the rendering process as a function f allows us to include
both forward and deferred rendering frameworks.



o2 o2v2 

o12 

o7 

o1 

o7v2 

o3 

o9 

o0 o1v2 

o8 

o14 o10 

o13 

o11 o5 

o6 

p

e

p

e

p

e

o0v0

o0v1

o0v2

o0v3

o0 

(a) Adaptive measurement in an octree

o10v2 o12v2 

o11v2 o7v2 

p

e

p

e

p

e

p

e

o12 o10 

o11 o7 

(b) Runtime power optimal rendering

Figure 3: Overview of our power-optimal rendering process. For the sake of simplicity, we illustrate a 2D example using a quad-tree.
(a) Adaptive subdivision: The initial node has four corners o0..3, where each corner oi defines four axis-aligned views v0..v3 (light blue
zoomed-in node). Cameras c = (oi, vj) are placed at every position-view pair, where we compute their Pareto frontiers. For each pair
of adjacent camera samples looking at the same view —e.g. o2, v2 and o1, v2, highlighted in red— if either the error or power difference
between their Pareto frontiers is larger than a threshold, we subdivide the corresponding node and compute the Pareto frontier of the new
camera sample (o7, v2), highlighted in blue. Otherwise, the Pareto frontiers of the new cameras are inherited (dashed lines). This process is
repeated for each node until a certain depth level or given error and power difference thresholds. (b) Rendering settings at run-time: Given
a camera position and its node in our structure, we select the closest camera sample and corresponding view (o7, v2) (green). The optimal
rendering settings are then obtained from its Pareto frontier.

over 50% of the power compared to the maximum quality (see Ta-
ble 3). It is therefore possible to find suitable tradeoffs between
quality and power usage, to either obtain the best rendering quality
under a given power budget, or to ensure a minimal power con-
sumption given a desired rendering quality. We call this power-
optimal rendering. The optimization for a given power budget pbgt
can be formulated as

s = argmin
s

e(c, s) subject to p(c, s) < pbgt, (2)

whereas given a target quality defined by the error budget ebgt, the
optimization becomes

s = argmin
s

p(c, s) subject to e(c, s) < ebgt. (3)

4 Power-Optimal Rendering

We formulate our power-optimal rendering approach as a multi-
objective optimization in a visual quality and power usage space.
In this section we introduce our multi-objective cost model and the
basic idea to solve the power-optimal rendering problem.

4.1 Multi-objective Cost Model

Different from other works [Pellacini 2005; Sitthi-amorn et al.
2011; Wang et al. 2015; He et al. 2015], our novel multi-objective
cost model is based on visual quality and power usage. To op-
timize the rendering settings s of a given camera c, we first in-
troduce a partial order to compare two different rendering set-
tings si and sj , and say that si is preferred over sj (written as
si ≺ sj) if either e(c, si) < e(c, sj) ∧ p(c, si) ≤ p(c, sj) or
e(c, si) ≤ e(c, sj) ∧ p(c, si) < p(c, sj). That is, one rendering
setting is preferred over another if it improves in quality or power
usage, and is at least as good in the other.

Using our partial order, the Pareto frontier of all rendering set-
tings P (U) = {u ∈ U : ∀u′ ∈ U, u ⊀ u′}, can be regarded
as the curve defining all power-optimal rendering settings in our
two-dimensional cost space defined by (e, p). That is, the render-
ing settings in the Pareto frontier are preferred over other settings.

Working in the domain of the Pareto frontier has one key advan-
tage: given a power budget or an error budget, finding the optimal
rendering settings is reduced to a 1D search on the Pareto curve. As
we will see, this dimensionality reduction is a crucial aspect which
will allows us to select optimal rendering settings at run-time. Fig-
ure 2 shows an example Pareto frontier, from which two optimal
rendering settings have been selected (given a power budget and an
error budget respectively). The resulting images are shown on the
right.

4.2 Adaptive Partition of The Camera View-Space

By optimizing our multi-objective cost model, we have the solution
of Equations 2 and 3 for one particular camera. However, given
the high dimensionality of the camera view-space (composed of
all possible camera positions and views) it would be impractical
to carry out all Pareto-optimal optimization at run-time. There-
fore, we introduce an adaptive partition of the camera view-space
to store precomputed, optimized Pareto frontiers at given posi-
tions and views, which will later enable real-time optimal render-
ing. Such an adaptive partition is based on the observation that at
some regions in the camera view-space, the rendering settings on
the Pareto frontiers are quite different, but at other regions they are
similar.

In particular, we use an octree structure, where one corner of octree
node defines a camera position, and defines a discrete set of six
views at each position, forming a view cube. Each position-view
pair (oi, vj) thus describes one camera sample, c = (oi, vj). For
the sake of clarity, a simplified 2D version is shown in Figure 3a.
At each position-view, we compute the Pareto frontier representing
the optimal tradeoffs between power usage and rendering quality.
The differences between these frontiers for adjacent (oi, vj) pairs
will guide the adaptive partition of the space. In practice, we found
that adaptive spatial subdivision along with six view orientations
maintains a good tradeoff between structure complexity, temporal
smoothness, and computational cost. A complete description of this
process is described in Section 5.



Interpolate the 
optimal setting

Runtime Rendering
Find nearest Pareto 
frontiers in octree

Compute optimal 
settings 

Compare differences between views

Adaptive Subdivision

Adaptively subdivide octree node when necessary;
 Decide next views to be measured

Pareto-optimal optimization at one view 

Measure e (error) and p (power) 
of one rendering setting

Optimize in the (e, p) space to 
compute Pareto frontier

3D Scene Rendering Settings

Image

Figure 4: Our algorithm is split up into two main stages: the adap-
tive measurement stage (described in Section 5) followed by the
runtime rendering stage (described in Section 6).

