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Abstract
In this paper, we present a new shader smoothing method to improve the quality and generality of band-limiting shader pro-
grams. Previous work [YB18] treats intermediate values in the program as random variables, and utilizes mean and variance
statistics to smooth shader programs. In this work, we extend such a band-limiting framework by exploring the observation
that one intermediate value in the program is usually computed by a complex composition of functions, where the domain and
range of composited functions heavily impact the statistics of smoothed programs. Accordingly, we propose three new shader
smoothing rules for specific composition of functions by considering the domain and range, enabling better mean and variance
statistics of approximations. Aside from continuous functions, the texture, such as color texture or normal map, is treated as a
discrete function with limited domain and range, thereby can be processed similarly in the newly proposed framework. Exper-
iments show that compared with previous work, our method is capable of generating better smoothness of shader programs as
well as handling a broader set of shader programs.

1. Introduction

GPU shader program plays an important role in the real-time ren-
dering, but it often suffers from aliasing and local flickering due
to insufficient samples. An accurate computation of shading value
requires an integral over the pixel footprint, which is usually time-
consuming and inapplicable to real-time applications. For real-time
rendering, one basic antialiasing technique is pre-filtering, which
stores precomputed integrals or function parameters beforehand
and uses them at runtime. MIP-mapping [Wil83] and summed area
tables (SATs) [Cro84] were introduced to linearly pre-filter static
textures as lookup tables. However, linear pre-filtering is inaccu-
rate for nonlinear functions, especially when the rendering equa-
tion [Kaj86] is a high-dimensional function combining normal,
lighting, view, and visibility factors. Numerous researches [Tok05,
HSRG07, TLQ∗08, OB10, NPS13, DHI∗13, KHPL16, XWZB17,
WZYR19] have been proposed to filter different components in
Rendering Equation [Kaj86]. Among these work, Gaussian or
Gaussian-like functions have been widely applied to approximate
functions. In some cases, its moments are also used to character-
ize functions with linear parameters [OB10, DHI∗13]. Neverthe-
less, these researches are mainly designed to approximate a specific
equation or distribution. It is generally difficult to apply these ap-
proaches to other complex functions or a composition of multiple
functions.

† Corresponding author: rwang@cad.zju.edu.cn

One shader is a program with a complex composition of mul-
tiple functions. To tackle the challenge of antialiasing shader pro-
gram, Dorn et al. [DBLW15] and Yang and Barnes [YB18] recently
presented an automatic scheme to construct analytical band-limited
version of shader and produce smooth results. Technically, it breaks
the procedural shader program into sub-part programs and succes-
sively smooths each sub-part. Mean-variance statistics are applied
to approximate the convolution of the sub-part program with a ker-
nel function using composition rules. However, such an approach
has several limitations. First, it individually approximates sub-parts
and assumes that each of them is defined in the entire domain. Nev-
ertheless, in the shader, the domain of one sub-part program is usu-
ally influenced by other sub-parts. The inaccurate consideration of
domain and range of functions in the sub-part program would bring
large approximation errors, sometimes wrong results (Figure 2).
Second, the kernel function, such as Gaussian function, used to fil-
ter shader program is also assumed to be defined in the entire do-
main, which may bring inaccurate mean or variance and result in
large approximation errors as well. Last but not the least, their work
only considers analytic functions, excluding textures that store dis-
crete values. Given the popularity of textures in shaders, the lack of
support of textures limits the usage of their work in many applica-
tions.

In this paper, we extend the shader smoothing framework with
mean-variance statistics by taking the range and domain into con-
sideration. We observe that final or intermediate values in the pro-
gram are usually computed by a complex composition of func-
tions. Therefore, the statistics of smoothed programs could be bet-
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ter depicted by considering the domain and range of the composited
functions. Accordingly, we introduce three approximation rules to
explore such an observation. The first approximation rule is derived
from the adaptive Gaussian and compactly supported kernels ap-
proximation rules [YB18], but with renormalized kernel functions
in the clamped domain. The second approximation rule considers
the range of intermediate variables and utilizes Gaussian functions
to fit them in the clamped domain. These two rules improve ker-
nel functions to tighten the approximation in the clamped domain.
However, not all functions could be analytically smoothed by Gaus-
sian kernels [YB18]. To smooth complex functions, we then pro-
pose the third rule that first uses polynomials as basis functions to
approximate it in the clamped domain and then filter each basis
function obtaining the band-limited output. Besides these approxi-
mations on continuous functions, texture, such as color texture and
normal map, is regarded as discrete functions with finite ranges and
can be specially handled in our framework. Results show that our
approach can be integrated into the shader smoothness scheme pro-
posed by Dorn et al. [DBLW15] and Yang and Barnes [YB18], and
provide better band-limited shaders.

Our contributions are summarized as follows:

• An extended mean-variance statistics framework, which specifi-
cally considers the domain and range of functions, thereby pro-
vides better approximations of the smoothed shading values over
the pixel footprint (Section 3.1);
• Three new approximation rules to reduce approximation errors

at smoothing shaders (Section 3.2-3.4);
• The support of textures in the band-limited shaders (Section 4.3).

2. Related Work

Antialiasing techniques play an important role in rendering details
accurately and efficiently in computer graphics. Super-sampling
[AGB00] and stochastic sampling [Cro77] are two common ways
to achieve this, but with high costs. Specific antialiasing techniques
are then proposed for different types of functions in rendering for
better efficiency.

