
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ? ?, ?? ???? 1

Automatic Mesh and Shader Level of Detail
Yuzhi Liang, Qi Song, Rui Wang, Yuchi Huo, and Hujun Bao

Abstract—The level of detail (LOD) technique has been widely exploited as a key rendering optimization in many graphics
applications. Numerous approaches have been proposed to automatically generate different kinds of LODs, such as geometric LOD or
shader LOD. However, none of them have considered simplifying the geometry and shader at the same time. In this paper, we explore
the observation that simplifications of geometric and shading details can be combined to provide a greater variety of tradeoffs between
performance and quality. We present a new discrete multiresolution representation of objects, which consists of mesh and shader
LODs. Each level of the representation could contain both simplified representations of shader and mesh. To create such LODs, we
propose two automatic algorithms that pursue the best simplifications of meshes and shaders at adaptively selected distances. The
results show that our mesh and shader LOD achieves better performance-quality tradeoffs than prior LOD representations, such as
those that only consider simplified meshes or shaders.

Index Terms—Level of detail, geometry simplification, shader optimization, real-time rendering

✦

1 INTRODUCTION

THE real-time rendering of complex, realistic models
is of great interest in a variety of computer graphics

applications. Currently, even though graphics hardware has
evolved rapidly, the rendering of complex models is still
a very challenging task for the latest devices. This tension
has inspired a large amount of excellent research attempting
to bridge complexity and performance. The level-of-detail
(LOD) technique is a widely used method and serves as a
key rendering optimization in many applications.

The basic idea of an LOD is to use a less detailed,
simplified representation for small, distant, or unimportant
portions of models. Different kinds of LODs have been
explored to different extents. A geometric LOD with the
mesh simplification technique is one of the most well-
known representations and has been successfully applied
in many applications [1]. In addition, with the develop-
ment of GPUs, especially with the advancement of shader
programming to enhance model appearance fidelity, shader
LOD [2], [3] has been proposed to balance performance
and rendering quality at distances. Numerous automatic
methods have been proposed to create these two kinds of
LODs [4] [5] [6] [7] [3] [8] [9]. However, none of these
methods have considered the simultaneous simplification
of both geometry and shaders.

In this paper, we present a new multiresolution rep-
resentation of objects, which consists of mesh and shader
LODs (Figure 3). Each level of the representation could con-
tain both simplified representations of shaders and meshes.
Compared with a traditional geometric LOD [4] [5] [6] [7]
or shader LOD [3] [8] [9], our new representation greatly
extends the tradeoffs between the performance and the ren-
dering quality; therefore, it achieves better performance at
the same quality or better quality at the same performance.

• Qi Song was with Booming Tech, Hangzhou, China. Other authors were
with State Key Lab of CAD&CG, Zhejiang University, China.

• Corresponding author: Rui Wang, rwang@cad.zju.edu.cn

To create such a new LOD representation, we propose
two automatic optimization algorithms. The first algorithm
simultaneously explores different simplified meshes and
simplified shaders to find best-simplified pairs at differ-
ent distances, i.e., the algorithm simplifies both mesh and
shader in an interleaved manner. Specifically, we first sim-
plify the input shader with genetic programming to obtain
one generation of shader variants and employ an image-
driven mesh simplification method on every shader variant
on the Pareto frontier to obtain simplified mesh and shader
pairs within an error bound. Then, these shader variants
of those pairs with better rendering performance are se-
lected to produce the next generation of shader variants.
By iteratively performing the two steps mentioned above,
we can obtain a collection of optimized pairs, and the pair
with the best performance is finally selected. However, the
combination of simplified meshes and shaders at each step
greatly enlarges the optimization space, where it becomes
too time-consuming to be applied for practical use.

To address this challenge, we then propose an approx-
imate but more efficient algorithm. The second algorithm
separates the interleaved optimization of mesh and shader
into two steps. In the first step, we perform stand-alone sim-
plifications on the mesh and shader to create two sequences
of simplified meshes and shaders. Then, we combine these
simplified variants in the second step to adaptively search
for the best pairs at different distances. To accelerate the
search, we further utilize the monotonicity of quality loss
of increasingly simplified meshes and shaders and manage
to reduce the search to a 1D search in the 2D space of
simplified meshes and shaders. As a result, the second
algorithm greatly reduces the computational complexity but
achieves similar optimization quality compared with the
first optimization algorithm.

Our algorithms are capable of operating on meshes
and shaders used in both forward and deferred render-
ing contexts, and in many cases, the second algorithm
produces a good quality LOD in minutes rather than
hours. The results show that our mesh and shader LOD



2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ? ?, ?? ????

achieves better performance-quality tradeoffs than prior
LOD representations, such as those using only simplified
meshes [4] [5] [6] [7] or shaders [3] [8] [9].

The main contributions of this paper are as follows:
• a new multiresolution representation of objects, which

includes the mesh and shader LODs, with both simpli-
fied geometric and shading details;

• an algorithm that interleavingly simplifies both mesh
and shader to obtain the optimized pair of simplified
meshes and shaders within an error bound at a specific
distance;

• an approximate optimization algorithm that combines
the simplification of mesh and shader, in particular,
utilizes the monotonicity of quality loss of increasingly
simplified meshes and shaders, performs 1D search
in the 2D space, and generates LODs with desirable
performance-quality tradeoffs.

2 RELATED WORK

Our method incorporates ideas from prior mesh or shader
simplification work but contributes a new LOD represen-
tation that combines a simplified mesh and shader. In the
following, we briefly introduce related approaches to mesh
or shader simplification and LOD creation.

Mesh Simplification and LOD. The basic principle
behind LOD was first introduced by Clark [10]. In these
early days, LODs were usually created by hand. With the
development of automatic mesh simplification methods in
the early 1990s, automatic LOD generation arose as an
important research topic. Luebke et al. [1] provided a com-
prehensive introduction to the concept and history of LODs
in computer graphics. In summary, the main task of an LOD
is to represent and generate simpler versions of a complex
model to achieve fidelity-performance tradeoffs. Usually,
LODs have three types of representations: discrete LOD [10],
continuous LOD [11] and view-dependent LOD [12]. De
Floriani and Magillo [13] provided a survey on models
and data structures of LOD representations. The mesh and
shader LOD proposed in this paper can be categorized as a
discrete LOD.

To generate LODs, various mesh simplification algo-
rithms have been proposed and used. There are several sur-
veys that have compared different techniques in theory [14],
[15] and from the view of practice [16]. A popular strategy
is to remove primitives greedily, leading to the lowest error.
Different metrics have been proposed to guide the simpli-
fication [17]. As one of the typical methods, QEM [4] uses
local geometric quadric error as the simplification metric
and performs primitive delete operations. To preserve more
information on the input mesh, Hoppe [5] extended it by
introducing additional attributes such as color and normals.
Appearance-preserving simplification [6] applies a texture
deviation metric both on textures and normal maps during
the simplification process. Image-driven simplification [7]
introduces the error metric on final rendered images and
uses it to guide the mesh simplification. In this paper, we
use the image-driven error metric [7] and employ edge
collapse [4] to simplify the mesh.