4.3 Algorithm Overview

Figure 4 shows an overview of our algorithm, based on our multi-
objective cost model, and our adaptive partition of the camera view-
space. Our input is a 3D scene and a set of rendering effects and
parameters (see Table 1 for the set used in our implementation). The
entire algorithm is split into two main stages: the adaptive subdi-
vision stage and the run-time rendering. As a preprocess, from our
initial octree node, we measure the error in visual quality e and the
power usage p for each camera c, exploring the space of all possi-
ble rendering settings s through Genetic Programming; this yields
the Pareto frontier for such camera. We then compare the Pareto
frontiers of each pair of adjacent cameras sharing the same view di-
rection, and subdivide the octree if the difference is too large. We it-
eratively repeat this process until no more subdivisions are needed.
At run-time, novel views can be rendered under the given quality
or power budget by interpolating the optimal rendering settings at
the nearest sample positions and views during user exploration of
the scene. The following sections offers details on each of the main
steps.

5 Adaptive Subdivision

As a preprocess, the adaptive subdivision partitions the camera
view-space and stores Pareto-frontiers at sampled camera positions
and views. It mainly takes following three steps.

5.1 Pareto-Optimal Optimization at One Camera

5.1.1 Error and Power Measurement

Given a camera c, we first render its reference image using the max-
imum quality settings. This image will then be used to compare the
output of all other rendering settings, according to Equation 1. In-
stead of relying on pixel-wise error metrics such as the L2 norm,
we use the Structural Similarity Index (SSIM) [Wang et al. 2004]

s0j

power

rorre

power

er
ro

r

The cost space (p, e) of view c0

Projected  s0j

Projected 
The nearest point to 

the projected s0j

The cost space (p, e) of view c1

pPc0

Pc1
Pc0

ps0j
es0j

(     ,     )p p

p's0j
e's0j

(     ,     )

p

ps0j
es0j

(     ,     )

Figure 5: Illustration of the distance from the Pareto frontiers Pc0

(left, orange) to Pc1 (right, blue). One distance between the er-
ror and power (es0j , ps0j) of projected points s0j to nearest point
(e′s0j , p

′
s0j) is visualized in green dash line (right). The total dis-

tance is averaged by all point-wise distance (black dashed lines) to
the projected P p

c0 (right, orange).

to measure the similarity and use one minus the similarity to obtain
the error, i.e e = 1− SSIM, which yields results that better predict
human perception.

To measure power usage, we use two different approaches, depend-
ing on the target platform (desktop PC or mobile device). For the
desktop PC, we use specific APIs provided by GPU vendors to ac-
cess the hardware’s internal power readings, and read back power
consumption. For the mobile device we measure it directly instead,
since we did not find any reliable APIs to measure power; we re-
move the battery and use an external metered power source to read
power usage. More details are provided in the supplementary doc-
ument.

5.1.2 Exploring Potentially Optimal Settings

For each camera c, the space of all possible rendering settings s is
large. For an efficient exploration of such space, we rely on Genetic
Programming (GP), inspired by recent works on shader simplifica-
tion [Sitthi-amorn et al. 2011; Wang et al. 2015]. Given its speed,
we adapt the algorithm proposed by Deb et al. [2002], which fits
our multi-objective optimization in error and power space well.

First, we randomly combine parameters of rendering settings to
generate the initial population. During partition, after every sub-
division of the octree, children nodes are initialized by inheriting
the optimal rendering settings of the parent nodes. This greatly ac-
celerates the optimization process. To keep the diversity of the pop-
ulation while guiding the selection process towards a good spread
of solutions on the Pareto curve, we use similar crowding heuristics
to previous work [Deb et al. 2002]. We use crossover to combine
partial solutions from high-fitness variants, along with mutation to
avoid local optima. In particular, two rendering settings swap their
parameter values to generate two offspring. Newly generated vari-
ants are considered and compared together with all preferred vari-
ants using our partial order. Newly preferred variants are selected
to form the incoming population for the next iteration. The result
of this process is a Pareto frontier defined for each camera.

5.2 Comparing Pareto Frontiers

The next step is to compare the Pareto frontiers of adjacent cameras
sharing the same view direction, and evaluate the numerical differ-
ence between them, to decide whether the node should be subdi-
vided. Our observation is that these adjacent cameras will cover
a similar portion of the scene and produce a similar image, thus
having similar Pareto-optimal rendering settings.

Suppose we already have two Pareto frontiers Pc0 and Pc1 taken
from two different cameras c0 and c1. We separately measure their



difference under both the error and power metrics:

De(Pc0 , Pc1) = de(Pc0 , Pc1) + de(Pc1 , Pc0) (4)
Dp(Pc0 , Pc1) = dp(Pc0 , Pc1) + dp(Pc1 , Pc0) (5)

where de(Pc0 , Pc1) and dp(Pc0 , Pc1) are half-distance func-
tions computing error and power differences, respectively, and
De(Pc0 , Pc1) and Dp(Pc0 , Pc1) are the two full distance functions
of error and power.

Figure 5 shows the process of comparing Pareto curves: To com-
pute the half distance from Pc0 to Pc1 , we project Pc0 to the
two-dimensional cost space of Pc1 . This can be done by us-
ing rendering settings of Pc0 to render scenes with camera c1.
Note that both error and power change in the projected curve P p

c0 ,
since it is now related to a different view. Then we compute
the distance between P p

c0 and Pc1 ; for efficiency, we compute
the point-wise distances and average them to obtain the total dis-
tance. Specifically, given a projected rendering setting sp0j defining
a point (psp0j , es

p
0j
), we find the nearest 2D point on Pc1 , defined

as n(c1, s
p
0j) = (p′sp0j

, e′sp0j
). The error and power distances be-

tween these two points are de(sp0j , n(c1, s
p
0j)) = |esp0j −e′sp0j

|, and

dp(s
p
0j , n(c1, s

p
0j)) = |psp0j − p′sp0j

|, respectively. The total error

and power distance function from the projected Pareto frontier P p
c0

to Pc1 is given by:

de(Pc0 , Pc1) =
1

N

N∑
j

de(s0j , Pc1) ≈
1

N

N∑
j

|es0j − e′s0j | (6)

dp(Pc0 , Pc1) =
1

M

M∑
j

dp(s0j , Pc1) ≈
1

M

M∑
j

|ps0j − p′s0j | (7)

where N and M are numbers of rendering settings on Pc0 and Pc1

respectively (we have removed the super-index p in s0j to simplify
notation). If the distances of either the error or power between two
Pareto frontiers are larger than a given threshold, we adaptively sub-
divide our space, as explained in the following subsection.

