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Figure 1 : Based on the NLP technique, our proposed ShaderTransformer can learn complex attention between shader codes
(left) to reveal their contributions to shading quality. Once trained with different scene configurations, the network can predict
the influence of shader expressions on the final rendering result under different scene configurations. We highlight the top
7 important expressions predicted by our method (center) and show some of the rendering results after simplifying these
expressions(right).

RÉSUMÉ
Given specific scene configurations and target functions, auto-

matic shader simplification searches for the best simplified shader
variant from an optimization space withmany candidates. Although
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various speedup methods have been proposed, there is still a costly
render-and-evaluate process to obtain variant’s performance and
quality, especially when the scene changes.

In this paper, we present a deep learning-based framework for
predicting a shader’s simplification space, where the shader’s va-
riants can be embedded into a metric space all at once for efficient
quality evaluation. The novel framework allows the one-shot em-
bedding of a space rather than a single instance. In addition, the
simplification errors can be interpreted by mutual attention bet-
ween shader fragments, presenting an informative focus-aware
simplification framework that can assist experts in optimizing the
codes. The results show that the new framework achieves signi-
ficant speedup compared with existing search approaches. The
focus-aware simplification framework reveals a new possibility of
interpreting shaders for various applications.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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1 INTRODUCTION
The increasing flexibility of modern graphics hardware allows

the rendering of attractive visual effects via complex shaders. Auto-
mated shader simplification is a promising solution for meeting real-
time requirements in various scene complexities. Several works [He
et al. 2015; Olano et al. 2003; Pellacini 2005; Sitthiamorn et al. 2011;
Wang et al. 2014; Yuan et al. 2018] have proposed to automati-
cally simplify shaders. These works proposed simplification rules
including removing operations [Olano et al. 2003], moving frag-
ment shader codes to the vertex/tessellation shader stage [Wang
et al. 2014], and moving fragment shader codes to the parameter
stage [He et al. 2015]. Applying these rules to the original shader
produces a large set of simplified shader variants. Then, searching
schemes, such as genetic programming (GP), were introduced to
efficiently find the optimal shader variants on the Pareto frontier de-
fined by metrics such as rendering performance and visual quality.
However, the simplification framework remains a time-consuming
process, mostly because of the cost of the process of rendering and
evaluating many shader variants. Classic offline methods [He et al.
2015; Pellacini 2005; Sitthiamorn et al. 2011; Wang et al. 2014] seek
the average best by rendering a shader variant in multiple scene
configurations and averaging the result, which makes existing so-
lutions miss optimal solutions, take a considerable amount of time,
and consume a large space to cache the results. Subsequent works
have proposed replacing the evaluation by predicting the rendering
performance and visual quality through rendering spare variant
samples [He et al. 2015; Yuan et al. 2018]. However, they still need
to render example scene configurations multiple times to guide the
search. The shader evaluation is often conducted one by one and
takes up a large portion of the search time.

The challenge is that although rendering performance can be
effectively predicted with a small cost, the visual quality directly
depends on the multimodal inputs consisting of shade codes and
scene configurations. For example, a simplified shader that removes
AO terms may yield good quality in a flat scene but may fail on
bump surfaces.

To address such a challenge, in this paper, we consider two
modifications to provide a better evaluation of shader candidates.
First, we decouple the scene configurations with the shader codes.
Therefore, we do not need to conduct the render-and-evaluate
process while the scene changes. Second, we want to evaluate the
qualities of simplified variants all at once and thus avoid costly
one-by-one evaluation.

However, analyzing shaders is a complicated multimodal chal-
lenge that involves programming languages, mathematical func-
tions, and 3D inputs. Recently, the natural language processing
(NLP) community has been exhilarated by the significant success
of the Transformer [Vaswani et al. 2017b] structure. The new struc-
ture can efficiently capture contextual information from the entire
sequence rather than one locality. We find that this property is
suitable for finding the distant relationship between variables in
the shader code. Therefore we propose a Transformer that takes
shader inputs such as G-buffers and uniform parameters as condi-
tions. Unlike common neural network structures, the transformer’s
output is not specific values but represents the original shader’s
simplification space.We can easily embed shader variants as vectors
by manipulating the output attention cache. Then the visual errors
are naturally represented by the distances between the embeddings
of the original shader and its variants.