Texture filtering. MIP-mapping [Wil83] uses static footprint
given by a quadtree for static texture. SATs [Cro84] stores the sum
of all the values in the rectangles from the bottom left corner to
the current texel, which is more flexible than MIP-mapping but
needs extra storage for better precision. Heitz et al. [HNPN13] uti-
lized Gaussian functions to estimate height/slope-correlated color
to obtain smooth color mapped surface. However, these tradi-
tional filtering techniques only target to linear filtering. Belcour
et al. [BSS∗13] traced 4D Gaussians in the path space to render
effects that require costly 5D integrals, such as motion blur and
depth-of-field.

BRDF/Normal map filtering. Since BRDF/normal map has
great significance for enhancing realism, the filtering algorithms
for BRDF/normal maps have always been an important research
topic. Normal map filtering algorithms [Tok05,HSRG07,TLQ∗08]
express normal distribution function (NDF) as a linearly interpo-
lable representation as the probability distribution of the normal in
the footprint. Marc Olano and Dan Baker [OB10] adopted a 2D

Figure 1: The band-limited shading problem.

Gaussian in a tangent plane and linearly MIP-mapped and interpo-
lated its first and second moments. Jonathan Dupuy et al. [DHI∗13]
proposed a technique adapted to the reflectance of displacement
maps. They modeled physically-based microfacet BRDFs by non-
centered Beckmann distributions and derived an analytical filter-
ing solution under directional/point lighting. Recently, Jakob et
al. [JHY∗14] and Yan et al. [YHJ∗14, YHMR16] introduced two
different approaches for rendering glints on discrete and spatially
varying mesoscale NDFs. Xu et al. [XWZB17] MIP-mapped the
von Mises-Fisher (vMF) lobes in an unnormalized vector space to
achieve the linear interpolation of BRDFs. Wu et al. [WZYR19]
presented a prefiltering technique to preserve appearance details for
rendering displacement-mapped surfaces.

However, all aforementioned methods focus on filtering specific
distribution functions, while our approach addresses shader pro-
grams, which are more complex and usually with general functions.

Shader filtering. Velazquez-Armendariz et al. [VAZH∗09]
adopted interval arithmetic to automatically generate interval ver-
sions of programmable shaders that can be used to bound-
ing query and guaranteed quality importance sampling. Dorn et
al. [DBLW15] and Yang and Barnes [YB18] extended the auto-
matic shader generation idea to automatic filter procedural shader.
The main idea is to break the computation into different sub-
parts and compute approximate mean and variance statistics for
each sub-part. With three approximation rules, optimal smoothed
shaders are explored to reach the best trade-off between running
time and error.

Nevertheless, there are remaining problems that need to be
solved. Firstly, since the domain of a sub-part function will be in-
fluenced by the value range of its inner sub-part functions, the ap-
proximation results may fall out of the range of the function com-
position. Secondly, their work only considers continuous functions,
excluding discrete shading values stored in textures. In this work,
we present a new method to tackle these problems.
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Figure 2: An example code, the abstract syntax tree (AST) and the
band-limited result of x2 when σ

2
X = 0.5.

3. Mean-Variance Statistics in Clamped Domain

In this section, we present the problem and then introduce novel
approximations proposed in this paper.

3.1. Problem Statement

This work pursues the band-limited version of an arbitrary program
(function) y = f (x). For real-time rendering, the target program is
the shader program, fs(x), which provides fine shading details of
the surface. Without loss of generality, we use f (x) to represent an
arbitrary program and discuss the general approach to smooth it.

Figure 1 illustrates a one-dimension example of the problem,
where O is the camera viewpoint, v is the view direction, p is a
pixel in screen space, x is the surface signals (e.g., normals) that
can be represented by continuous geometry shapes or discrete tex-
ture maps, the region from point a to b is the footprint of pixel p on
the surface, and f (x) is the function to be smoothed.

The output of band-limited (smoothed) function on pixel p is ex-
pressed by f and computed as the weighted average of f (x) over
the domain ab on the surface:

f =
∫

f (u)ω(u)du∫
ω(u)du

, (1)

where ω(x) is the weight function.

However, such an average is not easy to compute, especially with
a complex function y = f (x). Yang and Barnes [YB18] observed
that while the input values of x could be depicted by mean-variance
statistics, the output values y is also a distribution with mean and

variance. Let us use lower-case letters such as x and y to repre-
sent real values in the original function and use higher-case letters
such as X and Y to represent random variables with distributions.
The mean and variance of the distribution of X is denoted as µX
and σ

2
X , respectively. In general, the function f (x) takes input ran-

dom variable X with distribution fX and outputs random variable Y
with distribution fY . As such, the mean µY can be regarded as the
smoothed output. The smoothed output f of a function y = f (x)
can be computed as:

f = µY =
∫ ∞
−∞

f (u) fX (u;µX ,σ
2
X )du. (2)

Such an integral usually does not have a closed-form solution
for a complex shader program, therefore Yang and Barnes [YB18]
used composition rules to decompose the complex shader program
into an AST of sub-parts then approximate each sub-part’s input
and output by mean-variance parameterized distribution.