5.3 Adaptive Space Subdivision

Since computing and comparing all the Pareto curves in the en-
tire camera view-space is intractable, we adaptively partition this
space into an octree, storing a set of discrete position-view pairs,
according to the distance between Pareto frontiers. Let us consider
the position-view pairs, i.e. two cameras (o1, v2) and (o2, v2) il-
lustrated (as a 2D quadtree) in Figure 3.a, right. If either the er-
ror or the power difference between their Pareto frontiers is larger
than a given threshold, this indicates that the current sampling of v2
for adjacent camera positions o1 and o2 is insufficient to obtain all
power-optimal settings in the space in-between, and the node needs
to be subdivided. At the newly generated corner point (o7 in Fig-
ure 3.a, right), we take (o7, v2) (blue) as a new camera and com-
pute a Pareto frontier on it, iteratively repeating the comparison-
subdivision steps until no more subdivision is required (adjacent
Pareto curves are similar). Note that for other views at the corner
point o7, new optimization are only required on the views whose
parent views differ above the given threshold; the rest of the views
simply inherit one of the Pareto curves of their parent nodes. For
views of corners at the center of node faces or at the node center
that have more than two adjacent corners, e.g. o5 and o10 in Fig-
ure 3.a, we pair their adjacent corners along axes and calculate the
corresponding error or power difference. If the difference is larger
than the threshold, we then perform optimization on it to compute
new Pareto frontier.

6 Runtime Rendering

At run-time, we leverage our adaptively partitioned camera view-
space with the corresponding optimal rendering settings to ensure
rendering power-optimal images. Observe a 2D quadtree example
in Figure 3b. First, given a new camera position and user view, we
traverse the octree to obtain the leaf node where it is located. We
project the user’s frustum onto the cubemap formed by the sides
of the leaf, and select the side with the largest projected portion of
the view frustum v2 (see Figure 3b left, green). The corner clos-
est to the camera position o7, and the selected view v2 determine
a position-view camera sample (o7, v2), from which we fetch the
precomputed Pareto frontier (see Figure 3b, right). Finally, given a
power or error budget, and the selected Pareto frontier, we perform
binary search along the frontier and obtain the optimal settings that
are used to render the image.

Temporal Filtering of Rendering Settings To avoid visible sud-
den changes in quality when choosing different cameras during
real-time navigation of the scene, we apply a smoothing strategy
based on temporal filtering. The filtered rendering settings are com-
puted as

soptimal = [(1− t

T
)sold +

t

T
snew] (8)

where the brackets denote the closest integer, sold and snew are the
previous and current optimal rendering settings, respectively, t is
time after applying a new rendering setting, and T is the time used
for interpolation (T = 2 seconds as default).

7 Implementation

We have implemented an OpenGL-based rendering system, and
tested it on two different platforms: One is a desktop PC with Intel
Xeon E3-1230 CPU and an NVIDIA Quadro K2200 graphics card,
running Microsoft Windows 7. The other is a smartphone with 2.2
GHz 8-core ARM Cortex-A53 CPU and PowerVR G6200 GPU,
running Android 5.0.2. Additionally, we also validate our approach
on a commercial rendering engine by integrating it into the Unreal
Engine [UnrealEngine 2015] on the desktop PC. Please refer to the
supplementary material for more details not covered in this section.
Our code will be made available through our website.

7.1 Power Measurement

We first set our rendering system to a fixed frames-per-second rate,
to guarantee comparable measurements where the only variable are
the rendering settings. Then, we combine rendering settings from
different cameras, following two different strategies according to
the given platform.

Desktop PC To measure the power usage of the Quadro graph-
ics card, we use the C-based API, NVIDIA Management Library
(NVML) [NVML 2015], to directly access the power usage of the
GPU and its associated circuitry. According to the documentation,
measurements are accurate to within ±5% of the current power
draw. We average power measurements over a given time period
to reduce variance: we generally take 10 seconds to measure the
power and read back 10 times per second. Between two different
rendering settings, we wait for 3 seconds without measurements to
avoid any residual influence of the previous setting.

Mobile Device For the smartphone, we use an external source
meter to directly supply the power of the device. The source meter



Costs 
Measurements

Rendering Thread

Server Renderer
GP Optimizer

Rendering Task

Rendering Settings si

Adaptive Subdivision
Pa

re
to

-o
pt

im
al

 
se

tti
ng

s

N
ew

 cam
era 

sam
ple

Optimal settings 
in Octree

Optimal settings 
at camera samples

(a) Adaptive subdivision

Rendering Thread

Renderer

O
ptim

al R
endering Settings

Rendered Images

Runtime Optimzation

Rendering Settings

Camera User

Rendering Task

Optimal settings 
in Octree

(b) Runtime Rendering

Figure 6: Preprocess and runtime workflow of our system. Please
refer to the text in Section 7 for details.

that we are using is a Keithley A2230-30-1, which allows direct ca-
ble connection and provides APIs to access the instantaneous volt-
age and current consumption. In practice, we set a constant voltage
and read back the current, from which we obtain power. Note that
in this case, both the CPU and GPU power usages are measured.
Before the measurement, we close all unnecessary applications and
services to reduce the unpredictable power consumptions of CPU.
Since the power measurement of the mobile device has bigger vari-
ance than the desktop PC, we average over 25 seconds, and read
back 10 times per second. The interval between the measurements
of two rendering settings is 5 seconds.