Specifically, we first train a model from scratch for each sha-
der. At run time, a trained model takes arbitrary shader inputs to
predict a simplification space, where we can analytically query
shader variants’ visual quality. Using this process to replace the
existing render-and-evaluate process significantly improves the
search speed and accuracy. In contrast, GP cannot generalize to
new configurations and needs to re-evaluate each object’s variants
to avoid over-averaging. Thus, it takes a lot of time for applications
like games with thousands of different objects.

Our contributions are summarized as follows :
— A multimodal conditional Transformer that takes shader in-

puts as conditions to embed the shader variants into a simpli-
fication space according to visual quality.

— A fast automatic shader simplification framework that re-
places the render-and-evaluate process with a deep learning-
based embedding mechanism.

— A deferred query mechanism that enables the one-shot em-
bedding of the entire space with one neural network inference.
It reduces the embedding overhead by several orders.

2 RELATEDWORK
Shader Simplification : Shader simplification can be regarded

as the approximation of signals on the surface. Technically, the com-
putations of surface signals can be approximated and simplified
by removing operations or reducing sampling rates. Texture remo-
val [Olano et al. 2003] was introduced by Olano et al. [Olano et al.
2003] for lossy simplification and Pellacini extended simplification
rules with the removal of binary operations or loop expressions [Pel-
lacini 2005],

The core idea of reducing sampling rates is to move per-fragment
shader terms to other stages and then use these terms in the frag-
ment shader. Olano et al. [Olano et al. 2003] and Pellacini [Pellacini
2005] proposed to prebake some per-fragment shader terms as tex-
tures or constants. Wang et al. [Wang et al. 2014] moved these terms
to vertex or tessellation shaders. He et al. [He et al. 2015] moved
per-fragment or per-vertex operations into the parameter shader
stage.

Besides, searching is another step of shader simplification. Pit-
chaya Sitthi-amorn et al. [Sitthiamorn et al. 2011] proposed a ge-
netic programming-based shader simplification scheme to select

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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optimal shaders that balance performance and image quality. He et
al. [He et al. 2016] presented a new shading language and compiler
framework named Spire that facilitates rapid exploration of shader
optimization choices. Yuan et al. [Yuan et al. 2018] proposed a pa-
rallel runtime algorithm to efficiently search in the simplification
dependency graph for optimal simplified shaders.

Beyond that, some extended applications have been explored.
Song et al. [Song et al. 2011] simplified both geometry and sha-
ders. They adopted a progressive mesh to obtain an appropriate
geometric representation and employed error control to choose the
levels of the shader and geometry. Lewis and Michael [Crawford
and O’Boyle 2018] focused on the impact of compiler optimization.
They explored common features of graphics shaders and examined
the impact and applicability of common optimizations.

Code Processing : Considerable neural network models have
been proposed for automatic code summarization, documentation,
retrieval, and generation. Several representations have been in-
troduced to represent programs, for example, a sequence of to-
kens [Bhoopchand et al. 2016; Hindle et al. 2012] and the syntax
tree structure of codes [Raychev et al. 2016; ?]. Recurrent neural net-
work(RNN) architectures, including bidirectional recurrent neural
networks (BRNNs) [Cho et al. 2014], LSTMs [Alon et al. 2018], and
tree-structured LSTMs [Tai et al. 2015], have been widely adopted
to encode a sequence of tokens or the syntax tree structure of codes.
In general, the syntax tree structure of codes can also be regarded
as a graph, and therefore graph neural networks (GNNs) [Allamanis
et al. 2017] have been applied to represent codes in the network.
Cummins et al. [Cummins et al. 2017] developed a network that
learns heuristics over raw code for simultaneous code represen-
tation and optimization. Chen et al. [Chen et al. 2018] introduced
a learning-based framework that learns cost models to guide the
search of tensor operator implementations over program variants
for deep learning workload optimization. In the computer graphics
community, a novel framework has been proposed to automatically
schedule Halide programs for high-performance image processing
and deep learning [Adams et al. 2019]. It outperforms human ex-
perts and produces schedules that are almost twice as fast as the
existing Halide autoscheduler.