Figure 2 shows an example of such a decomposition, where
x, x1, and x2 are three variables, with Gaussian distributions,
X ∼ N(µX ,σ

2
X ), X1 ∼ N(µX1,σ

2
X1), and X2 ∼ N(µX2,σ

2
X2), re-

spectively. By applying the adaptive Gaussian rule [YB18] to
approximate x2, the smoothed value of x2 could be calculated
as µX2 = exp(−µ2

X − σ
2
X + 2µ2

X σ
2
X + σ

4
X ).
† However, Yang and

Barnes’ approximation [YB18] has a problem. When σ
2
X = 0.5,

no matter what the value of µX is, the mean of X2 is a constant
µX2 = exp(−0.25). Such a bad approximation is because of the ne-
glect of the integral domains. While the integral domain of x2 is
considered as (−∞,+∞), the actual range of x1 is (−∞,0], given
that x1 =−x∗ x. This example shows that the consideration of do-
main and range of sub-part programs is important for smoothing
the shader programs with a complex composition of functions.

To address such a problem, our approach takes the domain and
range of composition of functions into consideration. Specifically
for the function y = f (x), we assume that the domain of interme-
diate variable x is [ai,bi]. Therefore, the mean-variance statistics
of the intermediate distribution fY in the clamped domain can be
computed as:

µY =
∫ bi

ai
f (u) fX (u)du, (3)

σ
2
Y =

∫ bi

ai
f 2(u) fX (u)du−µ2

Y , (4)

where µY and σ
2
Y are the mean and variance of fY (y), fX is the inter-

mediate distribution of the variable X and fX meets
∫ bi

ai fX (u)du =
1. We recursively apply this range and domain consideration during
the decomposition of the shader program.

In Figure 2, we show the comparison of approximations of vari-
able x2 in the example shader when σ

2
X = 0.5. It can be seen that

our method could achieve a much better approximation than that of
Yang and Barnes [YB18] by considering the domain and range of
composited functions.

† Please refer to the the supplementary document for the detailed deriva-
tion.
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In the following sections, we first present three new approxima-
tions to optimize the mean-variance statistics from Equation 3 and
4, and then describe the algorithm integrating these approximations
into an automatic band-limiting shader scheme.

3.2. Renormalized Adaptive Kernel Approximation

The first approximation is an extension of the adaptive kernel ap-
proximation [YB18], but we renormalize the probability density
function in the clamped domain.

In general, we adopt common kernel functions, such as Gaussian
functions or box functions, to approximate the probability density
functions of intermediate variables. Let us still use y = f (x) to de-
rive the approximation, where y ∈ [ao,bo], and [ao,bo] is the range
of y = f (x) with respect to variable x in domain [ai,bi].

Under such a new range of y, our key idea is to renormalize the
mean-variance statistics to provide a better approximation. Techni-
cally, we assume the renormalized distribution p̄(y) in the clamped
domain has the same mean and variance of the variable in the real
domain, i.e. p̄(y) ∼ fY (y), y ∈ [ao,bo]. Then, we derive that the
renormalized adaptive kernel is a second-order accurate approxi-
mation when it meets the following equations:∫ bo

ao
p̄(u)du = 1, (5)

∫ bo

ao
up̄(u)du = µY , (6)

∫ bo

ao
u2 p̄(u)du = µ2

Y +σ
2
Y . (7)

Please refer to the supplementary document for more details.

Equation 5-7 directly give an explicit solution for compactly sup-
ported kernels, such as box functions or tent functions. However,
it is difficult to obtain an explicit solution for Gaussian functions
in the clamped domain. Hence, we use binary search and cross-
validation to optimize the loss function L with p-norm to find the
renormalized mean and variance in the clamped domain as:

min
µ̄Y ,σ̄Y

L = min
µ̄Y ,σ̄Y
{
∥∥∥∥∫ bo

ao
uḠ(u; µ̄Y , σ̄

2
Y )du−µY

∥∥∥∥
p
+∥∥∥∥∫ bo

ao
u2Ḡ(u; µ̄Y , σ̄

2
Y )du−µ2

Y −σ
2
Y

∥∥∥∥
p
},

(8)

where Ḡ(u;µ,σ2) is a renormalized Gaussian function
in the clamped domain [ao,bo], where Ḡ(u;µ,σ2) =

G(u;µ,σ2)/
∫ bo

ao G(u;µ,σ2)du, G(u;µ,σ2) is a standard Gaus-
sian function. More details can be found in Section 4.2.

3.3. Approximation of fY (y) with Gaussian Functions

In this approximation, we try to directly use Gaussian functions to
approximate fY (y) in the clamped domain rather than renormalize
the adaptive kernel approximation [YB18] in the unclamped do-
main.

Theoretically, if probability density function fX (x) is continuous

and f is a monotonically increasing continuous differentiable func-
tion with inverse x = g(y), then Y is continuous with probability
density function fY (y) given by:

fY (y) = fX (g(y))g
′(y). (9)

To approximate fY (y) with Gaussian function, we assume that
the peak of the approximated Gaussian function is also the maxi-
mum value of fY (y). Therefore, the mean µY of the Gaussian is the
extreme point of fY (y), and µY , σY can be solved as:

5y fY (y)
∣∣∣
y=µY

= 0, (10)

σY =
1√

2π fY (µY )
. (11)

Furthermore, we found that Equation 10 can be directly differen-
tiated given Equation 9 and the assumption that X ∼ N(µX ,σ

2
X ):

5y (
1√

2πσX
exp(− (g(y)−µX )

2

2σ2
x

)g′(y))
∣∣∣
y=µY

= 0. (12)

Then, Equation 12 can be simplified as:

(5g(µY ))
2(g(µY )−µX ) = σ

2
X (52g(µY )) (13)

Taking y = exp(x) as an example, in this case, g(y) = ln(y), µY
can be computed by solving ln(µY )− µX +σ