7.2 Rendering Systems

7.2.1 OpenGL-based Rendering System

Figure 6 shows the architecture and the workflow of our rendering
system. It consists of a renderer and a server, connected through
sockets. The renderer is developed in C++ and OpengGL ES, to
be easily used on different platforms. The server is implemented
in C++ and only executed on the desktop PC. Our system has two
rendering modes: In the subdivision mode, the renderer receives
information from the server about the camera position and view to
render scenes, to perform the adaptive partition of the view space.
After the preprocess, all measured and sampled data are then trans-
ferred from the server to the renderer. The rendering mode is ac-
tive during free navigation of the scene. The renderer automatically
searches in the stored hierarchy to find the power-optimal rendering
settings at run-time.

Rendering settings Our OpenGL rendering framework supports
GPU-based importance sampling [Colbert and Krivánek 2007],
shadow mapping, screen-space ambient occlusion (SSAO) [Kajalin
2009], and morphological antialiasing (MLAA) [Jimenez et al.
2011]. For each, we can choose between different parameters and
values to adjust the rendering quality, resulting in a varying power
consumption. The combination of all these makes up the space of
all rendering settings. For GPU-based importance sampling, the
parameter we use is the number of samples generated at run-time;

Parameters Values

In-house renderer
Sample number in GPU sampling 8, 16, 32
Shadow map resolution 256, 512, 1024, 2048
Sample number in SSAO 4, 8, 16, 32
Search steps in MLAA 4, 8, 16, 32, 64

The renderer in Unreal Engine
Anti aliasing 0, 2, 4, 6
Post processing quality 0, 1, 2, 3
Shadows quality 0, 1, 2, 3
Textures quality 0, 1, 2, 3
Effects quality 0, 1, 2, 3
Resolution scale 70%, 80%, 90%, 100%
View distance 0.1, 0.4, 0.7, 1.0

Table 1: List of parameters and values forming the space of render-
ing settings for our two renderers. For details in the Unreal Engine
parameters, refer to the supplementary material.

for shadow mapping, we choose the shadow map resolution as pa-
rameter; for SSAO, the parameter is the number of sample rays to
compute the visibility; last, for MLAA, we vary the steps of the
search to find edges in the pixel shader. The complete set of values
is given in Table 1. To store these settings we use a 32-bit integer,
where the index value of each effect takes up eight bits.

Adaptive Subdivision In subdivision mode, the server sends
camera information and rendering settings to the renderer, to sam-
ple the camera view-space. For each sample, the server first re-
quests the renderer to render the scene with maximum quality and
store the image as a reference, to be used to compute quality er-
rors. Then, the server runs the Genetic Programming algorithm to
optimize the Pareto frontier. The server sends each of the candidate
rendering settings to the renderer, and let the renderer use it to ren-
der the scene. The power usage is measured by the server, and the
image error is measured by the renderer and sent back to the server.
In the next step, the server compares the Pareto frontiers and selects
the next camera sample. The process is repeated iteratively until no
more subdivisions are needed. Last, the server stores all the Pareto
frontiers at the views of corners of the final octree.

Runtime Rendering In the real-time rendering mode, the posi-
tion and view of the camera are used to guide the search in the
octree. Then, the power-optimal rendering setting is retrieved and
used to render the scene.

7.2.2 Rendering System Using the Unreal Engine

To test how well our framework generalizes to other rendering plat-
forms, we implement it on the Unreal Engine. This framework also
consists of two sub-systems, the renderer and the server, with simi-
lar roles as before. To integrate our rendering in the Unreal Engine,
instead of defining two modes of operation, we develop two plug-
ins for the subdivision and rendering tasks, respectively, adapting
our in-house code to the Unreal architecture.

Rendering settings The Unreal Engine provides a set of prede-
fined settings to allow users to adjust the quality of several features.
These can be tweaked at run-time, thus they fit well in our sys-
tem. We select seven features (Table 1): resolution scale, view dis-
tance, anti-aliasing, post-processing quality, shadows quality, tex-
tures quality, and the effects. The complete set of values is given in
Table 1, defining the space of all rendering settings. To store these
settings we also use a 32-bit integer, where the index value of each
effect takes up four bits.



Demos Renderer Platform
Scene Subdivision Rendering

Tris. # Scene Size Thld. (power, error) Time (hrs) Levels Corners Views Data Size Duration
Valley in-house PC 55.9 k 32.5 MB (0.5W, 0.002) 29.9 4 279 759 18.1 KB 50 s
Hall in-house Mobile 31.7 k 25.8 MB (0.15W, 0.002) 35.3 4 108 316 9.3 KB 50 s
Elven Ruins UE4 PC 191.2 k 1.03 GB (0.5W, 0.005) 67.1 5 393 956 36.6 KB 60 s
Sun Temple UE4 PC 667.9 k 512 MB (0.5W, 0.005) 35.4 3 125 511 18 KB 60 s

Table 2: Statistics for the tested demos. Scene statistics include number of triangles, and size on disk. Subdivision statistics include number
of levels and corners on the octree, number of computed views, size on disk, and preprocess time. Thresholds indicate power and error limits
for subdivision of the octree (see Section 5 for details).

8 Results

We performed a series of experiments in order to demonstrate the
effectiveness of our rendering framework on four different scenes.
Our in-house renderer runs on a desktop PC and a smartphone, and
the renderer integrated in the Unreal Engine runs on the desktop
PC. In Table 2, we summarize the statistics of the demo scenes.
The FPS is set to 30 in all our experiments on desktop PC, and 10
on the smartphone due to the limited computational power.

Valley We use our in-house renderer to render the scene with four
different effects on the PC. We set an environment light and a di-
rectional light, with GPU-based importance sampling. The direc-
tional light casts shadows, with the shadow map resolution as one of
the parameters in our optimization. The screen-space ambient oc-
clusion (SSAO) and morphological anti-aliasing (MLAA) are com-
puted as post-processes.

Hall Each polygon has a diffuse map and a specular map. We use
our in-house renderer to render the scene on the smartphone. Since
the GPU-based importance sampling effect requires environment
lighting, we initially render the scene onto a cubemap centered in
the hall, and use it as the environment map. A directional light is
set to illuminate the scene through the door. As in the previous
scene, SSAO and MLAA are all computed in screen space as post-
processes.