Transformer : The Transformer architecture and self-attention
models have been widely used in natural language processing (NLP)
and have revolutionized various NLP applications [Dai et al. 2019;
Kenton and Toutanova 2019; Vaswani et al. 2017a; Wu et al. 2018].
These works also inspire the evolution of self-attention-based image
processing neural networks [Dosovitskiy et al. 2020; Hu et al. 2019;
Parmar et al. 2018; Ramachandran et al. 2019; Zhao et al. 2020].
The key to success is the self-attention model that enables the net-
work to capture contextual information from the entire sequence
rather than locality. Technically, each element actively queries the
correlation with every other element regardless of distance, for-
ming dynamic connections depending on the inputs. While classic
shader code process techniques have trouble building connections
between distant variable pairs, the Transformer’s capability of lear-
ning contextual information from the long sequence is valuable for
analyzing shader codes.

Metric Learning :Metric learning analyzes the similarity bet-
ween data to embed data into a latent manifold space. After the

embedding, high-dimensional data can be handily applied in va-
rious applications, such as image recognition [Hadsell et al. 2006]
and image retrieval [Wang et al. 2017]. For computer graphics, a
recent work adapts contrastive learning to explore the coherent
information within the high-dimensional path space [Cho et al.
2021]. A recent survey covers more details [Kaya and Bilge 2019].
This paper focuses on embedding shader variants into a manifold
with distances following simplification errors. Unlike common em-
bedding techniques that process single instances one by one, we
propose one-shot embedding to efficiently embed the entire sim-
plification space, i.e., the set of many shader variants, with only
one neural network inference. The one-shot embedding technique
reduces the embedding cost by several orders of magnitude.

3 PROBLEM STATEMENT
At a high level, the goal of shader simplification is to find a

sequence of shader variants that take less time to render while pre-
serving more visual quality than other variants. The classic shader
simplification approach relies on an offline process to generate a
sequence of simplified shader variants from an original shader 𝑠𝑜 .
Figure 2 illustrates the flowchart of such a framework. The original
shader code is usually converted to an abstract syntax tree (AST).
Different shader simplification rules may be applied to generate a
set of simplified shader variants. The generated variants can be fur-
ther simplified, thus generating more variants in the next iteration.
Exhaustive exploration of all possible variants is costly, and pre-
vious methods conduct the render-and-evaluate process to obtain
variants’ rendering quality and performance, then choose a smaller
number of representative variants for further simplification. For
example, GP[Sitthiamorn et al. 2011; Wang et al. 2014] or greedy
search [He et al. 2015] selects variants at the Pareto frontier, and
the online method [Yuan et al. 2018] selects variants at the cluster
center in preprocessing and prioritizes them using runtime search.

To evaluate a simplified shader variant 𝑠𝑣 , and provide a spe-
cific scene with multiple shader inputs, e.g., geometry, uniforms,
and textures, the engine renders a scene, then acquires a rendered
image, and the computation cost 𝑡 (𝑠𝑣). The rendering quality can
be measured by comparing the rendered image with the ground
truth (GT) image rendered by the original shader 𝑠𝑜 :

𝜀 (𝑠𝑣, 𝑢) = ∥𝐼 (𝑠𝑣, 𝑢) − 𝐼 (𝑠𝑜 , 𝑢)∥2 , (1)

where 𝑢 represents generalized shader inputs, such as uniform pa-
rameters and geometric attributes of the given scene configuration,
and 𝐼 denotes the rendered image. Then, shader simplification is
formulated as a multi-objective problem in the two-dimensional
cost space (𝜀, 𝑡). Finally, Pareto-optimal solutions are used to seek
better shader variants.

In general, the rendering quality is a function of the shader va-
riant 𝑠𝑣 and shader inputs 𝑢. To obtain better generalization to
scene changes in runtime, offline methods sample different scene
configurations to acquire the average rendering quality 𝜀 and com-
putational cost 𝑡 . However, each sampling means rendering the
scene one time, thereby evaluating multiple shader variants with
multiple scene configurations making the entire simplification pro-
cess time-consuming.
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Figure 2 : Shader simplification framework, we use our
learned embedding to accurately predict multiple shader
variants’ qualities all at once.

In our paper, we use deep learning to efficiently evaluate the
rendering quality of the shader variants by training a neural net-
work to learn 𝜀. We introduce a conditional transformer to predict
a novel simplification space of the original shader. In the simplifi-
cation space, shader variants are embedded as vectors, and their
quality can be handily measured with distances all at once. We
consider that this architecture is parallel to a specific simplification
framework and can be greatly beneficial to both online and offline
methods.