Shader Simplification and LOD. Recently, with the
development of graphics hardware, shaders have been used
as an important tool to enable complex, realistic appearance

shading. The simplification of shaders and the generation of
shader LODs have gradually attracted increasing attention.
As pioneers, Olano et al. [2] proposed a shader simplifica-
tion and LOD technique for procedural shaders. Inspired
by this work, different techniques in shader simplification
have been developed to different extents, such as new
simplification rules [3], [8], [18], optimization strategies [19],
[20], [21], [22], band-limited filtering [23], etc. Recently, He
et al. [3] proposed a system that automatically generates a
shader LOD. However, none of these approaches considered
mesh simplification when simplifying shaders.

Aside from a shader LOD, another kind of approach,
prefiltering methods, has also been developed for efficient
and accurate surface shading at distant views. Texture MIP
mapping [24] is one of the most widely used prefiltering
techniques to create a multiscale representation of surface
details. With the nonlinearity of surface geometry, normals,
BRDFs, etc., different kinds of nonlinear prefiltering meth-
ods, e.g., LEAN [25]/LEADR [26] and NDF filtering [27],
have been proposed and used in real-time rendering ap-
plications. More details of these methods can be found in
a comprehensive survey [28]. Our paper also inherited the
concept that a multiresolution representation, such as our
shader and mesh LOD, should be an accurate and anti-
aliased representation at different distances. To achieve this
goal, we use supersampled, i.e., filtered, images of the orig-
inal shader and mesh to guide the simplification at distant
views.

Appearance-driven Joint Optimization . Differentiable
rendering has recently become a trending research topic
in the rendering community. By making the rendering
process differentiable, scene parameters being input to the
renderer can be optimized in an end-to-end way. Nvidia
recently proposed a joint simplification framework that en-
ables optimizing geometry shape and a surface appearance
model encoded in different texture maps in an end-to-end
fashion [29]. However, this method only considers pre-
simplified meshes with low-resolution topology and opti-
mizes the positions of vertices and the content of textures to
match the ground truth as closely as possible. However, our
proposed method focuses on automatic mesh and shader
simplification, enabling the generation of object LOD.

3 OVERVIEW

Given a geometric model and a shader computing its visual
appearance, our method combines two major areas of prior
work: geometric simplification and shader simplification.
It seeks to automatically create an LOD for the geometry
and shader at the same time. In this section, we first give
the problem definition, then show the error model used in
simplification, and finally introduce the algorithm overview.

3.1 Problem of Mesh and Shader LOD

Let us denote the triangular mesh input as M and the input
shader as S. The entire rendering process can be regarded
as a function f that takes in M and S to return the color of
the mesh at each pixel on the final image.

Our goal is to automatically generate a set of tuples for
a simplified mesh and shader with a transition distance,
(Mi, Si, di), where for a camera-to-object distance range
(di, di+1), Mi and Si are the most preferred approximations



liang et al.: AUTOMATIC MESH AND SHADER LEVEL OF DETAIL 3

Generating LODs for each distance level

0-5 m 5-10 m 10-15 m

…

20-25 m 25-30 m15-20 m

Step I

0 …

Building LOD transition graph and 
finding shortest pathStep II

0

0

0

0
0

0
0
0

0
0
0

0
0
0

0
0
0

0

Merging levels with similar performanceStep III

Simplified 
shader

Simplified 
mesh

Transition 
error

Transition Error on 
shortest path

0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0

0

0 original 
Mesh&shader

0 m 30 m

…
0

0
0

0 0
0

0 m 30 m

7.5ms

7.0ms

6.9ms

6.4ms 6.3ms

5.9ms

Fig. 1: Algorithm Overview.

Input 
shader

Simplified 
shader

input 
mesh

simplified 
mesh

Shader
simplification

mesh 
simplification

Optimized
pair

Fig. 2: Our two proposed optimization algorithms.

to M and S. Specifically, Mi and Si should have the highest
performance with acceptable output quality in that distance
range. In this paper, the output quality is evaluated by two
error metrics: absolute error εa and transition error εt. The
absolute error εa captures the difference between the simpli-
fied representation (Mi, Si) and the original representation
(M,S) at distance di. The transition error εr is defined as
the difference between the LOD of level i and the LOD of
level i + 1, with both rendered at distance di+1. These two
error thresholds are used to ensure that these simplified
versions are visually similar enough to the original version
and that the transitions among them are visually smooth.
Formally, these two error metrics for a tuple i, (Mi, Si, di),
are computed as:

εa(i) =

∫
H
∥f(Mi, Si, di)− f(M,S, di)∥dH, (1)

εt(i) =

∫
H
∥f(Mi, Si, di+1)− f(Mi+1, Si+1, di+1)∥dH,

(2)

where ∥ · ∥ is the norm defined on the domain H to measure
the output quality, which will be specified in Section 3.2, and
f is a supersampling rendering process in which a number
of supersamples are created and weighted averaged at each

pixel to create an accurate and anti-aliasing image of the
original mesh and shader at distance di. Note that while the
distance increases, many triangles and mapped texels of a
single mesh may project to the same screen pixel. Mean-
while, if the shader produces shading with high frequency,
such as specular reflections or bump-mapping surfaces, it
may result in severe image aliasing at distant views [28]. To
avoid such aliasing and provide multiscale surface shading
in the frequency domain, we use supersampled rendering
to create reference images and define errors.

Given the first quality error metric with Eq. (1), LOD
generation is an optimization problem that pursues the
optimal tuples, each of which (Mi, Si, di) has the minimal
rendering cost at the distance di and satisfies the quality
error threshold:

argmin
Mi,Si,di

t = Cost(f(Mi, Si, di)), (3)

s.t. εa(i) < ea(di) · sdi ,

where t is the time cost to render (Mi, Si) at the distance
di, ea(di) is the absolute per pixel error bound at distance
di, and sdi

is the projected size of mesh Mi at distance di.
To compute the absolute per pixel error bound at a specific



4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ? ?, ?? ????

Fig. 3: One result of the proposed mesh and shader LOD generated by our method. In total, eight levels of increasingly
simplified meshes and shaders are created for this Imrod model, and five of them are shown from left to right. The leftmost
level is the original mesh and shader. The rightmost level is the simplest one. From top to bottom, we show the simplified
mesh, simplified shader and rendered result. Our new LOD representation provides a better balance of loss of details and
rendering performance, thereby achieving better performance-quality tradeoffs than prior LOD representations.

distance, we adopt the same equation that the prior work
[3] used:

ea(d) = (
d− dnear

dfar − dnear
)Q · emax, (4)

where emax is the maximum absolute per pixel error bound,
and Q determines how rapidly quality is allowed to degrade
at large viewing distances, Q ⊂ [0, 1].

However, to keep the transitions among the generated
LODs visually smooth, we first select multiple optimized
pairs {(M,S)}i rather than just one for every level i. Then,
given the transition error metric with Eq. (2), we can build
a graph G that consists of paths between every combination
(Mp, Sp) in {(M,S)p}i of level i and every combination
(Mq, Sq) in {(M,S)q}i+1 of level i+ 1 with weight:

εt(ip, (i+ 1)q) =

∫
H
∥f(Mp, Sp, di+1)− f(Mq, Sq, di+1)∥dH,

(5)

Then, a shortest path algorithm can be applied on G to
obtain the desired LODs with the minimum total transition
error.