Elven Ruins This demo is modified from an example scene
shipped with the Unreal Engine. We use the plug-in that we de-
veloped in the Unreal Engine to render the scene.

Sun Temple This demo is another example scene shipped with
the Unreal Engine. We also use our Unreal Engine plug-in to render
it.

8.1 Adaptive Subdivision and Pareto Frontier

Power and error thresholds used to trigger subdivision of the oc-
tree are shown in Table 2. Note that since the parameter space is
different for our in-house renderer and Unreal Engine, while power
consumption also varies on each platform, we set different initial
parameters for each platform-renderer pair. For the Genetic Pro-
gramming (GP) algorithm, we set the maximum iterations to 25 in
our in-house renderer. In Unreal Engine, we increase the maximum
iterations to 40 due to the higher complexity of the parameter space.
As Table 2 shows, the extra memory overhead is negligible in both
cases, in the order of a few KB.

Figure 7 shows two example plots of our entire power-error cost
space for one view in the Valley and Elven Ruins scenes. The Pareto
frontiers optimized by our GP algorithm are shown in orange. The
combinations of all different rendering settings are shown in dark
grey.

(a) One view in Valley demo (b) One view in Elven Ruins demo

Figure 7: The entire power-error cost spaces and Pareto frontiers
optimized by our GP algorithm at two example views. Grey dots
are rendering settings and the orange line is the Pareto frontier. (a)
One view in the Valley demo with 300 rendering settings. (b) One
view in the Elven Ruins demo with 16384 rendering settings.

(a) Average visual error (b) Energy consumption

Figure 8: Average visual error and total energy consumption under
different rendering settings in our four demos.

8.2 Runtime Power-Optimal Rendering

Although our approach supports run-time free exploration, for com-
parison purposes we record a camera path and repeat the motion
while testing different power or error budgets. To obtain stable reli-
able measurements, all paths last between 50 and 60 seconds. The
maximum quality and the minimum rendering settings are regarded
as the baselines. Then, for the different demos, we use different
power or error budgets to guide our run-time power-optimal ren-
dering. Figure 8 shows the average visual error and total energy
consumption we measured. It can be seen how our framework dras-
tically minimizes visual error, while keeping power consumption
very close to the minimum-quality settings. We describe our demos
in this section, and refer the reader to the supplemental video for
the animations and the details of all the rendering settings.

Figure 1 shows the Sun Temple scene running on the Unreal Engine,
under a power budget p = 7W . From the zoomed-in insets, it can
be clearly seen how the quality produced with our framework is
very close to the maximum quality, while the minimum rendering
settings introduce visible artifacts such as wrong shadows, over-
blurred areas, or missing reflections. The plots on the right show a
lower power usage than maximum quality, with negligible error.



Minimum  quality Maximum  qualityOur error-budget settings

Min Ours Max Min Ours Max

10

8

6

4

0.05

0.03

0.01

Time (seconds)

Time (seconds)
0                        15                       30                       45 

0                        15                       30                       45 

Po
w

er
 (W

at
t)

E
rr

or
 (1

-S
SI

M
)

midmin
maxours

Power usage

Image error

Figure 9: Real-time demo for the Valley scene, using our in-house render engine on a desktop PC. We compare minimum, middle and
maximum quality settings against our power-optimal rendering framework, selecting an error threshold of 0.01 (renderings with middle
settings not shown in the figure). Our method outputs images almost identical to those produced with the maximum-quality settings. The plots
on the right show power usage and error during 50 seconds of free camera navigation: Our framework keeps power consumption almost as
low as the minimum settings (top), while ensuring that errors stay below the given threshold. Please refer to the supplementary video for the
full demo.

Figure 10: Hall real-time demo using our in-house render en-
gine on a smartphone. Top-left image shows the maximum settings
render. We compare insets (top-right) of minimum and maximum
quality settings against our power-optimal rendering framework,
selecting a power threshold of 2.2W, close to consumption at the
minimum quality settings. Plots on the bottom show power usage
and error during a 50-second camera path. Our optimized settings
maintain a power usage below the given budget, while providing a
quality close to the maximum settings. Please refer to the supple-
mentary video for the full demo.

Figure 9 shows the Valley scene rendered on a desktop PC. During
navigation under a visual error budget ebgt = 0.01, our system au-
tomatically retrieves the optimal rendering settings to produce the
image in real-time. We measure and compare, for the maximum and
minimum rendering settings, the power usage and the error curves,
plotted in Figure 9, right. Since this scene is relatively simple, the
error between the maximum and minimum rendering settings is not
extremely large. But even in this case, our method is able to find
the optimal tradeoffs that keep the error within budget, while sig-
nificantly reducing power usage.

Elven Ruins
Ours Max Max-Mid Mid-Min Min

Avg. Power (W) 7.87 15.87 11.80 8.88 6.11
Avg. Error (e) 0.018 0 0.013 0.046 0.151

Sun Temple
Ours Max Max-Mid Mid-Min Min

Avg. Power 7.09 10.73 8.51 6.00 4.90
Avg. Error 0.0145 0 0.0158 0.068 0.236

Table 3: Average power consumption and error for the Elven Ru-
ins and Sun Temple demos, using different rendering settings. Our
power optimal framework (Ours), achieves the best tradeoff, pro-
ducing images almost identical to the maximum quality settings
while reducing power between 30% and 50% approximately.

Figure 10 shows a detail of the Hall demo running on the smart-
phone. We set a power budget p = 2.2W . Three power us-
age curves and error curves are plotted in Figure 10, bottom. Our
method stays within the power budget, offering a good tradeoff be-
tween power and error.