4 NETWORK
The design of the network faces several challenges. First, the eva-

luation is a multimodal function that takes both shader inputs and
shader codes as inputs. Inspired by NLP, we propose a conditional
Transformer structure to process shader codes and communicate
information betweenmultimodal inputs. The structure first encodes
shader inputs via a PointNet-like branch and then inserts the trans-
former’s encoding. Second, there are countless shader variants of
the original shader, and it is inefficient to infer the shader variants
one by one. We prefer evaluating a space rather than a single shader
variant at one network inference. Therefore, we propose a simpli-
fication space that can embed the shader variants with rendering
quality. Instead of directly inferring specific values, the network
infers an attention cache, which enables the one-shot embedding
of the entire space rather than a single instance.

The overall pipeline is shown in Figure 3. Given original shader
𝑠𝑜 and scene configuration 𝑢, the target is to predict the rendering
quality of various shader variants 𝑠𝑣 (Eq. 1). The backbone of the
network structure is the shader transformer, which processes shader
codes like NLP. Because scene configurations can determine the
rendered content of a shader, it is important to train the network to
generate scene-dependent results. Here, we use the input encoder
to encode the scene as a condition for the context encoder. The
node encoder, node decoder, key, query, and value blocks are used
to convert multimodal data, such as shader codes, implicit vectors,
and simplification space representations.

In general, we parse the original shader’s codes into nodes. Then,
the MLP-based shader encoder converts the codes to latent vectors.

Next, the context encoder learns the relationship between shader
nodes to predict a global context vector (CV). Additionally, the
shader inputs of the scene configuration are encoded as a condition
of the context encoder. Finally, the node decoder combines the
global CV and node latent vectors into a node vector. Three small
blocks, key, query, and value convert the node vectors into an
attention cache representing the shader variant’s embedding in the
simplification space. The rendering quality can be directly extracted
from the simplification space by measuring the distance between
the embedding of the shader variant and the original shader. In the
following, we discuss each specific design. The detailed network
structure is in the supplementary document.

4.1 Node Encoder
We apply the general NLP method to encode our shader codes.

First, we still use an abstract syntax tree to represent the codes,
and each symbol in the codes is regarded as an intermediate node.
Then, we traverse the tree nodes in a depth-first order to encode the
shader codes as sequences of words. Subsequently, we embed the
words into 128-dimensional vectors. As in the common Transformer
neural network [Vaswani et al. 2017b], each embedded vector and
its position encoding are fed into the MLP-based node encoder to
generate a shader node𝑚𝑥 .

4.2 Input Encoder
Typical shader inputs consist of vertex attributes (position, nor-

mal, uv coordinates, etc.), shader uniforms (view or light position,
etc.) and textures. They have various dimensions and are not sui-
table for networks to process. Our network focuses on the screen
space error, so following a common technique like G-buffer [Dee-
ring et al. 1988], we generate a buffer consisting of the attributes
from rasterization and shader uniforms, such as "worldpos" or "light-
dir" buffers in the common shader.

Given a scene configuration, the input encoder processes the
shader inputs to a vector as the condition of the shader transfer. The
structure of the input encoder is based on PointNet [Qi et al. 2017].
Because the fragment shader is a function of the shader inputs
on a single pixel, we use PointNet rather than CNN to prevent
introducing inaccurate correlation between pixels. This technical
choice significantly improves the generalization capability of the
input encoder. The uniform parameters are shared by all pixels.
We simply stack them on the end of the G-buffer to form a high-
dimensional point as network inputs.

4.3 Context Encoder
The context encoder is the backbone of the network with two

functions. First, it learns the relationship between shader nodes.
The Transformer structure is a state-of-the-art NLP model that has
recently attracted significant attention [Vaswani et al. 2017b]. It can
efficiently explore the long-distance relationship between nodes
and preserve the information of the orders simultaneously. This
feature benefits the exploration of the contextual connections of
variables in the shader codes. Second, it learns the correlation bet-
ween multimodal information. The shader inputs are image-space
features, but the shade nodes are language information. Conside-
ring the application scenario, we treat the encoded shader inputs as
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//Original Shader
in vec3 worldpos;
uniform vec3 camera;
void main()
{

vec3 eye_dir =normalize
(camera – worldpos);

}

Context Encoder
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in vec3 worldpos;
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void main()
{
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Figure 3 : Overview of the Shader Transformer and the simplification space.

a condition of the context encoder. Therefore, once the network is
trained for the original shader, we can feed dynamic shader inputs
into the network for adaptive simplification. The final output of the
context encoder is a context vector (CV) that contains the global
information of the shader.