3.2 Error Model

Our optimization depends on the quality error metric to
measure differences between the simplified representation
and the original representation (Eq. (1)) or between two
simplified representations (Eq. (2)). In this paper, we use the
image metric, which is a measurement of differences between
pairs of images [7]. The benefit of the image metric is that
all simplifications on meshes or shaders result in changes in
the final images. Therefore, image errors equivalently reflect
simplifications on the mesh and shader or both. Similar to
Lindstrom and Turk’s simplification process [7], we also
render images in different view directions, V , to capture

different portions of objects. In addition, the rendering
function usually has a set of uniform parameters u (such as
changing light positions). To capture these changes, similar
to prior work [3], [8], [21], [30], we also integrate errors
over the domain of uniform parameters U (including view
directions and lighting configurations) to compute the final
error. Formally, using the image metric, these error metrics,
εa and εt, are computed as:

εa(i) =
∑
V

∫
U

∫∫
xy
∥f(Mi, Si, di)− f(M,S, di)∥2dxdy,

εt(i) =
∑
V

∫
U

∫∫
xy
∥f(Mi, Si, di+1)

− f(Mi+1, Si+1, di+1)∥2dxdy, (6)

where ∥ · ∥2 is the L2 norm of pixelwise RGB differences. In
our implementation, we use compute shader and incremental
image updates [7] to compute the image error efficiently.

3.3 Algorithm Overview

To solve the proposed problem (Section 3.1), we separate
the optimization of the simplified representation and the
distance and carry out the optimization of Eq. (1) and (2) in
three iterative substeps. In the first substep, we divide the
distance into N initial levels and optimize Eq. (3) to obtain
(Mi, Si) at each distance level. We present two algorithms,
termed interleaved optimization and separate optimiza-
tion, with different speed-accuracy tradeoffs to solve this
optimization problem. After the optimization, multiple op-
timized combinations {(M,S)}i are selected as candidates
for every level i. This optimization is independent of other
levels and therefore can be solely computed at each distance
level. In the second substep, we employ an adaptive opti-
mization scheme, termed the transition smoothing strategy,



liang et al.: AUTOMATIC MESH AND SHADER LEVEL OF DETAIL 5

Input shader

Simplified shader

Input mesh

Simplified mesh

Shader Simp.

Mesh Simp.

Generation 1

Generation 2

Generation 3

Fig. 1: An illustration of interleavingly simplifying both
shader and mesh.

to create LODs. Specifically, we build a graph with weighted
paths (Eq. 5) between every combination of level i and every
combination of level i+1. Thus, the shortest path algorithm
can be applied to obtain the LOD with the minimum total
transition error. In the final substep, we merge distance
levels if the efficiency improvement is relatively low.

The rest of the paper is organized as follows: we first
introduce the two proposed algorithms, interleaved opti-
mization and separate optimization, in Section 4 and 5,
respectively. Unless otherwise noted, our discussion of the
optimization strategies only focuses on a certain distance
level, and it is easy to generalize to other levels. Then, we
introduce the transition smoothing strategy used in the
algorithm in Section 6. Finally, we show the experimental
results validating our proposed methods in Section 7.

4 INTERLEAVED OPTIMIZATION: SPAWNING OPTI-
MIZED PAIR GENERATIONS

To solve the optimization problem in Eq. (3), we propose
an optimization to search for the best pair in an interleaved
manner, named interleaved optimization in this paper. The
algorithmic overview is shown at the top of Figure 2. It
simultaneously explores simplified meshes and shaders to
find the best simplified pairs. Technically, the input shader
is first optimized with genetic programming to obtain one
generation of shader variants, and then these shader vari-
ants on the Pareto frontier are individually used in an
image-driven mesh simplification process to obtain pairs of
simplified meshes and shaders within an error bound. All
of these shader variants of those pairs with better rendering
performance are selected to produce the next generation of
shader variants. These steps are iteratively executed to gen-
erate a collection of optimized pairs. In this section, we first
introduce the mesh and shader simplification approaches
that we adopt and then present the details of the interleaved
optimization algorithm.

4.1 Shader simplification

Our shader simplification follows the standard shader sim-
plification procedure proposed in prior works [3], [8], [21].
Specifically, we first convert the shader program (including
vertex shader and pixel shader) into abstract syntax trees
(ASTs) and program dependence graphs (PDGs) and then
apply different simplification rules to generate simplified

shader variants. Three kinds of simplification rules are
used in this paper. Operation removal [18] takes local oper-
ator reduction transformations, such as op(a, b) → a and
op(a, b) → b. It can simplify operations and reduce the
number of instructions. Code transformation [8] transforms a
per-pixel operation to a per-vertex or per-tessellated-vertex
operation to reduce the computation in the pixel shader.
Moving to parameter [3] defers the average substitution
(n → average(n)) to a new parameter stage where these
averaged values are directly fed from the CPU instead of
being computed at runtime in the GPU.

4.2 Mesh simplification

To simplify a mesh, we adapt the established mesh simpli-
fication framework [4] by replacing the original geometric
metric with an image error metric, which is computed using
the supersampled/filtered images of the original shader as
the reference. In particular, we iteratively apply edge col-
lapse operations on edges. However, the placement policy
that contracts one edge into a single vertex consumes many
computations, so we choose a simpler place-to-endpoints pol-
icy that places the vertex to the endpoint with lower image
error on the edge. To preserve the topology of the simplified
mesh, edges with screen-space lengths larger than D (D = 1
in our implementation) screen pixels would not collapse [31]
during our mesh simplification.

4.3 Interleaved optimization

The interleaved simplification method directly integrates
mesh simplification into shader simplification. Figure 1
shows an illustration of how the interleaved optimization
works. Specifically, given an input mesh M and input
shader S, we first obtain the first generation of shader
variants by applying one of our shader simplification rules
(Section 4.1). Then, for each newly created shader variant Si

on the Pareto frontier, we always perform progressive mesh
simplification (Section 4.2) to obtain an optimally simplified
mesh Mj in which the error produced by (Mj , Si) is less
than the absolute error bound at this distance. Next, those
shader variants and simplified mesh pairs are sorted by
their rendering performance, and the top N% (N = 20 in
our implementation) are chosen to be the optimized pairs
of this generation. By iteratively performing the above steps
for every optimized pair until reaching the maximum gen-
eration depth, we can obtain generations of optimal pairs
one by one. After several iterations, we obtain a collection
of pairs of simplified meshes and shaders. Finally, the best
pair will be selected in the transition smoothing step by
considering the transition errors.