Figure 11 shows the Elven Ruins demo, running on the Unreal En-
gine. Here we set two different budgets, a power budget p = 10W ,
and a visual error budget e = 0.02. Our system takes these two
budgets into account during navigation, and selects power-optimal
rendering settings accordingly. The plots on the right show how, if
we use the power budget to guide the rendering, power consump-
tion is more stable than using the error budget. In this case, our
framework dynamically finds some rendering settings that dramati-
cally reduce power consumption, bringing it close to the minimum
consumption (at 25-32s and 48-60s), while maintaining a very low
quality error. This is because our system automatically identifies
which rendering parameters have a larger impact on quality for the
current view, while still maintaining low power consumption.

8.3 Analysis of Different Settings

A key advantage of our optimization framework is its flexibility,
being agnostic to the particular choice of parameters and settings.
This is a key feature, since we have not found a predictable correla-
tion between the values for the different parameters and their effect
on power saving and error. This impact is instead highly dependent
on the particularities of the scene and view being rendered. For in-
stance, Shadow Quality will only have a measurable effect when
shadows are clearly visible in the frame (see for instance Figure 9).



Minimum quality

Middle - minimum

Maximum - middlePower-budget settings (ours)

Error-budget settings (ours) Maximum quality

Min Mid-min Min Mid-min Min Mid-minMaxMax-mid MaxMax-mid MaxMax-midError Error ErrorPower Power Power

0             15             30             45            60

0             15             30             45            60

20

15

10

5

0

0.25
0.2

0.15
0.1

0.05

Time (seconds)

Time (seconds)

Po
w

er
 (W

at
t)

E
rr

or
 (1

-S
SI

M
)

Power usage

Image error

power-budget 
error-budget max-mid

max
min
mid-min

Figure 11: Elven Ruins real-time demo using the Unreal Engine on a desktop PC. We compare minimum, middle-minimum, maximum-middle
and maximum quality settings against two modes of our power-optimal rendering framework: Selecting a power budget of 10W, and an error
budget of 0.02. Plots on the right show power usage and error during a 60-second camera path. Our framework provides power-error
optimized settings under the two different budget modes, while guaranteeing in both cases a visual quality very similar to the maximum
settings, and power usage close to the minimum settings. Moreover, our optimized settings outperform manual settings. Please refer to the
supplementary video for the full demo.

The only exceptions to this for our parameter space are Resolution
Scale, which has a direct correlation with power consumption, and
Texture Quality, which in our tests seemed to impact image quality
the most. However, even these two parameters have a very different
influence on power and error depending on the rendered view, as
Figure 12 shows. Given the entire camera view-space of a scene, it
would obviously be impractical to manually preset all optimal ren-
dering settings. Our framework allows us to automatically select
optimal power and error settings at runtime, without human inter-
vention of prior knowledge about the scene.

We have also conducted a comparison with manually set tradeoffs
between power and quality. In the Unreal Engine, some settings
can be manually tweaked, allowing users to adjust the quality of
various features. We set settings for four quality levels: maximum
(all values set to maximum), maximum-middle, middle-minimum,
and minimum (all values set to minimum). For this test we use
the Elven Ruins and the Sun Temple scenes. Figure 11 compares
one view under different settings and the corresponding plots for
power and error in the Elven Ruins scene. The statistics of average
power usage and errors are shown in Table 3. As can been seen,
our method provides an excellent balance between visual error and
power consumption: In the Elven Ruins demo, our method only
consumes 7.87 W, which represents a saving of 50.4% of power
compared to the maximum setting, and the visual quality is an or-
der of magnitude better than the minimum setting. Similar conclu-
sions can be inferred for the Sun Temple demo, with about 30%
less power consumed. These results clearly demonstrate that our
power-optimal framework is capable of automatically balancing op-
timal power consumption and quality, which would be very chal-
lenging to achieve by manually adjusting settings. Moreover, our
framework provides dynamic optimal settings, while manually-set
parameters in Unreal remain fixed throughout the demo.

8.4 Temporal Filtering

As described in Section 6, to reduce sudden changes in quality due
to the runtime optimization of rendering settings, we apply a tem-
poral filtering strategy. Despite this filtering being a discrete in-

terpolation, our simple smoothing strategy improves the rendering
quality in many cases. Figure 13 shows an example of 200 frames,
including a runtime change of parameters with and without tempo-
ral filtering. We use the parameters before this change to render 200
frames, and regard them as reference to compute visual error. As
shown in the plot, our temporal filtering provides a smoother transi-
tion, gradually modulating the visual error after a parameter change
at frame #35, successfully reducing visible popping artifacts (refer
also to the video in the supplemental). The zoomed insets of frame
#34 and #35 clearly demonstrate better consistence when applying
the temporal filtering.

9 Discussion and Future Work

In some cases, the power or error curves may deviate slightly from
the given budgets. This is due to the following reasons: First, at
each view, the Pareto-optimal settings are discretely distributed in
the power-error space. Therefore, the optimal setting computed un-
der a budget may not exactly match the budget. Second, during
the adaptive subdivision, the camera view-space is partitioned by
thresholds until a fixed number of octree levels is reached. There-
fore, in some local regions, using the optimal rendering setting at
the closest sample camera may induce a slight deviation. In any
case, as shown in Figure 11, the error and power curves remain
very stable.

Since we focused on optimizing GPU consumption, we explicitly
measured GPU power on desktop PC, and minimized CPU impact
on mobile devices by deactivating as many external CPU sources as
possible. While some rendering aspects may influence CPU power
usage, in practice we found this variation negligible for the parame-
ters we used. Nevertheless, it remains an interesting topic of future
work to analyze the influence of a wider set of parameters on CPU
power usage.