4.4 Node Decoder
The decoding part of the network includes the Transformer-

based node decoder and three lightweight blocks. The CV is in
contact with the shader nodes as the inputs of the node decoder.
Intuitively, the network combines global information (CV) with
local information (shader node) to predict node embedding 𝑛𝑖 . The
trainable key, query, and value blocks, respectively convert 𝑛𝑖 into
corresponding attention elements 𝑘𝑖 ≡ 𝐾𝑒𝑦 (𝑛𝑖 ), 𝑞𝑖 ≡ 𝑄𝑢𝑒𝑟𝑦 (𝑛𝑖 ),
and 𝑣𝑖 ≡ 𝑉𝑎𝑙𝑢𝑒 (𝑛𝑖 ). Here 𝑘𝑖 and 𝑞𝑖 are scalars, and 𝑣𝑖 is a vec-
tor. These elements jointly represent the simplification space as
discussed next.

4.5 Deferred Query
Inspired by the attention mechanism, we design a deferred query

mechanism to represent the simplification space all at once. As
shown in Figure 3, we cache the network outputs and perform the
query of each shader variant’s embedding analytically. Technically,
the final embedding 𝑆𝑣 of the shader variant is computed as :

𝑆𝑣 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄 × 𝐾𝑇√︁

𝑑𝑘

) ·𝑉 ,

𝑄 = [𝑄𝑢𝑒𝑟𝑦 (𝑛1), 𝑄𝑢𝑒𝑟𝑦 (𝑛2), ..., 𝑄𝑢𝑒𝑟𝑦 (𝑛𝜈 )],
𝑉 = [𝑉𝑎𝑙𝑢𝑒 (𝑛1),𝑉𝑎𝑙𝑢𝑒 (𝑛2), ...,𝑉𝑎𝑙𝑢𝑒 (𝑛𝜈 )],
𝐾 = [𝐾𝑒𝑦 (𝑛1), 𝐾𝑒𝑦 (𝑛2), ..., 𝐾𝑒𝑦 (𝑛𝜈 )],

(2)

where 𝐾𝑒𝑦 (·), 𝑄𝑢𝑒𝑟𝑦 (·), and 𝑉𝑎𝑙𝑢𝑒 (·) represent the three corres-
ponding network blocks, 𝜈 denotes the number of nodes of the
original shader, and 𝑑𝑘 = 128 is a normalization term [Kenton
and Toutanova 2019]. If a node 𝑛𝑖 has been deleted from a simpli-
fied shader variant, we use a dummy vector 𝑛𝑢𝑙𝑙 to replace 𝑛𝑖 in
the equation to embed the variant. As shown in Figure 3 (b), we
use the full attention cache to analytically embed original shader
𝑠𝑜 . However, for simplified shader 𝑠𝑣 , the cache elements of the
corresponding nodes are replaced with a dummy constant vector
𝑛𝑢𝑙𝑙 .

4.6 Loss Function
Inspired by deep metric learning, the embedding is trained by

a loss function based on the shading error of the shader variant.
Specifically, the loss function is

𝐿𝑜𝑠𝑠 (𝑠𝑣, 𝑢) = ∥ 𝜀 (𝑠𝑣, 𝑢) − 𝜀 (𝑠𝑣, 𝑢)
𝜀 (𝑠𝑣, 𝑢) + 𝛿

∥2 + 𝜆∥𝜔 ∥2 . (3)

We use relative L2 loss in our loss function because the application
in shader simplification will be more interested in shader variants
with minor difference values. We add hyperparameter 𝛿 = 1𝑒−4 to
avoid zero in the division. Note that 𝜀 (𝑠𝑣, 𝑢) is the predicted diffe-
rence value of our neural network, and 𝜀 (𝑠𝑣, 𝑢) is the GT difference
value. We also apply L2 regularization to our training parameters
in our training. The regularization weight is 𝜆 = 0.1.