5 SEPARATE OPTIMIZATION

The interleaved optimization algorithm is nearly globally
optimal but very time-consuming. Usually, it will take more
than 6 hours to generate the result. To address such a
limitation, we propose an approximate but more efficient
algorithm, termed separate optimization (see the bottom
of Figure 2). Specifically, the algorithm first takes a stand-
alone simplification step to simplify the mesh and shader
separately and creates sequences of increasingly simplified
meshes and shaders as candidates. These pregenerated se-
quences of simplified meshes and shaders are organized in



6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ? ?, ?? ????

order, which enables a monotonically linear search among
simplified meshes and shaders, thereby reducing the 2D
search problem into a 1D search and achieving a significant
performance boost. In this section, we first describe how
we generate the mesh and shader simplified candidates
and then explain the 1D linear search algorithm that is
conducted on the 2D space formed by the two sequences.

5.1 Generating Mesh Candidates

The purpose of the mesh and shader LOD is to approximate
the original shading of an object at distant views. As the
camera distance increases, the change in the pixel footprint
enlarges the integration domain of the shading function,
gradually blurring high-frequency shading and only leaving
low-frequency shading. Therefore, although without any
knowledge of any simplified shaders, we could use the
supersampled/filtered images of the original shader at dif-
ferent distances to approximate the shader’s simplification
process and guide the mesh simplification.

While progressively simplifying meshes, we find that
the error produced by some edge collapses is small and
visually unnoticeable. Thus, instead of storing all progres-
sively simplified meshes, we only select K (K = 500 in our
implementation) simplified meshes with large error changes
as candidates.

5.2 Generating Shader Candidates

By applying the simplification rules mentioned in Section 4,
we are able to generate simplified shader variants with
different performances and errors. However, not all simpli-
fied shader variants must be enumerated and stored. If the
scene configuration is given, only those variants forming the
Pareto frontier are optimal at performance or quality [21].
However, in our LOD optimization (Eq. (3)), the simplified
mesh and distance in scene configuration are optimization
variables and subject to change. Different simplified meshes
have different numbers of vertices, and different viewing
distances result in different pixels, both of which impact
the performance and quality of shaders. Therefore, in this
shader candidate generation step, ideally, we should select
optimal shader variants for all possible scene configurations,
i.e., simplified meshes and distances, and then use them in
optimizing LODs.

Fortunately, we found that based on several assumptions
and observations, such a shader candidate generation pro-
cess can be simplified. First, as has been proven in prior
work [3], the performance and error of shader variants can
be predicted instead of being actually evaluated. In this way,
we do not need to actually render every shader variant
under all scene configurations. Second, we noted that for
one shader variant with one simplified mesh, the shading
errors at distances could be approximated by filtering the
rendered image at the closest distance. Finally, we further
observed that although these Pareto frontiers may change
with scene configurations, the shader variants on Pareto
frontiers are similar at similar distances and with similarly
simplified meshes. This inspired us to select only represen-
tative distances and simplified meshes to compute optimal
shader variants rather than exhaustively enumerating all
possible scene configurations.

Algorithm 1 Adaptive LOD generation

Input: {{Mk}i},{Sl}
Output: {P}

1: // LOD distance
2: {dn} = LODDistance(N)
3: // Pair sets of optimal simplified mesh and shader for

all levels
4: {{P}i} = ø
5: for each di ∈ {dn} do
6: {Sl} = SortByError({Sl},M0, di)
7: // Search for optimal pairs of mesh and shader at di
8: {P}i = SearchPairs({Mk}i, {Sl}, di)
9: {{P}i} ← {P}i

10: end for
11: // Find the shortest path with minumum total transi-

tion error.
12: {Pi} = SmoothestPath({{P}i}, {dn})
13: // Merge inefficient levels
14: {P} = MergeInefficientLevels({Pi})

Based on these assumptions and observations, we design
the shader candidate generation steps as follows. We first
uniformly choose 4 out of all N distance levels, and for each
level, we select the top 10 simplified meshes generated by
the previous iterative mesh simplification step, thus creating
40 combinations. Then, we adapt the genetic programming
used by previous shader simplification approaches [3], [8],
[21] to compute the Pareto frontiers for each combination.
To efficiently perform this optimization and avoid actual
evaluation, we compute the quality error from the base
quality error, extend the performance model [3] to include
the number of vertices and pixels, and use this model
to predict the performance. Once obtaining these Pareto
frontiers, we select all simplified shader variants on these
frontiers as candidates. Note that the shader candidates are
shared across all distance levels.

5.3 Searching Optimal Pairs of Meshes and Shaders

Given these simplified meshes and shaders produced as
candidates, in this section, we introduce the algorithm to
create the object LOD that selects which simplified mesh
and shader are used. Shader candidates are sorted in the
order of increasing errors. According to the aforementioned
observation, we use the original mesh as the default mesh
to sort simplified shaders. After the sorting, optimal pairs
of simplified meshes and shaders are searched from the
collection of simplified mesh and shader candidates, as
shown in lines 6–9 of Algorithm 1.

We have a reduced optimization (Eq. (3)) that finds the
optimal pair of simplified meshes and shaders with minimal
rendering cost but still retains good visual fidelity (i.e., un-
der the absolute error threshold). However, enumerating the
2D space formed by the two sequences in a brute-force man-
ner is also time-consuming (please refer to supplemental
document for more details). By utilizing the monotonicity
of the quality loss of increasingly simplified meshes and
shaders, we found that the search for optimal pairs of
meshes and shaders can be accelerated. More specifically,
we observe that by organizing mesh and shader candidates



liang et al.: AUTOMATIC MESH AND SHADER LEVEL OF DETAIL 7

Algorithm 2 Search Pairs

Input: {Mk},{Sl},d
Output: {P}opt

1: i = size(K)− 1; j = 0
2: // All pairs with rendering costs at the convex region
3: {(P, t)} = ø
4: // Search optimal pairs along 1D boundary
5: while i ≥ 0 and j < size(L)− 1 do
6: (εa, t) = Evaluation(Mi, Sj , d)
7: if εa > ea(d) · sd then
8: i = i− 1
9: else

10: Pi,j = (Mi, Sj)
11: {(P, t)} ← (Pi,j , t)
12: j = j + 1
13: end if
14: end while
15: {(P, t)} = SortByPerformance({(P, t)})
16: // Optimal pairs
17: {P}opt = ø
18: for each (P, t)n ∈ {(P, t)} do
19: // Get pairs whose rendering time is under the bound
20: if (tn − t0)/t0 < T then
21: {P}opt ← Pn

22: end if
23: end for

in the order of increasing quality errors, those pairs satis-
fying the optimization constraint (Eq. (3)) form a convex
region (the colored region shown in the top left of Figure 2).
Assuming that the rendering time of increasingly simplified
meshes is also monotonically decreasing, it is easy to prove
that the optimal pair with minimal performance cost is
always at the boundary of such a convex region. That is, the
mesh with better performance always has a larger subscript,
i.e., if Cost(Mk′ , S) > Cost(Mk, S), we have k′ < k.
Therefore, for one simplified shader, the simplified mesh
with the best performance is always the mesh with an upper
bound subscript, i.e., at the boundary of the region. As a
result, the optimization of Eq. (3) can be converted to a
1D search along the boundary instead of a 2D search in
the full space (see left bottom of Figure 2). The assumption
that the rendering time of increasingly simplified meshes
is also monotonically decreasing is true for most simplified
meshes. The right side of Figure 2 shows a visualization of
this search step from a real example, and Section 7 provides
more validation of our search strategy.