2
X = 0. The mean and

variance of the approximated Gaussian function is:

µY = exp(µX −σ
2
X ), (14)

σY =
µY√

2πG(ln(µY );µX ,σ
2
X )

=
µY σX

exp(−σ2
X

2 )
, (15)

where G(x;µ,σ) is a Gaussian function. In Figure 3, we show

Figure 3: The comparison of approximations of y = exp(x), where
X ∼ N(0,0.52).

the comparison of this approximation and the renormalized adap-
tive kernels described in Section 3.2. In this example, we consider
y = exp(x) and assume the probability density function of input
variable is X ∼ N(0,0.52). The green curve in the figure shows
the actual probability density function of the variable Y , which is
calculated by Equation 9. The red line is the Gaussian distribution
that acquired by applying the adaptive Gaussian rule (G(µY ,σ

2
Y )
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through Equation 3 and 4). The blue line shows the Gaussian dis-
tribution (p̄(y)) which are obtained by renormalization (Rule #1
(Section 3.2)). The yellow line shows the newly fitted Gaussian
distribution as presented in this subsection (Rule #2). We use the
Mean Squared Error (MSE) with ground truth as the quality metric
to compare different approximations. The MSEs from approxima-
tions of adaptive Gaussian kernel [YB18], our Rule #1 and #2 are
0.033, 0.038, and 0.021, respectively. Our Rule #2 achieves the best
quality in this example.

3.4. Taylor Series Approximation of f (x)

Previous two rules improve kernel functions to tighten the approx-
imation in the clamped domain. However, not all functions have
a closed-form at computing smoothed output using Equation 2.
Therefore, we introduce another rule to simplify the f (x) into poly-
nomials, and then smooth each polynomial function, which has a
closed form of smoothed function.

Specifically, second-order Taylor polynomials are used to fit the
origin function f (x) around the mean µX :

f (x)≈ T (x) = f (µX )+∇ f (µX )(x−µX )+
1
2
∇2 f (µX )(x−µX )

2

(16)

Equation 3 can be reformulated into the integral of Equation 16
with a probability density function fX (u) as:

µY ≈
∫ bi

ai
T (u) fX (u)du

= f (µX )
∫ bi

ai
fX (u)du+∇ f (µX )

∫ bi

ai
(u−µX ) fX (u)du

+
1
2
∇2 f (µX )

∫ bi

ai
(u−µX )

2 fX (u)du.

(17)

Under the assumption that fX (u) is a Gaussian function,
G(u;µX ,σ

2
X ), integrals in Equation 17 could be further computed

as: ∫ bi

ai
f (µX )G(u;µX ,σ

2
X )du =− f (µX )

2
erf(

µX −u√
2σX

)
∣∣∣u=bi

u=ai
, (18)

∫ bi

ai
(u−µX )G(u;µX ,σ

2
X )du =−

σX exp(−(µX−u)2

2σ2
X

)
√

2π

∣∣∣∣u=bi

u=ai
, (19)

∫ bi

ai
(u−µX )

2G(u;µX ,σ
2
X )du = [

σX (µX −u)exp(−(µX−u)2

2σ2
X

)
√

2π
−

1
2

σ
2
X erf(

µX −u√
2σX

)]
∣∣∣u=bi

u=ai
.

(20)

In Figure 4, we take a function y = sin(0.5− 0.5exp(−2x2)) as
an example to visualize three rules. We assume that the input vari-
able X meets Gaussian distribution and the variance is a constant
σX

2 = 0.13. We apply three rules to approximate the mean of the
output variable Y . The green curve in the figure shows the actual

Figure 4: y = sin(0.5−0.5exp(−2x2)), where X ∼ N(µX ,0.13).

mean of the variable Y , which is calculated by the trapezoidal in-
tegration. The red line is acquired by the adaptive Gaussian rule
through Equation 3 and 4. The blue line shows the band-limited
results which are obtained by renormalization (Rule #1 (Section
3.2)). The yellow line shows the band-limited results which are
obtained by approximation (Rule #2 (Section 3.3)). The magenta
line shows the approximation presented in this subsection (Rule
#3). The MSEs from approximations of adaptive Gaussian ker-
nel [YB18], our Rule #1, #2 and #3 are 0.05, 0.000023, 0.0037 and
0.000018, respectively. Meanwhile, the running times of 200 sam-
ples are 0.4ms, 13ms, 0.4ms, and 1ms, respectively. Note that this
example just exhibits differences of three rules, but is not for com-
parison. Although Rule #3 shows good quality and small overhead
in this example, the other two rules may outperform in different
cases.

4. Automatic Band-Limiting Shaders

In this section, we first introduce the overall algorithm of our frame-
work, then present details of using the proposed three approxima-
tions to obtain optimal band-limited shaders, finally describe how
textures are integrated into our algorithm as discrete functions.

4.1. Algorithm

Our method employs the band-limiting shader framework [YB18]
to smooth shader programs. Mainly, it applies approximation rules
on shader programs to generate band-limited shader variants, and
then uses genetic programming (GP) [SAMWL11, WYY∗, YB18]
to find the optimal approximation choices (on Pareto frontier) that
balance running time and error.