5 NETWORK TRAINING
5.1 Shader Simplification Rules

A simplification algorithm would choose suitable simplification
rules, as described in Sec.2, to simplify the original shader. Currently,
we focus on rules that do not change shader inputs. Therefore,
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other rules, such as code lift [He et al. 2015; Wang et al. 2014], are
considered as future extensions. For now, our system supports two
rules :

(a) Expression reduction : Expression reduction can efficiently
eliminate algebraic operations and has been used widely in several
shader simplification systems. We adopt two expression reduction
rules proposed by Pellacini, but discard the rules requiring runtime
data and information. More precisely, let us consider the binary
operator 𝑎⊗𝑏 ; after a reduction, we have two simplified expressions,
𝑎⊗𝑏 → 𝑎 and 𝑎⊗𝑏 → 𝑏. We also add if-removing optimization, and
we randomly choose one of the branches in the if-else statement.

(b) Expression replacement : Expression replacement is a new
effective rule that replaces statements with other expressions or
values that have been previously computed. For example, the va-
riable "NdotH" in shader codes can be replaced with "NdotL", thus
saving extra dot instructions.

5.2 Training Data Generation
Our approach takes four steps to generate data. With the original

shaders, we first generate simplified shader variants according to
the simplification rules in Section 5.1. Second, we randomly choose
valid scene configurations and render images of the original shader
and simplified variants. Buffers and shading results are recorded.
Then, we parse each shader and extract intermediate nodes. Finally,
we pack buffers, the mean-square error of shading results, and
intermediate nodes of both the original and simplified shaders as
one training sample.

Example Scene : Models with different scales of shader inputs
are included in the sample scenes. Ten models, such as a dragon and
a bunny, are used in our early experiments. Then, we collect 25 extra
additional CAD models from ModelNet10 [Wu et al. 2015]. After
showing promising results in a single model, we further extend our
database to include five large indoor scenes, such as Sponza and
breakfast room. The complex materials and textures that come with
these scenes further validate our approach with complex shaders. In
summary, we collect about 40 different scenes/models, 32 of them
are used for training and 8 for testing.

Data Generation : Camera position and light condition are sam-
pled around the object at different distances to generate sufficient
random data while maintaining meaningful rendering results. For
uniform parameters, we also randomly sample the values in a phy-
sically valid range. For example, roughness is sampled within [0,1].
Different meshes and associated textures are provided to introduce
diverse shader input data.

Because variants can share the shader input buffer during trai-
ning, for a particular scene/uniform sample, we only need to ge-
nerate a shader input buffer once. We use the abstract syntax tree
(AST) to automatically transform the code to support deferred ren-
dering. In this way, all shader variants can share the same shader
input buffer so that a great amount of rasterization costs are saved.

5.3 Training Process
We trained our network on one machine with an NVIDIA 2080Ti

GPU (11 GB video memory). The size of the training data highly

depends on shader codes. Table.1 shows some statistics of our ex-
periments. For a shader with 900 variants and 1,000 shader inputs,
it takes approximately 24 hours(10,000 epochs) to converge.

Optimizer and Regularization : We use the Adam optimi-
zer [Kingma and Ba 2014] with a learning rate of 1 ∗ 10−5 and
employ two types of regularization during training : dropout and
layer normalization. Similar to the Transformer [Vaswani et al.
2017b], we apply dropout and layer normalization in each sublayer.
In addition, we use dropout in our multiple perception network to
encode context.

Importance Sampling : We first sample thousands of scene
configurations, then apply importance sampling to reduce the num-
ber of scene configurations to a trainable size. For each scene confi-
guration, we compute the variance of all variants’ rendering errors.
Then we use variance as a probability density function to sample
400 scene configurations. In addition, we uniformly sample 600
scene configurations, producing a training set with 1, 000 scene
configurations.

6 EVALUATION
We use glslang to parse the shader code into AST, on which

simplification rules can be applied and intermediate nodes can
be easily extracted. The network is trained on TensorFlow with a
256×256 shader input buffer. All results in this section are measured
using our test set that consists of scenes outside the training set.
The experiments are conducted using a PC with an Intel Xeon Silver
4110 CPU and an NVIDIA GeForce GTX 2080Ti GPU.

As shown in Figure 2, we implement the classic GP-based offline
shader simplification framework. The time-consuming render-and-
evaluate stage is replaced by the deferred query of the attention
cache. Due to the parallel nature of neural networks, a large number
of shader variants can be evaluated simultaneously. We modify
the heuristic performance model presented in [He et al. 2015] by
deleting the vertex stage cost using a simple performance model
that counts float operations in the fragment shader for each variant.