We show the algorithm details in Algorithm 2. We start
the search from the pair with the most simplified mesh
and original shader, (MK−1, S0). Then, we iteratively minus
the subscript of the simplified mesh or add the subscript
of the simplified shader to visit all possible pairs along
the boundary (see lines 6–15). After the search, we sort
those pairs by rendering performance. If the rendering time
difference between one pair Pn and the pair with the highest
performance P0 is under the bound T , we add it to the
optimal pair set. Thus, we can obtain all optimal pairs of
meshes and shaders at this distance.

Algorithm 3 Smoothest Path

Input: {{P}opt},{dn}
Output: {P}smt

1: // The LOD transition graph
2: G = ø
3: i = 0
4: while i < size(N)− 1 do
5: for each Pa ∈ {P}i do
6: for each Pb ∈ {P}i+1 do
7: // Evaluate the weight by using Eq. (5)
8: w = EvaluateTransition(Pa, Pb, di+1)
9: // Add the path from a to b with weight w to G

10: G← Path(a, b, w)
11: end for
12: end for
13: end while
14: // Finding the smoothest path with dijkstra algorithm
15: {P}smt = DijkstraAlgorithm(G)

6 SMOOTHING TRANSITIONS BETWEEN LEVELS

The aforementioned optimizations are conducted locally at
different levels, generating optimized pairs for each level.
In this section, we propose an algorithm to finally select
the LODs by minimizing transition errors and reducing
transition levels.

6.1 Finding the Smoothest LODs

The pseudocode of the algorithm to select the smoothest
LODs is shown in Algorithm 3. Technically, once the optimal
pairs of meshes and shaders of all levels have been collected,
we build an LOD transition graph by making paths from
each optimal pair of one level to each optimal pair of the
next level, and Eq. (5) is used to compute the weights of
all paths (see lines 5–14). Then, we apply Dijkstra’s algo-
rithm [32] to find the shortest path with the minimum total
transition error.

6.2 Optimizing Transition Levels

Once obtaining the optimal path, we then make a tradeoff
between memory usage and rendering performance
by reducing the number of levels and optimizing the
distance levels. More specifically, for each level i, we first
measure the rendering time ti = Evaluation(Mi, Si, di),
ti−1 = Evaluation(Mi−1, Si−1, di), and to =
Evaluation(M0, S0, di). If (ti−1 − ti)/to < W (W = 4%
in our implementation), which means the rendering
performances of these two adjacent levels are more or
less the same, then level i can be deleted. After this, these
inefficient levels can be eliminated, thus easing the memory
usage of our LOD without losing much performance. The
resulting statistics of memory savings can be found in the
supplemental document.

7 RESULTS

We implemented our method using Microsoft DirectX 11
and tested it on an NVIDIA GeForce GTX 1080 graphics card
with 8 GB RAM. We evaluate our mesh and shader LOD
algorithm on a collection of example objects with shaders
for both deferred and forward rendering, whose statistics



8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ? ?, ?? ????

(a) (b)

Fig. 2: (a) Illustration of the search step in 2D space to find optimal pairs of simplified meshes and shaders. (b) Visualization
of linear search in Imrod Demo, where the colored boxes are the pairs along the searching path and the green box is the
chosen one under the performance bound.

TABLE 1: Statistics of example objects.

Original objects LOD config.
Tris. Pixel Shader Memory emax Q

(num) (instructions) (KB)
Dragon 10K 5866 120 0.14 0.5
Imrod 20K 879 785 0.24 0.5
Couch 6.7K 1156 243 0.1 0.5
Rocket 3.7K 1627 161 0.1 0.6
Statue 8.9K 930 342 0.1 0.5

are listed in Table 1. During the optimization stage, we enu-
merate camera positions at the vertices of a Dodecahedron
centered at the origin of the target object. For each camera
position, we enumerate 5 light positions on a plane that is
orthogonal to camera view direction with distance d. The 5
point light positions are located at the endpoints of a fixed
cross shape. For the error computation, we enumerate all the
camera-light positions and average the image space error.

In this section, we first introduce the details of the demos
we test and compare the two optimizations of our method,
then evaluate the separate optimization by analyzing the
generated LODs and comparing with prior work. We Finally
evaluate our method on game assets with more complex
materials and geometries. Please refer to the supplementary
materials for more evaluation and visulization results.

The Imrod is modified from the prior work of Wang
et al. [8]. The shader computes shading from a physically
based shading model using GGX [33] with multiple material
textures. The Dragon is adopted from the prior work of
Sitthi et al. [20]. The shader includes a texture function with
four octaves (generated with a standard procedural 3D noise
function) and a Phong BRDF model. These two objects are

rendered in a forward rendering framework.
The Couch, Rocket and Statue are obtained from the

Unreal Marketplace [34]. Both shaders perform pattern gen-
eration to emit a G-buffer for subsequent standard lighting.
Our method only simplifies the pattern generation process
so that it can be naturally integrated in a deferred rendering
pipeline. The error of simplified meshes and shaders under
deferred rendering scenarios is still evaluated by pixelwise
differences of final shading colors.

The maximum absolute per pixel error emax and the
quality factor Q are set per object and reported in Table 1.
To initialize the adaptive LOD generation, we set 10 levels
as defaults.

7.1 Comparison of Two Optimizations

We compare the performance of the LODs generated with
our two proposed optimization algorithms. As seen in
columns 5 and 6 of Table 2, the rendering performances
of the results produced by these two optimization strate-
gies are very close to each other. The time consumed by
interleaved optimization heavily depends on the complexity
of the input mesh and the input shader. For example, the
Imrod demo has 20K triangles and performs interleaved
optimization for approximately 15 hours (see column 11)
to simplify meshes for approximately 120 optimized shader
variants at all 10 levels. In comparison, the Rocket demo
with 3.7K triangles requires approximately 9 hours of inter-
leaved optimization to simplify meshes for 210 optimized
shader variants at all 10 levels. However, with separate
optimization, for each level, the input mesh is simplified
once, and the combined mesh-shader pairs are evaluated
several times, requiring only tens of minutes.



liang et al.: AUTOMATIC MESH AND SHADER LEVEL OF DETAIL 9

d_near

d_far

0
1
2

3

4

LOD0 LOD1 LOD2 LOD3 LOD4

Tri#: 6690 Tri#: 6018 Tri#: 4542 Tri#: 4014 Tri#: 3078
3-Layer Normal, Mask, 
AO, Spec, Albedo, GGX