In our approach, it takes four steps to create one band-limited
shader variant. Firstly, the shader code is parsed and converted into
an Abstract Syntax Tree (AST). Secondly, the AST is traversed
from bottom to up to calculate the range of each tree node. Thirdly,
approximation rules are applied to intermediate variables on each
tree node to create a band-limited shader variant. The detailed algo-
rithm steps are shown as pseudocode in Algorithm 1. Specifically,
with the AST and approximation rules, we generate the expressions
of intermediate variables with their means and variances from bot-
tom to up. The function "RULE" in Line 8 generates different code
snippets according to specific rules. Please refer to the supplemen-
tary document for more details of the entire algorithm. The three

c© 2020 The Author(s)
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proposed approximations (Section 3.2-3.4) are regarded as Rule #1,
Rule #2 and Rule #3,respectively, in the algorithm.

Algorithm 1 Automatically genarate a band-limted shader variant
Input:
1: The set of nodes for shaders, Nn;
2: The chosen rule for each node, Rn;

Output:
3: A band-limted shader variant, newshader;
4:
5: procedure GENERATESHADERCODE()
6: newshader = template header codes
7: for i = 0; i < n; i++ do
8: str = RULE(Ri, Ni)
9: newshader += str

10: end for
11: newshader += template return codes
12: return newshader
13: end procedure

Finally, the performance and quality of each generated shader
variant are evaluated. Ray-casting technique is applied to acquire
the mean and variance of input variable of tree nodes, our frame-
work will record corresponding execution time and the quality of
output image by comparing with the ground truth image, which is
generated by super-sampling thousands of samples per pixel.

4.2. Approximation Rules

Three approximations introduced in Section 3 are converted into
three approximation rules.

For Rule #1, we first calculate the mean and variance using the
adaptive kernel approximation [YB18] and then renormalize them
in the clamped domain using Equation 5-7. For compactly sup-
ported kernels, such as box functions or tent functions, an explicit
function between the original and renormalized terms can be de-
rived, which are given in the supplementary document. However,
there is no analytical solution for Gaussian kernels, so we numeri-
cally compute the mean and variance of the renormalized adaptive
Gaussian kernels by binary search and cross validation. Specifi-
cally, the computation follows Equation 8 with p = 1 at the begin-
ning. We initialize µ̄Y = µY and σ̄Y = σY . Then, we iteratively fix
σ̄Y to optimize µ̄Y by minimizing the loss function L in Equation
8, and fix µ̄Y to optimize σ̄Y . Usually observed in the experiments,
after five iterations we obtain the renormalized Gaussian functions.

For Rule #2, we adopt the atomic function table in Yang and
Barnes’ work [YB18] and derive the analytical solution of µY and
σY from Equation 13 for each atomic function. These solutions are
stored as a table in preprocess and used to generate shader codes
at runtime. For example, if y = exp(x), the solutions of µY and σY
are given in Equation 14 and 15. When generating shader variants,
we lookup the solutions of µY and σY of different atomic function
from the table to replace the original atomic function in the shader
program.

For Rule #3, we also create a precomputed table for second-
order differential operators of atomic functions. While generating

the band-limited code snippets, chain rules are applied to derive the
differential forms of the composition of multiple atomic functions.
We successively calculate the zero-order, first-order and second-
order differential functions. Let us take y = exp(x2) as an exam-
ple. We automatically compute t0 = exp(µ2

x), t1 = exp(µ2
x) · 2 · µx,

t2 = exp(µ2
x) ·2 ·µx ·2 ·µx +exp(µ2

x) ·2 through chain rules and sub-
stitute these three variables into Equation 18 - 20.

In the supplementary document, we provide more pseudocodes
of the algorithm and several example codes of generated band-
limited shader variants.

4.3. Texture

In general, texture data can be regarded as a function with discrete
outputs. In this paper, we assume the data could be fitted by Gaus-
sian or other basis functions, thereby integrated into our framework.
We generally use MIP-mapping technique [Wil83] to smooth color
textures. In preprocessing, we store the mean and variance into two
mipmapped textures. At runtime, the mean and variance could be
directly fetched from two mipmapped textures according to the size
of the pixel footprint as:

µY =
1

22n

2n

∑
i=0

2n

∑
j=0

pi j, (21)

σ
2
Y =

1
22n

2n

∑
i=0

2n

∑
j=0

(pi j−µY )
2, (22)

where n is the corresponding mipmap level of pixel footprint and
pi j is the value of color texture.

However, using textures, e.g., normal maps, in shading usually
require non-linear filtering, so the traditional mipmapping tech-
nique does not work very well. Therefore, we design a specific
filtering technique to handle it.

4.3.1. Normal Map in Shading

We use normal map as a proof-of-concept to discuss our filtering
technique since normal map plays an important role in shading.
We employ Toksvig’s method [Tok05] to process normal map. It
assumes the angular deviation of normals meet a Gaussian distri-
bution whose variation can be calculated through averaged normal
lengths as:

σ
2 =

1−‖N‖
‖N‖ , (23)

where N is the averaged normal.

Then, they used a Gaussian function to approximate the Blinn-
Phong model. With the averaged normals, they provided a
smoothed solution for mipmapping normal maps.

In our work, we follow a similar assumption that the angle be-
tween two vectors is a Gaussian distribution. However, we found
that using the length of the averaged normal as the variance yields
a better approximation of the normal distributions. Therefore, the
mean and variance of normal maps are computed as:

µθ = acos(dot(
N
‖N‖ ,v)), (24)
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σθ = acos(‖N‖)/2.0. (25)

Moreover, using NDF based on slope domain [OB10, DHI∗13]
gives nice band-limited results. However, it requires 2D Gaussian
functions to approximate specific BRDF models, such as Blinn-
Phong or Beckmann model. Therefore it cannot handle some com-
mon operations on normal maps, such as reflect vector, R = 2 ·
dot(N,L) ·N−L, where L is the light direction. Results shown in
Section 5.4 explains that our solution can not only deal with some
BRDF models but also generally handle other basic operations on
normal, such as dot product or multiply operations.