Our framework is not free of limitations and potential avenues of
future work. First, it does not take into account dynamic changes
in geometry or lighting. However, predicting the full space of
all possible situations that may arise when dynamic changes area



0                1                2               3

 0               1                2               30                1                2               3

0                1                2               3

11

8

6

0.025

0.015

0.005

12

9

7

0.25

0.15

0.05

Po
w

er
 (W

at
t)

E
rr

or
 (1

-S
SI

M
)

Setting

Setting

Setting

Image error Image error

Power usage Power usage

Setting

Resolution Scale View Distance Quality Anti-Aliasing QualityShadow Quality

Post-Process Quality Texture QualityEffects Quality

Figure 12: The influence of the different parameters is highly de-
pendent on the particularities of the scene and view being rendered.
Shown are two views of the Elven Ruins demo. For each view, we
first set all parameters to produce the maximum rendering quality,
and use it as the base setting. Then, we individually change only
one parameter, from minimum to maximum value (shown as 0..3 in
the figure), while keeping the others at maximum level. From the
power consumption plots, it can be seen that in this case Resolu-
tion, Effects and Post-Process are the most dominant. However, the
error is inversely correlated with Texture quality for the first view,
while Resolution has an insignificant impact.

allowed is obviously intractable. One possibility to incorporate
such changes in our optimization would be to precompute some of
them, for instance the same view under different illuminations, and
smoothly interpolate between settings at runtime. Our framework
allows for such extensions of the power-error cost space, at the cost
of longer preprocessing times. Nevertheless, this would only need
to be done once; at run-time, the system would still be able to op-
timize in real-time, given our strategy of reducing the search for
optimal settings to a one-dimensional Pareto curve.

Second, the capability to explore the full space of all possible com-
binations of rendering settings is limited by our GP optimization.
Different strategies may yield slightly different Pareto frontiers, al-
though we do not expect the final results to vary much in terms of
power consumption or visual quality during navigation. Similarly,
we have set our thresholds for the adaptive subdivision heuristi-
cally: although they provide a good balance between complexity of
the subdivision and performance, we did not thoroughly explore the
possibilities of other subdivision thresholds or schemes.

While the results in this paper are strictly valid for the specific hard-
ware configuration we used, our proposed framework is equally ap-
plicable to any other configurations. Moreover, we believe that the
resulting optimization for a particular hardware setup will allow
for a certain degree of transferability across similar configurations,
by abstracting some of the dependencies. Finally, although the re-
quired precomputation time is not significant for large-scale pro-
ductions, it would be interesting to find novel ways to reduce it, for
instance by learning relationships among scene properties, render-
ing parameters and power usage, or acquiring higher-level knowl-
edge about parameters.

To summarize, we hope that our power-saving rendering framework
inspires future work in this direction. Our current implementation
satisfies four key ideal characteristics: it produces optimal results
between energy consumption and quality; it allows the user to fix

Frame #35 (Filtering On)Frame #34 Frame #35 (Filtering Off)

1( rorr
E

-S
SI

M
)

Frame number

Image error

0

0.01

0.02

0.03

0.04

1 34 66 98 130 162 200

Filtering Off
Filtering On

Figure 13: Elven Ruins scene with and without our temporal filter-
ing, for a parameter change at frame #34. To illustrate the benefits,
we propagate the settings at frame #34 to 200 frames, and com-
pute the error of each frame with respect to the filtered (on) and
non-filtered (off) versions. Notice how temporal filtering improves
consistency, avoiding visible popping artifacts (sudden jump in the
orange curve) by providing a smoother transition between settings.
This is also shown in the insets comparing frames #34 and #35.

either a power or a quality target; it is real-time; and it generalizes
across different platforms. We have shown results on four different
scenes, running on two different platforms, including a commer-
cial one. Additionally, we have validated that our framework out-
performs manually-set parameters, available in the Unreal Engine
environment.

Acknowledgements

We would like to thank all reviewers for their thoughtful com-
ments. We also thank Jiali Pan, Yunjing Zhang and Xianlong Ge
for preparing demos and video, Carlos Aliaga and Elena Garces
for helping with figures, and Adrian Jarabo and Adolfo Muñoz
for proofreading the paper. This work was partially supported
by 973 Program of China (No. 2015CB352503), NSFC (No.
61472350), the Fundamental Research Funds for the Central Uni-
versities (No. 2016FZA5013), the European Social Fund, the Gob-
ierno de Aragón, and the Ministerio de Economı́a y Competitividad
(project LIGHTSLICE).

References

AKENINE-MÖLLER, T., AND STROM, J. 2008. Graphics process-
ing units for handhelds. Proceedings of the IEEE 96, 5 (May),
779–789.

ARNAU, J.-M., PARCERISA, J.-M., AND XEKALAKIS, P. 2014.
Eliminating redundant fragment shader executions on a mobile
GPU via hardware memoization. SIGARCH Comput. Archit.
News 42, 3 (June), 529–540.

BELOGLAZOV, A., ABAWAJY, J., AND BUYYA, R. 2012. Energy-
aware resource allocation heuristics for efficient management of
data centers for cloud computing. Future Gener. Comput. Syst.
28, 5 (May), 755–768.

CHEN, H., WANG, J., CHEN, W., QU, H., AND CHEN, W. 2014.
An image-space energy-saving visualization scheme for OLED
displays. Computers & Graphics 38, 61 – 68.



CHEN, W., CHEN, W., CHEN, H., ZHANG, Z., AND QU, H.
2016. An energy-saving color scheme for direct volume ren-
dering. Computers & Graphics 54, 57 – 64.

CHENG, W.-C., AND PEDRAM, M. 2004. Power minimization in a
backlit TFT-LCD display by concurrent brightness and contrast
scaling. IEEE Transactions on Consumer Electronics 50, 1, 25–
32.

CHUANG, J., WEISKOPF, D., AND MLLER, T. 2009. Energy
aware color sets. Computer Graphics Forum 28, 2, 203–211.

COHADE, A., AND DE LOS SANTOS, S. 2015. Power efficient pro-
gramming: How funcom increased play time in lego minifigures.
In Game Developer’s Conference.

COLBERT, M., AND KRIVÁNEK, J. 2007. GPU-based importance
sampling. GPU Gems 3, 459–476.

DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T.
2002. A fast and elitist multiobjective genetic algorithm: NSGA-
II. Trans. Evol. Comp 6, 2, 182–197.