1-Layer Normal, Mask, 
Spec, Albedo, GGX

Mask, Spec, Albedo, GGX
Mask, AO, Spec,

Albedo, GGX

d_near

d_far

0
1
2

3

4
LOD0 LOD1 LOD2 LOD3 LOD4

Tri#: 3656 Tri#: 2846 Tri#: 2234 Tri#: 1826 Tri#: 1754
2-Layer Diffuse,

3-Layer Normal, Mask,
Blend, Lighting

2-Layer Diffuse,
1-Layer Normal, Mask,
Blend(partial param.), 

Lighting

1-Layer Diffuse,
1-Layer Normal, Mask,
Blend(partial param.), 

Lighting

2-Layer Diffuse,
1-Layer Normal, Mask,
Blend(partial param.), 

Lighting

2-Layer Diffuse,
1-Layer Normal, Mask,
Blend(partial param.), 

Lighting

d_near

d_far

0

1
2
3

4

LOD0 LOD1 LOD2 LOD3 LOD4

Tri#: 8954 Tri#: 6676 Tri#: 4958 Tri#: 3650 Tri#: 2358
Statue&crackle normal,

GGX, AO, crackle shadow
3-Layer crackle color

Statue normal,
GGX, AO, crackle shadow,

constant crackle color

Statue normal, GGX, AO, 
Constant crackle shadow,

constant crackle color

Base normal, GGX, AO, 
crackle shadow,

3-Layer crackle color

statue normal, GGX, AO, 
crackle shadow,

crackle color

d_near

d_far

0
1

2
3
4

LOD0 LOD1 LOD2 LOD4 LOD6

Tri#: 10000 Tri#: 9980 Tri#: 8498 Tri#: 5668 Tri#: 2248

Procedure (4 octaves)
Phong lighting

Procedure (2 octaves)
Phong lighting (partial vertex)

Procedure (2 octaves)
Phong lighting (partial vertex & reduce)

Procedure (1 octaves)
Phong lighting (vertex)

Forward rendering pass: both pattern generation and lighting are simplified

Deferred rendering pass: only pattern generation is simplified (no lighting simplification)

5
6

Fig. 3: Results of mesh and shader LODs generated by separate optimization.

7.2 Evaluation of Separate Optimization

The comparison of two optimizations shows that separate
optimization gives similar quality results but is significantly
faster. Therefore, in the results section, we focus more on
separate optimization and provide an extra analysis of the
results generated by it. We first present the examples of
the generated LODs, including all of the demos mentioned
above, and then analyze the performance of the separate
optimization, compared with prior works [3] [7].

7.2.1 Generated LODs

In Figure 3, we show five levels of the Imrod LOD. The three
rows from top to bottom present the simplified meshes, the
simplified shading functions, and the final shading results.
The viewing distances for using different shader and mesh

pairs in the policy are plotted as dots on the left.
More results of other example objects are presented in

Figure 3. For each example object, we select 5 LODs to
present in the figure. From left to right, the results are
visualized from the low-distance level to the high-distance
level. In each image, we use Tri# to denote the number
of triangles in the simplified mesh and briefly describe the
simplified shader under each image. For example, “Normal,
Albedo, Specular” indicates that this shader uses multiple
textures in shading, including normal maps, albedo maps,
and specular maps.

“Phong lighting(vertex)” indicates that the shading com-
putations of Phong lighting are moved from pixel shader to
vertex shader and it is only performed per vertex. “Phong
lighting(partial reduce)” indicates that some shading com-
putations of Phong lighting are reduced. “Blend(partial



10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ? ?, ?? ????

(a) Orig. Mesh + Orig. Shader (b) Simp. Mesh + Orig. Shader (c) Orig. Mesh + Simp. Shader (d) Simp. Mesh + Simp. Shader

(e) Orig. Mesh + Orig. Shader (f) Simp. Mesh + Orig. Shader (g) Orig. Mesh + Simp. Shader (h) Simp. Mesh + Simp. Shader

Fig. 4: Screen shots of different LODs on two test scenes: no LOD (original mesh and shader), mesh LOD (simplified mesh
with original shader) [7], shader LOD (original mesh with simplified shaders) [3], and our mesh and shader LOD.

TABLE 2: Left: performance comparison of four LODs (Figure. 4). In the bracket, we show the speedup factor compared
with the end-to-end rendering time using no LOD. Right: time statistics of LOD generation of example objects.

Rendering Time (ms) LOD generation Time with 1D search(s) 2D Search
No LOD Mesh LOD Shader LOD Sep. LOD Inter. LOD Mesh Shader Optimization Total Total Time (s) Inter Opt.(s)

Dragon 5.03 (1.0×) 3.23 (1.56×) 3.35 (1.50×) 1.54 (3.27×) 1.52 (3.30×) 598 206 46 850 6592 44720
Imrod 3.75 (1.0×) 1.52 (2.47×) 2.66 (1.41×) 1.03 (3.64×) 1.00 (3.75×) 2241 418 160 2819 23118 56478
Couch 1.50 (1.0×) 1.00 (1.50×) 1.19 (1.26×) 0.73 (2.08×) 0.74 (2.03×) 301 349 65 715 9122 36917
Rocket 0.77 (1.0×) 0.58 (1.33×) 0.68 (1.13×) 0.53 (1.45×) 0.47 (1.64×) 124 613 59 796 9861 31693
Statue 1.52 (1.0×) 0.66 (2.30×) 1.20 (1.26×) 0.48 (3.16×) 0.44 (3.45×) 931 498 107 1536 13254 37548

Mix Dragon, Imrod 4.24 (1.0×) 2.11 (2.00×) 2.90 (1.46×) 1.26 (3.37×) 1.25 (3.39×) - - - - - -
Mix Couch, Rocket, Statue 1.20 (1.0×) 0.68 (1.76×) 1.06 (1.13×) 0.58 (2.07×) 0.54 (2.22×) - - - - - -

param.)” indicates that when performing blending oper-
ations in the pixel shader, some parameters are omitted
so that some part of the computation is simplified. Please
refer to the supplementary video for more visualization of
different levels.

From these results, it can be seen that with increasing
distance, our LODs balance the geometry and shading
details well and produce high-quality tradeoffs. Most im-
portantly, by taking both the geometric and shading details
into consideration, our method enables new possibilities of
simplifications.

The Couch demo shows a good example. From level 3
(LOD3) to level 4 (LOD4), our LOD decreases the geometric
details (from 4.0k triangles to 3.1k triangles) but increases
shading details by bringing back the emitted ambient occlu-
sion map at level 0 (LOD0). A similar tradeoff can also be
found in the Imrod demo and the Rocket demo. Such results
imply that as the camera-to-object distance increases or the
pixel footprints covered by the object decrease, our simpli-
fication algorithm tends to perform more simplification on
the mesh rather than the shader.

7.2.2 Comparison with Prior Work

Compared with prior works that only simplify meshes [7] or
shaders [3], our methods extend the tradeoffs between the
performance and the rendering quality, thereby achieving
better performance at the same quality. To demonstrate such
an advantage, we compare three configurations: an original
mesh and shader without an LOD, a mesh LOD only [7], and
a shader LOD only [3]. The latter two LODs are both created
using the same error thresholds as ours. We generate six test
scenes, including four scenes with one example object and
two scenes with two objects. In these scenes, approximately
400 objects on the ground are captured by a walk-through

camera. The time statistics of these comparisons are shown
in Table 2, and screenshots of the two test scenes are shown
in Figure 4. All walk-through sequences can be found in the
supplementary video.

Compared with the configuration without an LOD, our
separate optimization could achieve 1.45× to 3.64× speedup
but still retain high visual quality. Even with a side-by-
side comparison (in the supplementary video), the visual
difference is unnoticeable. This shows that the generated
LODs well preserve the constraints both at the absolute
error and the transition error.