Some severe changes may happen in some parts of the normal
map and cause large errors under our approximation. In these cases,
we use multi-Gaussian lobes to improve the approximation . We
partition the angular domain into m×n parts, where m and n are tile
sizes of longitude and latitude coordinates, respectively. We sepa-
rately compute the normal distribution in each part of the angular
domain. In other words, we manually divide normals into differ-
ent clusters and use one Gaussian lobe to approximate the normal
distribution in each cluster, which results in a multi-lobe Gaussians
approximation.

4.4. Selecting Band-limited Shaders

Our method employs genetic programming similar to that in
[YB18] to automatically find the optimal shader approximation. At
first, we assign our three rules to expression nodes to generate ini-
tial shader candidates. Then, in each iteration, we apply standard
mutation and cross-over operations to shader candidates. Specifi-
cally, the mutation step randomly chooses a candidate and applies
a new approximation rule to one expression node. The cross-over
step randomly pairs shader candidates and swaps rules in their ex-
pression nodes to create offspring. Once one new generation of
shader variants are generated, we measure their quality and per-
formance, then update the Pareto frontier of shader variants. The
variants on that frontier are selected as candidates for the next it-
eration, or outputted as the optimal band-limited shaders at the last
iteration.

5. Results

We implemented the algorithm using OpenGL on a PC with an
Intel Core i7-3770 3.4GHz CPU and an NVIDIA GeForce GTX
1080Ti GPU. We use Yang and Barnes’ code [YB18] to repro-
duce their results for comparison. To evaluate the effectiveness
and quality of our technique on more complex shaders, we im-
plemented several procedural and texture-based shaders, including
Cook-Torrance microfacet shading model [CT82], punctual lights
and image-based lights in a PBR pipeline [PH10]. Since Yang and
Barnes’ method [YB18] does not support normal map and envi-
ronment map, and LEAN [OB10] only supports Blinn-Phong and
Beckmann distribution functions, we did not include their results in
some comparisons. The ground truth image is generated by 1024×
super-sampling. Mean squared error (MSE), SSIM [WBSS04] and
Peak signal-to-noise ratio (PSNR) are used as error metrics to eval-
uate the image quality.

Function
MSE

Rule #1 Yang-fract [YB18]

exp(−x2) 0.00006 0.00221 0.00099

sin(x2) 0.00065 0.00216 0.00189

exp(−2x2) 0.00019 0.00389 0.54072

Table 1: MSE of approximations shown in Figure 5.

In our experiments, we model each input pixel coordinate (x,y)
as two independent random variables, X and Y . The means of these
two variables are µX = x and µY = y, the variances of the inputs
are σX = σY = 0.5. The mean and variance of input buffers, such
as world positions or texture coordinates, are acquired by casting
three rays from one pixel to obtain the statistics.

Moreover, we employ a similar approach of Yang and Barnes’
method [YB18] to consider the inputs of a binary function as two
random variables and the correlation term between these two vari-
ables is usually set to zero.

5.1. Analytical Functions

We first compare our method with the adaptive Gaussian ap-
proximation [YB18] on analytical functions. Three functions, y =
exp(−x2), y= sin(x2) and y= exp(−2x2), are used for comparison,
where we assume X ∼ N(µX ,σ

2
X ) and σ

2
X = 0.25. Results are plot-

ted in Figure 5, where the horizontal axis is µX , and the vertical axis
is the smoothed output of y. We implement a new method named
"Yang-fract" for comparison, which is directly calculating the defi-
nite integral in the clamped domain without renormalization or ap-
proximation of mean and variance. The blue lines show the results
using original adaptive Gaussian approximation rules in the global
domain, the yellow lines denote the results using "Yang-fract", the
red lines represent the results generated by our renormalized Gaus-
sian kernels in the clamped domain, and the green lines show the
original functions as references. MSE is used to measure the error
between approximations from three methods and the ground truth.
Results shown in Table 1 demonstrate that our method produces
more accurate approximations than those using Yang and Barnes’
approximation. Note that in some cases, their approximation fails
at approximating the smoothed functions, such as those shown in
Figure 2 and 5c.

5.2. Simple Procedural Shaders

1 float f(float coord)
2 {
3 float x = fract(coord);
4 float x1 = -x * x;
5 float s = exp(10 * x1);
6 return s;
7 }

Listing 1: A simple procedural shader

We then compose two simple procedural shaders. The first shader
is shown in Listing 1. It takes the world position of a pixel in and
computes the shading value according to the decimal fraction of
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(a) y = exp(−x2) (b) y = sin(x2) (c) y = exp(−2x2)

Figure 5: Approximations of analytical functions from different rules, our renomalizated Gaussian kernel in clamped domain (Section 3.2),
the adaptive Gaussian in entire domain [YB18], yang-fract using the adaptive Gaussian kernel in clamped domain, and the ground truth
result using the trapezoidal integration to calculate the convolution.