DONG, M., AND ZHONG, L. 2012. Power modeling and optimiza-
tion for oled displays. IEEE Transactions on Mobile Computing
11, 9, 1587–1599.

DONG, M., CHOI, Y.-S. K., AND ZHONG, L. 2009. Power-
saving color transformation of mobile graphical user interfaces
on oled-based displays. In Proceedings of the 2009 ACM/IEEE
International Symposium on Low Power Electronics and Design,
ISLPED ’09, 339–342.

FORREST, S. R. 2003. The road to high efficiency organic light
emitting devices. Organic Electronics 4, 2 - 3, 45 – 48.

GHARBI, M., SHIH, Y., CHAURASIA, G., RAGAN-KELLEY, J.,
PARIS, S., AND DURAND, F. 2015. Transform recipes for effi-
cient cloud photo enhancement. ACM Trans. Graph. 34, 6 (Oct.),
228:1–228:12.

HE, Y., FOLEY, T., TATARCHUK, N., AND FATAHALIAN, K.
2015. A system for rapid, automatic shader level-of-detail. ACM
Trans. Graph. 34, 6 (Oct.), 187:1–187:12.

IYER, S., LUO, L., MAYO, R., AND RANGANATHAN, P. 2003.
Energy-adaptive display system designs for future mobile envi-
ronments. In Proceedings of the 1st International Conference on
Mobile Systems, Applications and Services, MobiSys ’03, 245–
258.

JIMENEZ, J., MASIA, B., ECHEVARRIA, J. I., NAVARRO, F., AND
GUTIERREZ, D. 2011. GPU Pro 2.

JOHNSSON, B., GANESTAM, P., DOGGETT, M., AND AKENINE-
MÖLLER, T. 2012. Power efficiency for software algo-
rithms running on graphics processors. In Proceedings of the
Fourth ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, EGGH-HPG’12, 67–75.

JOHNSSON, B. M. 2014. Energy Analysis for Graphics Processors
using Novel Methods & Efficient Multi-View Rendering. PhD
thesis, Lund University.

KAJALIN, V. 2009. Screen space ambient occlusion. Shader X 7,
413, 24.

KYUNG, C.-M., AND YOO, S. 2014. Energy-Aware System De-
sign: Algorithms and Architectures. Springer Publishing Com-
pany, Incorporated.

MASIA, B., WETZSTEIN, G., DIDYK, P., AND GUTIERREZ, D.
2013. A survey on computational displays: Pushing the bound-
aries of optics, computation, and perception. Computers &
Graphics 37, 8, 1012–1038.

MAVRIDIS, P., AND PAPAIOANNOU, G. 2015. MSAA-based
coarse shading for power-efficient rendering on high pixel-
density displays. In High Performance Graphics.

MOSHNYAGA, T., AND MORIKAWA, E. 2005. LCD display en-
ergy reduction by user monitoring. In IEEE international con-
ference on computer design.

NARRA, P., AND ZINGER, D. 2004. An effective LED dimming
approach. In IEEE industry applications conference.

NVML, 2015. NVIDIA Management Library. https://developer.
nvidia.com/nvidia-management-library-nvml.

PEDDIE, J. 2013. Trends and forecasts in computer graphics –
power-efficient rendering. In Jon Peddie Research.

PELLACINI, F. 2005. User-configurable automatic shader simplifi-
cation. ACM Trans. Graph. 24, 3 (July), 445–452.

POOL, J. 2012. Energy-precision tradeoffs in the graphics pipeline.
PhD thesis, University of North Carolina at Chapel Hill.

POWERVR. 2012. PowerVR: A master class in graphics technol-
ogy and optimization. In Imagination Technologies.

RANGANATHAN, P., GEELHOED, E., MANAHAN, M., AND
NICHOLAS, K. 2006. Energy-aware user interfaces and energy-
adaptive displays. Computer 39, 3, 31–38.

SHEARER, F. 2007. Power Management in Mobile Devices. Else-
vier Inc.

SITTHI-AMORN, P., MODLY, N., WEIMER, W., AND
LAWRENCE, J. 2011. Genetic programming for shader
simplification. ACM Trans. Graph. 30, 6, 152.

STAVRAKIS, E., POLYCHRONIS, M., PELEKANOS, N., ARTUSI,
A., HADJICHRISTODOULOU, P., AND CHRYSANTHOU, Y.
2015. Toward energy-aware balancing of mobile graphics. In
IS&T/SPIE Electronic Imaging, International Society for Optics
and Photonics, 94110D–94110D.

UNREALENGINE, 2015. Unreal Engine. https://www.
unrealengine.com/.

VAIDYANATHAN, K., SALVI, M., TOTH, R., FOLEY, T.,
AKENINE-MÖLLER, T., NILSSON, J., MUNKBERG, J., HAS-
SELGREN, J., SUGIHARA, M., CLARBERG, P., ET AL. 2014.
Coarse pixel shading. In High Performance Graphics.

VALLERIO, K. S., ZHONG, L., AND JHA, N. K. 2006. Energy-
efficient graphical user interface design. IEEE Transactions on
Mobile Computing 5, 7 (July), 846–859.

WANG, Z., BOVIK, A. C., SHEIKH, H. R., AND SIMONCELLI,
E. P. 2004. Image quality assessment: from error visibility to
structural similarity. Image Processing, IEEE Transactions on
13, 4, 600–612.

WANG, R., YANG, X., YUAN, Y., CHEN, W., BALA, K., AND
BAO, H. 2015. Automatic shader simplification using surface
signal approximation. ACM Trans. Graph. 33, 6 (Nov.), 226:1–
226:11.

WOO, R., YOON, C.-W., KOOK, J., LEE, S.-J., AND YOO, H.-J.
2002. A 120-mW 3-D rendering engine with 6-Mb embedded
DRAM and 3.2-GB/s runtime reconfigurable bus for PDA chip.
Solid-State Circuits, IEEE Journal of 37, 10 (Oct), 1352–1355.

https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://www.unrealengine.com/
https://www.unrealengine.com/