We conduct several experiments to prove that our one-shot em-
bedding can boost the optimization process by replacing the costly
render-and-evaluate process. We believe our embedding can be
beneficial to other heuristic-based search methods.

6.1 Embedding Accuracy
We use a prediction error (E) to illustrate the average distance

between our predicted error and the measured error. As shown in
Table 1, most of the training errors are less than 10−4, but the test
error of complex shaders with layers of textures are significantly
larger than basic BRDF shaders due to scene complexity. In Figure
5, we show the results of each variants’ predicted and evaluated
error. These results validate our neural network which has perfect
overall effects in estimating visual errors and is accurate enough to
provide a useful guide for shader simplification.

Moreover, we show an experiment in Figure 4 to verify that the
network can generalize to different scene configurations : left is a
glossy dragon and right is a diffuse box. Because our embedding is
conditional to the shader inputs, the evaluated and predicted errors
are closely matched in both scenes. Closely examining the shader
codes, we see :
origin : float diff = 0.5 * NdotL ; gl_FragColor = diff + spec ;
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Table 1 : Results Analysis. Various shaders with different
inputs are tested in our experiments. The results show that
our method can give accurate predictions in new scenes (row
𝜖𝑡𝑒𝑠𝑡 ). After replacing the render-and-evaluate process with
our network prediction, the shader simplification consumes
considerably less time than traditional methods (row 𝑇𝑜𝑢𝑟 ,
𝑇𝑖𝑛𝑓 𝑒𝑟 and 𝑇𝑟𝑒𝑛𝑑𝑒𝑟 are measured in minutes). 𝑇𝑖𝑛𝑓 𝑒𝑟 reports
network usage time to directly to infer variant quality wi-
thout our deferred query scheme.

Basic BRDF Layers of textures

Shader Blinn-
Phong GGX Cook-

Torrance
SSS Indoor Imrod Couch

Variants# 97 891 536 1383 173 1217 1160
𝜖𝑡𝑟𝑎𝑖𝑛 ∗ 10−5 0.5 5.4 17.6 6.9 6.0 3.0 3.0
𝜖𝑡𝑒𝑠𝑡 ∗ 10−5 1.8 5.9 10.9 1.7 195.7 1507 34.1

𝑇𝑜𝑢𝑟 0.48 0.82 0.68 1.25 0.52 1.13 1.05
𝑇𝑖𝑛𝑓 𝑒𝑟 1.55 2.12 1.85 3.96 1.58 3.85 3.52
𝑇𝑟𝑒𝑛𝑑𝑒𝑟 8.2 28.8 36.8 10.7 23.4 205.2 109.9

Figure 4 : Bottom : The predicted and evaluated error of a
Blinn-Phong shader’s variants in ascending order ; under a
new scene configuration, the same shader variant has dif-
ferent rendering quality, which is also well predicted by our
method. Top : The visual comparison between the original
and simplified shader in two sample scenes.

Vid 57 : float diff = 0.5 * NdotL ; gl_FragColor = spec ;
Vid 58 : float diff = 0.5 ; gl_FragColor = spec.

Since the 𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒 term is removed in variant 57, the evaluated
error in the diffuse box scene is disproportionately larger than in
the glossy dragon scene. In variant 58, the variable 𝑁𝑑𝑜𝑡𝐿 is also
removed, but the rendered results remain the same as in variant 57.
Our network captures such relations and gives a close prediction.

6.2 GP-based Shader Simplification Comparison
We modify the classic genetic programming (GP) method by

replacing the evaluation stage. Note that the original paper [Sitthia-
morn et al. 2011] introduces complex rendering methods to speed
up the evaluation. However, in our implementation, the rendering
quality of multiple variants can be queried all at once, resulting in

Figure 5 : Comparing our predicted error with the measured
error in different shaders and scenes. The shaders are Blinn-
Phong, Subsurface Scattering, Imrod, and Indoor.

an average query time of 0.7 ms for one variant. In contrast, the
actual rendering of a small patch to evaluate the quality costs 80-120
ms. As summarized in Table 1, GP requires up to hours in some
complex scenes to render multiple times for each simplified shader
variant. Our method requires approximately only one minute.