Figure 6: Comparison of direct sampling, adaptive Gaussian approximation [YB18], our approximations and ground truth result for simple
procedural shaders.

the x coordinate. While we apply it to shade a plane, we could ob-
tain a repetitive strip pattern (Figure 6). Without any smoothness,
the direct sampling method computes only one shading sample per
pixel. The result shows that it suffers from severe aliasing artifacts.
We then apply the renormalized adaptive Gaussian kernel approxi-
mation (Rule #1) and the Taylor series approximation (Rule #3) to
smooth this shader, and compare them with the original adaptive
Gaussian kernel approximation [YB18]. As shown in the first and
third row of Figure 6, the results generated by adaptive Gaussian
kernels fail at producing correct smoothed results. This is mainly
because it incorrectly considers the value range of x1. In contrast,

our approximations provide much better smoothness of the shader.
However, our approximations also bring some errors. The resultant
images are a little bit darker than the ground truth image.

The second simple procedural shader is shown in Listing 2. It is a
key component of Beckmann function, which has been widely used
in real-time rendering as a normal distribution of BRDFs. We apply
Rule #2 to smooth this piece of shader code. The result is shown in
the second row of Figure 6. Yang and Barnes’ approximation lacks
the ability to control composition functions with rapidly changed
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Shader Parallax
PSNR

Direct [YB18] Ours Gaussian

Check.

Bumps 14.99 22.54 24.21 27.41

None 15.74 22.16 27.32 27.39

Ripples 12.53 18.31 22.65 27.41

Circle.

Bumps 15.37 24.47 24.61 27.97

None 16.76 27.77 29.48 29.83

Ripples 12.87 20.08 20.30 25.67

Color.

Bumps 21.80 28.29 34.35 35.85

None 28.58 39.17 40.20 41.41

Ripples 17.23 19.47 25.31 31.70

Quadr.

Bumps 16.51 24.88 26.50 27.78

None 19.21 30.87 30.94 35.39

Ripples 12.99 18.26 22.37 25.44

ZigZag

Bumps 18.04 24.42 29.30 31.12

None 19.04 33.09 32.83 31.71

Ripples 15.39 18.10 25.61 28.43

Average 17.14 24.82 27.96 30.30

Table 2: PSNR Value of Direct Sampling, Yang and Barnes [YB18],
Our method, Gaussian Ground Truth with Ground Truth under
Checkerboard, Circles, Color Circles, Quadratic Sine and Zigzag
shader with 3 choices for parallax mapping: none, bumps, and rip-
ples.

value ranges. In contrast, our method successfully manages to re-
semble the ground truth image closely.

Then, we apply three rules onto all intermediate variables in the
shader shown in Listing 1 and use the GP to find optimal smoothed
shader variants on the Pareto frontier, i.e., balancing time and error.
The results are shown in Figure 7 (a). It reveals that our method
can generate a much better shader variant than that computed from
Yang and Barnes’ work [YB18].

1 float p_Beckmann(float coord)
2 {
3 float x = fract(coord);
4 float m = 0.02;
5 float s = exp((1.0-1.0/(x*x))/m);
6 return s / (PI * r);
7 }

Listing 2: A shader with Beckmann function

5.3. Complex Procedural Shaders

We demonstrate our method on 15 complex procedural shaders,
which were produced by combining 5 base shaders (Checkerboard,
Circles, Color Circles, Quadratic Sine and Zigzag) with 3 choices
for parallax mapping: none, bumps, and ripples. All of them are
from Yang and Barnes’ code [YB18], but we scale the heights of
bumps and ripples about three times.

All shaders are approximated by our method, Yang and Barnes’
adaptive Gaussian approximation [YB18] and an ideal Gaussian
smoothing. The ideal Gaussian smoothing is the convolution of one
shader program with Gaussian function computed by Monte Carlo
integration with about 1000 samples. It excludes the errors brought
by applying our approximations, thereby can be regarded as the
theoretical bound of a smoothed shader with Gaussian function.
We illustrate four visual comparisons in Figure 8 and list PSNRs of
different approximations for all 15 shaders in Table 2. The Pareto
frontiers of optimal smoothed shaders generated by applying two
optimizations are illustrated in Figure 7 (b)-(e). The results from
method [YB18] are selected with the best approximation quality.
Please refer to the supplementary materials for the videos and the
complete results.

Results show that our method manages to produce better band-
limited results than those from Yang and Barnes’ work [YB18].
Firstly and most importantly, we take domain and range into con-
sideration to exclude impossible cases in the composition rules
and tighten the approximation. Let us take Blinn-Phong function,
f (x) = pow(dot(hal f ,view),roughness), as an example. The dot
has a value range of [0,1], while ignoring the range may lead
to overexposure or even negative values at approximation. Sec-
ondly, our approximation is able to support some functions that
cannot be supported by the adaptive Gaussian in Yang and Barnes’
work [YB18]. For example, f (x) =

√
x is only defined on non-

negative x, which could not be filtered by Gaussian kernel in Yang
and Barnes’ work [YB18], but in our method, it could be approxi-
mated by Gaussian in the domain [0,∞). Finally, our method may
reduce the accumulative errors caused by composition rules. The
mean and variance are computed for each atomic function, while
the Rule #3 can approximate multiple atomic functions at one time.
It also may help to handle some trouble cases using composition
rules, such as f (x) = 1/x.