Compared with the mesh LOD [7], our separate opti-
mization could achieve a 1.09× to 2.10× speedup. Such
benefits mainly come from the complexity reduction of the
shader code. The performance gain of the Dragon demo
with the most complex shader is most significant, with a
52% GPU time savings. However, for objects with simple
fragment shading, such as Rocket, the performance gain
reduces to 9%. Overall, our LODs enable more possibilities
of simplified representations of objects and achieve better
performance.

Thanks to the reduced complexities of meshes, our sep-
arate optimization could achieve 1.33× to 2.58× speedup
compared with the shader LOD [3]. The Imrod demo,
having the most triangles among the four example objects,
exhibits the most significant speedup with our method.

7.2.3 Test on Complex Game Assets

To further test the suitability of the method for game assets
involving more complex meshes and materials, we adopt
the Trooper model from the Matinee Demo, which is also
found in the Unreal Marketplace [35] and shown in Figure 5.
This model consists of 5 sub-meshes with a total of 42.6k
triangles using 6 different materials. Each sub-mesh uses 4-5



liang et al.: AUTOMATIC MESH AND SHADER LEVEL OF DETAIL 11

TABLE 3: Detailed statistics of the Trooper model.

Original objects LOD config.
Sub-meshes Tris. Pixel Shader Memory emax Q

(num) (instructions) (KB)
Body 5.8K 2462 540 0.2 0.5
Arm 13.3K 2541 1227 0.2 0.5
Leg 4.5K 2746 1087 0.2 0.5

Accessory 10.8K 2076 400 0.2 0.5
Mask 8.3K 1830 713 0.2 0.5
Total 42.6K 10538 14505 - -

TABLE 4: Performance of the Trooper model.

No LOD Shader LOD Mesh LOD Sep. LOD
Rendering Time 3.00ms(1.0x) 2.72ms(1.10x) 1.77ms(1.69x) 1.55ms(1.93x)

materials with different parameters and blending strategies.
The detailed statistics of the Trooper model are provided
in Table 3. We conduct our separate optimization on each
sub-mesh and render them all together, while different sub-
meshes are represented via different LODs. Table 4 shows
the rendering performance on an NVIDIA GTX1080.

8 DISCUSSION AND FUTURE WORK

This paper presents a new discrete multiresolution repre-
sentation of objects, which includes the mesh and shader
LOD. It is based on the observation that the simplification
of appearance could occur in both at geometric and shading
details. Therefore, at each level of detail, a simplified mesh
with a simplified shader provides better balances of the loss
of details and the rendering performance. The results show
that our mesh and shader LOD achieves better performance-
quality tradeoffs than other LOD representations, such as
only using simplified meshes or shaders.

We present two optimization algorithms to create this
new LOD representation. The interleaved optimization of
meshes and shaders adopts genetic programming to com-
pute the Pareto frontiers for each combination, thereby
providing the best quality. To achieve a better balance be-
tween performance and quality, we further propose separate
optimization utilizing the monotonicity of quality loss of
increasingly simplified meshes and shaders to reduce the
optimization search from a 2D space to a 1D curve. The
separate manner significantly reduces computational time
but obtains similar quality.

Several limitations still exist with our method. Meshes
and shaders need to be complex enough to provide a
large space for our algorithm to explore. Additionally, our
algorithm performs best on assets with balanced meshes
and shaders. If a large mesh is combined with a simple
shader, our method degenerates to mesh LOD generation
and vice versa. Also, the LOD generation of our method is
a precomputation process, and the lighting situation we try
to enumerate is limited and cannot cover all the cases in
real games. If the runtime lighting deviates largely from the
training process, our generated LODs will perform worse.
On the other hand, our optimization process considers only
a single object, limiting the use of shaders with complex
GI effects such as screen space reflection (SSR). However,
these are common limitations for all shader LOD gener-
ation methods with precomputation processes, which can
be alleviated by fine tuning the precomputation process to

Fig. 5: The Trooper model.

consider the runtime light transport situations of specific
scenes.

Our work is the first LOD representation considering
both geometry and shaders. There are several potential
directions to explore this idea further. First, in this paper, we
only propose a discrete LOD representation. This is good
at simplifying single objects but is unable to handle other
objects, such as terrain, that require a continuous LOD. It
would be an interesting topic to explore a continuous mesh
and shader LOD in the future. Additionally, in this work,
we assume that the object has only one shader. However, in
practice, one object may have multiple shaders. Therefore, it
would be another interesting future topic to consider more
constraints of visual details generated by multiple shaders
on one object and design new mesh and shader simplifica-
tion algorithms. Finally, our fully automatic simplification
provides great convenience for users. However, it would
also be interesting to let users take part in the optimization
process, for example, by letting the user manually edit some
simplified mesh and then put the mesh into the optimiza-
tion or let the user set some features as constraints in the
optimization.

ACKNOWLEDGMENTS

The authors would like to thank all reviewers and editors
for their thoughtful comments. This work was supported
in part by Key R&D Program of Zhejiang Province (No.
2022C01025), NSFC (No. 61872319), the Fundamental Re-
search Funds for the Central Universities, Zhejiang Lab
(121005-PI2101), and Information Technology Center and
State Key Lab of CAD&CG, Zhejiang University. This work
has been integrated in the RaysEngine project.

REFERENCES

[1] D. P. Luebke, Level of detail for 3D graphics. Morgan Kaufmann,
2003.

[2] M. Olano, B. Kuehne, and M. Simmons, “Automatic shader level
of detail,” in Proceedings of Graphics Hardware, 2003, pp. 7–14.

[3] Y. He, T. Foley, N. Tatarchuk, and K. Fatahalian, “A system for
rapid, automatic shader level-of-detail,” ACM Trans. on Graph.
(TOG), vol. 34, no. 6, p. 187, 2015.

[4] M. Garland and P. S. Heckbert, “Surface simplification using
quadric error metrics,” in Proceedings of the 24th annual conference on
Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co., 1997, pp. 209–216.

[5] H. Hoppe, “New quadric metric for simplifying meshes with
appearance attributes,” in Proceedings of the 10th IEEE Visualization
1999 Conference (VIS ’99), ser. VISUALIZATION ’99. Washington,
DC, USA: IEEE Computer Society, 1999, pp. –.



12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ? ?, ?? ????

[6] J. Cohen, M. Olano, and D. Manocha, “Appearance-preserving
simplification,” in Proceedings of the 25th annual conference on Com-
puter graphics and interactive techniques. ACM, 1998, pp. 115–122.

[7] P. Lindstrom and G. Turk, “Image-driven simplification,” ACM
Transactions on Graphics (ToG), vol. 19, no. 3, pp. 204–241, 2000.

[8] R. Wang, X. Yang, Y. Yuan, W. Chen, K. Bala, and H. Bao, “Auto-
matic shader simplification using surface signal approximation,”
ACM Trans. on Graph. (TOG), vol. 33, no. 6, p. 226, 2014.

[9] P. Sitthi-Amorn, N. Modly, W. Weimer, and J. Lawrence, “Ge-
netic programming for shader simplification,” ACM Trans. Graph.,
vol. 30, no. 6, pp. 1–12, 2011.