The Pareto frontier is significant for shader simplification al-
gorithms. In Figure 6, we show that the Pareto frontier found by
our modified simplification algorithm closely matches the classic
method using the evaluated error in different scene settings except
on one point in the Cook-Torrance shader. More results can be found
in the supplementary document.

6.3 Ablation Study on One-shot Embedding
The core idea of one-shot embedding is the use of one inference

to predict multiple variants’ qualities via the deferred query scheme.
In Table 1, we present the results of an ablation study that disables
the deferred query scheme and reports the prediction time in𝑇𝑖𝑛𝑓 𝑒𝑟 .
Note that in our current implementation, the deferred query pro-
cess is not fully optimized by parallel computing. Therefore the
measured speedup is smaller than the theoretical speedup.
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Figure 6 : Pareto frontier of Cook-Torrance (left), Subsurface
Scattering (center), and Couch (right) shaders based on the
error predicted by the network.

Figure 7 : Our network gives poor prediction on shaders that
produce discontinuous shading results, such as the procedu-
ral Circle shader shown on the left.

6.4 Shader Expression Importance
In practice, a trial and error simplification process guided by

an expert is commonly used. However, it is usually difficult for a
graphics expert to tell which statement/expression has contributed
most to the overall rendering quality. Fortunately, our embedding
approach can give a direct mapping between the shader code and
the rendering quality condition to the shader inputs. We can now
even back-trace a rendering error to the expression and variables,
thus gaining a powerful insight into the quality importance of the
expression shown in Figure 1. Specifically, to obtain the rendering
error of eliminating an expression or statement, we can skip the
tedious shader compiler and rendering by simply setting correspon-
ding nodes with dummy constant vector 𝑛𝑢𝑙𝑙 , and the query can be
performed in batch. After all the expressions have been queried, we
divide the queried error by 𝜖 = | |0 − 𝐼 (𝑆0, 𝑢) | |2, namely, the error
of a black image, to obtain normalized importance.

7 DISCUSSION AND LIMITATIONS
Our neural network performs poorly with shaders that generate

high-frequency and discontinuous shading signals. Figure 7 shows
a failure case using the procedure shader Circle [Li et al. 2020;
Yang and Barnes 2018] that conducts 𝑓 𝑟𝑎𝑐𝑡 and 𝑠𝑖𝑔𝑛 functions on a
surface position, which produces white circles in black cubes with
hard boundaries.

Our neural network has two main limitations that can be studied
in the future. First, it can deal with limited shader inputs and now
only supports less than 32 float parameters, including textures
and uniform parameters. There is a need to expand the size of
input encoder component. Second, our neural network still only
focuses on fragment shaders, and some useful simplification rules

such as move to vertex stage rules [Wang et al. 2014] or move
to parameter stage rules [He et al. 2015] require representing the
graphics pipeline using a neural network. We think this will be an
interesting topic for graphics studies.

8 CONCLUSION
To speed up the time-consuming render-and-evaluate process,

we present a deep learning-based framework based on a conditional
Transformer to predict shader variants’ qualities. First, our neural
network encodes shader inputs via a PointNet-like branch to com-
municate information between multimodal inputs. We also propose
a simplification space that can embed the shader variants with
rendering quality. Instead of directly inferring specific values, the
network infers an attention cache, which enables one-shot embed-
ding of the entire space rather than a single instance. We conduct
several experiments to prove that our one-shot embedding can
boost the optimization by replacing the costly render-and-evaluate
process.

Experiments show that our method produces accurate embed-
ding and Pareto frontier results. Most remarkably, the search time
improves by approximately 350 times. Finally, to the best of our
knowledge, this is the first time a transformer has been introduced
to analyze shader codes.

One significance of our paper is its attempt to explore corre-
lations within rendering processes using intelligent techniques.
An advanced neural network can help our rendering system to
adaptively choose a suitable level of detail and balance rendering
quality and performance. Using a neural network to accelerate the
rendering pipeline will be a worthwhile topic of study.Secondly,
recently Program Traces [Yang et al. 2021] have provided a novel
direction for learning for shaders. We believe that including some
intermediate program traces as inputs will improve our precision
and enlarge our application range.Moreover, combining natural
language processing with compute graphics already has many ap-
plications, such as image captions, but these applications are still
simple, and we can explore more sophisticated ones. Finally, a neu-
ral network can make the code easy to understand and help turn
our idea into reality. Therefore, we also expect more works to be
done on this topic.
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