Moreover, we could observe different approximation patterns
achieved by different rules in these results. In general, Rule #1
and Rule #2 produce better results for the convolution of atomic
functions. They take the mean of the intermediate distribution of
root nodes as smoothed output and keep the attributes of interme-
diate distributions. The major limitation of Rule #1 and Rule #2 is
that when they are used to approximate composited functions, they
may sometimes bring large variance and result in large errors. Rule
#3 simplifies the function into polynomials, which may directly
improve rendering efficiency and reduce the accumulative errors
caused by composition rules. On the other side, it produces good
approximation locally, especially around the expansion points, but
may be invalid in a larger range.

5.4. Shaders with Textures

To handle shaders with textures, we demonstrate the quality and
effectiveness of our method by testing it in common scenes. In Fig-
ure 9, we show the classic Teapot scene with a 1024×1024 normal
map. The Blinn-Phong distribution is chosen as the normal distri-
bution function (NDF). Results show that our method can maintain
the quality of NDF filtering as LEAN mapping. However, in the
Desert Rose scene with GGX distribution as NDF (Figure 7 in the
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Figure 7: Pareto frontier of generated program variants.

Figure 8: Comparison with Direct Sampling, Yang and Barnes [YB18], Our method, Gaussian Ground Truth and Ground Truth under
complex procedural shaders.

(a) Direct Sampling (0.93029) (b) LEAN (0.94265) (c) Our method (0.943403) (d) Ground Truth (1.0)

Figure 9: Comparison of shading images of the Teapot model computed by (a) Direct sampling, (b) LEAN, (c) Our method and (d) Ground
truth under a physical-based shading shader with Blinn-Phong BRDF model and normal maps. SSIM values are shown in the bracket.
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(a) Direct Sampling (b) Our method with one Gaussian
lobe

(c) Our method with adaptive Multi-
Gaussian lobes

(d) Ground Truth

Figure 10: Comparison of visibility image of the Bunny model generated by (a) Direct sampling, (b) Our method with one Gaussian lobe,
(c) Our method with adaptive multi-Gaussian lobes and (d) Ground truth under a physical-based shading shader with the Smith shadowing
functions and normal maps.

Scene Shader
Performance (FPS)

Direct Toks. LEAN Ours GT.

Teapot Blinn 5900 5800 5700 5700 9

Bunny Beck. 5700 5700 5700 5200 12

Rose GGX 4500 4400 - 4360 4

Table 3: Performance comparison

supplementary document), it shows the capability of our method
that can handle different operations and functions in shaders.

Finally, we include a scene with a shader having a Smith shadow-
ing function [WMLT07]. Results are shown in Figure 10. It shows
that our approximation rules have the ability to smooth very com-
plex functions, such as the complex shadowing term.

Table 3 shows the performance in frames per second (FPS) for
shaders with textures. Our method takes a little extra computation
compared with LEAN mapping and direct sampling, but it pre-
serves more details of band-limited shaders. On the other hand, our
method is significantly faster than super-sampling while offers sim-
ilar quality.

More results can be found in the supplementary document.

5.5. Limitations and Future Work

Our method has some limitations deserving further considerations.
Firstly, our method bears the same assumption of Yang and Barnes’
method that the distributions of intermediate variables are Gaus-
sian functions. However, it may not be true in real applications.
In Figure 8, we show the errors caused by such an assumption.
The error between the reference and the result from the ideal Gaus-
sian smoothing method reflects the difference between the assumed
Gaussian distribution and the actual distribution. In the future, it
would be an interesting direction to explore the better approxima-
tion of actual distribution. For example, Gaussian Mixture Mod-
els (GMMs) might be a good candidate. In Figure 11, we show a
simple function y = exp(−x2) under an input distribution of multi-
models, (Equation 26). The horizontal axis presents different values

Figure 11: y = exp(−x2) with non-Gaussian input distribution fX .

of x0 in Equation 26, and the longitudinal axis denotes the mean of
fY . In this case, we can still achieve a good approximation when the
input distribution is approximated by GMMs. However, the more
complex assumption of intermediate variables, the more computa-
tions are required at optimization and runtime to do the smoothing.
We would regard it as an important future work.

fX =


1
4
|sin((x− x0))|, x0−π < x < x0 +π

0, otherwise
(26)

Secondly, composition rule may bring large variance and then
result in large errors. Other approximation methods for the shader
program will be another interesting future work. Thirdly, some
approximations such as the filtering of normal maps may not re-
store all information about how normal vary within the footprint.
Toksvig’s method and ours both give a compromise about the real
normal distribution. However, it is still worthy of finding a new,
general, and more accurate expression about filtering normal maps.
Finally, in this work, we only considered range and domain at pro-
cessing composited functions in shaders. However, besides range
and domain, there may have other relations among computations in
one shader, such as the correlations of different intermediate vari-
ables, certain distributions of variables in the scene, etc. Other re-
lations to better approximate smoothed values will be an important
future direction.
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6. Conclusion

In this paper, we extend the framework of mean-variance statis-
tics to smooth shader program. We first consider the domain and
range of functions to more closely approximate the weighted av-
erage of shading values over the pixel footprint. Three new shader
smoothing rules are given to approximate specific composition of
functions and reduce the approximation errors. The first approx-
imation rule is based on the adaptive kernels, but improved by
renormalizing the kernel in the clamped domain. The second rule
directly approximates the function outputs using Gaussian distri-
butions. The third approximation rule handles complex functions
using Taylor series. Besides these approximations, we further inte-
grate textures, including normal map and color texture, as discrete
functions into the framework. Compared with previous work, our
algorithm achieves better quality and preserves higher smoothed
details. Experiments show that our method is capable of smoothing
general shaders such as physical-based shaders and shaders with
complex visibility functions.
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