[10] J. H. Clark, “Hierarchical geometric models for visible surface
algorithms,” Communications of the ACM, vol. 19, no. 10, pp. 547–
554, 1976.

[11] H. Hoppe, “Progressive meshes,” in Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’96. New York, NY, USA: ACM, 1996, pp. 99–108.
[Online]. Available: http://doi.acm.org/10.1145/237170.237216

[12] ——, “Smooth view-dependent level-of-detail control and its ap-
plication to terrain rendering,” in Proceedings Visualization ’98 (Cat.
No.98CB36276), 1998, pp. 35–42.

[13] L. De Floriani and P. Magillo, “Multiresolution mesh representa-
tion: Models and data structures,” in Tutorials on Multiresolution in
Geometric Modelling. Springer, 2002, pp. 363–417.

[14] P. Cignoni, C. Montani, and R. Scopigno, “A comparison of mesh
simplification algorithms,” Computers & Graphics, vol. 22, pp. 37–
54, 1997.

[15] P. S. Heckbert and M. Garland, “Survey of polygonal surface
simplification algorithms,” SIGGRAPH 1997 Course #25 Notes,
1997.

[16] D. P. Luebke, “A developer’s survey of polygonal simplification
algorithms,” IEEE Comput. Graph. Appl., vol. 21, no. 3, pp. 24–35,
May 2001.

[17] O. Matias van Kaick and H. Pedrini, “A comparative evaluation of
metrics for fast mesh simplification,” in Computer Graphics Forum,
vol. 25, no. 2. Wiley Online Library, 2006, pp. 197–210.

[18] F. Pellacini, “User-configurable automatic shader simplification,”
ACM Trans. Graph., vol. 24, no. 3, pp. 445–452, 2005.

[19] D. Scherzer, S. Jeschke, and M. Wimmer, “Pixel-correct shadow
maps with temporal reprojection and shadow test confidence,”
in Proceedings of the 18th Eurographics conference on Rendering Tech-
niques. Eurographics Association, 2007, pp. 45–50.

[20] P. Sitthi-amorn, J. Lawrence, L. Yang, P. V. Sander, D. Nehab, and
J. Xi, “Automated reprojection-based pixel shader optimization,”
in ACM SIGGRAPH Asia 2008 papers, 2008, pp. 1–11.

[21] P. Sitthi-Amorn, N. Modly, W. Weimer, and J. Lawrence, “Genetic
programming for shader simplification,” in ACM Transactions on
Graphics (TOG), vol. 30, no. 6. ACM, 2011, p. 152.

[22] Y. He, T. Foley, and K. Fatahalian, “A system for rapid exploration
of shader optimization choices,” ACM Transactions on Graphics
(TOG), vol. 35, no. 4, p. 112, 2016.

[23] J. Dorn, C. Barnes, J. Lawrence, and W. Weimer, “Towards au-
tomatic band-limited procedural shaders,” in Computer Graphics
Forum, vol. 34, no. 7. Wiley Online Library, 2015, pp. 77–87.

[24] L. Williams, “Pyramidal parametrics,” SIGGRAPH Comput.
Graph., vol. 17, no. 3, p. 1–11, Jul. 1983. [Online]. Available:
https://doi.org/10.1145/964967.801126

[25] M. Olano and D. Baker, “Lean mapping,” in Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2010,
pp. 181–188.

[26] J. Dupuy, E. Heitz, J.-C. Iehl, P. Poulin, F. Neyret, and V. Os-
tromoukhov, “Linear efficient antialiased displacement and re-
flectance mapping,” ACM Trans. Graph., vol. 32, no. 6, pp. 211:1–
211:11, 2013.

[27] C. Han, B. Sun, R. Ramamoorthi, and E. Grinspun, “Frequency
domain normal map filtering,” ACM Trans. Graph., vol. 26, no. 3,
pp. 28:1–28:12, 2007.

[28] E. Bruneton and F. Neyret, “A survey of nonlinear prefiltering
methods for efficient and accurate surface shading,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 18, no. 2, pp.
242–260, 2012.

[29] H. Jon, M. Jacob, L. Jaakko, M. Aittala, and S. Laine, “Appearance-
driven automatic 3d model simplification,” in Computer Graphics
Forum. Wiley Online Library, 2021.

[30] F. Pellacini, K. Vidimče, A. Lefohn, A. Mohr, M. Leone, and J. War-
ren, “Lpics: a hybrid hardware-accelerated relighting engine for

computer cinematography,” ACM Transactions on Graphics (TOG),
vol. 24, no. 3, pp. 464–470, 2005.

[31] “simplygon,” [EB/OL], http://www.https://www.simplygon.
com/ Accessed July 7, 2020.

[32] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numer. Math., vol. 1, no. 1, p. 269–271, Dec. 1959.
[Online]. Available: https://doi.org/10.1007/BF01386390

[33] S. McAuley, S. Hill, A. Martinez, R. Villemin, M. Pettineo,
D. Lazarov, D. Neubelt, B. Karis, C. Hery, N. Hoffman, and
H. Zap Andersson, “Physically based shading in theory and
practice,” in ACM SIGGRAPH 2013 Courses, ser. SIGGRAPH ’13,
2013, pp. 22:1–22:8.

[34] UnrealEngine, “Unreal engine 4 documentation,”
https://docs.unrealengine.com/latest/INT/index.html, 2016.

[35] EpicGames, “Matinee demo,” https://www.unrealengine.com/
marketplace/en-US/learn/matinee.

Yuzhi Liang is now a Ph.D. candidate in the
State Key Laboratory of CAD&CG, Zhejiang Uni-
versity. His interests are in performance opti-
mization in real-time rendering, including multi-
resolution representation and adaptive render-
ing.

Qi Song received a bachelor’s degree in Soft-
ware Engineering in 2015 and a master’s degree
in Computer Science in 2018, both from Zhe-
jiang University. He is now a developer in Boom-
ing Tech. His interests are in multi-resolution
representation and game engine architecture.

Rui Wang is a professor at the State Key Labo-
ratory of CAD&CG, Zhejiang University. He re-
ceived a bachelor’s degree in Computer Sci-
ence and a Ph.D. degree in Mathematics from
Zhejiang University. His research interests are
mainly in real-time rendering, realistic endering,
GPU-based computation, and 3D display tech-
niques. Now, he is leading a group working on
the next-generation real-time rendering engine
and techniques

Yuchi Huo is a ”Hundred Talent Program” re-
searcher in State Key Lab of CAD&CG, Zhe-
jiang University. His research interests are in
rendering, deep learning, image processing, and
computational optics, which are aiming for the
realization of next-generation neural rendering
pipeline and physical-neural computation.

Hujun Bao is a professor with the State Key
Laboratory of CAD&CG and the College of Com-
puter Science and Technology, Zhejiang Uni-
versity. He leads the 3D graphics computing
group in the lab, which mainly makes researches
on geometry computing, 3D visual computing,
real-time rendering, and their applications. His
research goal is to investigate thefundamental
theories and algorithms to achieve good visual
perception for interactive digital environments,
and develop related systems.


