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Fig. 1: Stereo shading results from the traditional per-pixel shading, the adaptive multi-rate shading proposed by He et
al. [1], and our tile pair-based adaptive multi-rate shading on the Arena scene: (a) one frame of stereo images (top row)
and per-pixel shading instruction counts (bottom row); (b) the reduced shading instructions; and (c) the memory bandwidth
used to render this frame. The results demonstrate that our newly proposed method outperforms the traditional sort-middle
shading and the state-of-art rendering framework by achieving much lower shading costs and memory bandwidth. When
shading this one frame, our method effectively reduces the shading rate to only 30% compared to 47% of multi-rate shading,
and still maintains very good visual quality (over 99.99% visual similarity). Our proposed scheduling method consumes a
considerably lower memory bandwidth, only 123 MB compared to 205 MB of the traditional sort-middle method (Sort-M.),
and less than the previous multi-view rasterization approach [2](M.View).

Abstract—The work proposes a new stereo shading architecture that enables adaptive shading rates and automatic shading reuse
among triangles and between two views. The proposed pipeline presents several novel features. First, the present sort-middle/bin
shading is extended to tile pair-based shading to rasterize and shade pixels at two views simultaneously. A new rasterization algorithm
utilizing epipolar geometry is then proposed to schedule tile pairs and perform rasterization at stereo views efficiently. Second, this
work presents an adaptive multi-rate shading framework to compute shading on pixels at different rates. A novel tile-based screen
space cache and a new cache reuse shader are proposed to perform such multi-rate shading across triangles and views. The results
show that the newly proposed method outperforms the standard sort-middle shading and the state-of-the-art multi-rate shading by
achieving considerably lower shading costs and memory bandwidths.

Index Terms—stereo rendering, tile-pair based rendering, multi-rate shading
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1 INTRODUCTION

Recent developments in virtual reality (VR) have led to a
boom of real-time VR applications, but the immersion VR
experience demands high visual realism and low latency
at synthesizing stereo images. Low latency arises as a fun-
damental and necessary requirement, because high latency
may lead to a detached VR experience, motion sickness, or
dizziness. According to a previous study, “20 milliseconds
or less will provide the minimum level of latency deemed
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acceptable” [3]. However, even after several decades of
development, the synthesis of realistic stereo images at 50 or
higher FPS is still one of the largest challenges in computer
graphics. Stereo rendering deserves enhanced software and
hardware solutions.

Compared with conventional rendering, stereo render-
ing generates two views at once instead of one, resulting in
higher computational overload. However, under the stereo
configuration, the geometry and shading of the two views
are usually the same or largely similar. Such correlations
between the two views have already inspired different ren-
dering algorithms to accelerate the rendering process [2],
[4], [5], [6], [7], [8], [9]. However, these approaches mainly
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focused on adapting two views generations in one rendering
pass or only accelerating the rasterization step.

Moreover, in current graphics processors and real-time
applications, a large portion of the computational resource
is spent on executing per pixel shading. The sharing of
pixels, especially the reuse of shading between two views, is
becoming increasingly important and sometimes necessary
to accelerate stereo rendering. Reducing the cost of shading
by reusing samples within one pixel or sharing samples
across pixels has been studied for a while, and such methods
are also known as multi-rate (frequency) shading [1], [10],
[11], [12], [13], [14]. Although some of these approaches have
the potential to be extended to stereo views, at present, a
specific multi-rate shading solution for stereo rendering has
not been well explored.

In this paper, a new rendering pipeline is proposed
that enables adaptive multi-rate shading at stereo views.
The proposed technique presents several novel features.
First, the present tile-based shading was extended to tile
pair-based shading. Specifically, tiles at two views are first
paired by corresponding geometry. Each tile pair is then
scheduled to rasterize triangles and shade pixels at two
views simultaneously. To better schedule the shading order
of tile pairs, inspired by previous work [2], [4], [5], the
underlying geometry relations of stereo views were used
to guide the shading order of tile pairs along corresponding
horizontal epipolar lines at two views. As a result, triangles
are efficiently rasterized with horizontal overlapping tiles to
avoid being reloaded multiple times in tile-based shading
(which is also known as the bin spread problem in tile-
based shading [15]). More importantly, shading pixels at
two views simultaneously leads to more coherent texture
accesses during shading calculation, thereby significantly
reduces memory bandwidth used for shading. Figure 1(c)
shows such a saving for shading one frame, where the I/O
of triangle data and texture is effectively reduced.

The second novel feature of the new pipeline is an
adaptive multi-rate shading framework for stereo render-
ing. Once one tile pair was rasterized and shaded, fol-
lowing previous work [1], [11], the execution of the post-
rasterization screen space shading was partitioned into fine
and coarse fragment operations. A screen space based cache
and a cache reuse shader were then newly designed to store
coarse fragment inputs and outputs to allow the reuse of
shading across views and triangles. The results show that
the proposed rendering pipeline can efficiently reuse and
reduce shading at stereo views. Fig. 1(a) shows an example
of the substantial savings possible.

The main contributions of the proposed architecture are
as follows:

• We propose an adaptive multi-rate stereo shading
architecture that enables flexible control of shad-
ing rates and automatic shading reuse between two
stereo views.

• We present a tile pair-based shading scheme for
stereo rendering that rasterizes triangles and shades
pixels at two views simultaneously;

• We design a scheduling algorithm to better explore
geometry correspondences and consistencies at shad-
ing tile-pairs via epipolar geometry.

• We describe a new multi-rate shading framework to
cache shading at view tiles and reuse them across
triangles and views.

2 RELATED WORK

Stereo Rendering. Stereo rendering is a special case of
multi-view rendering, and a naive multi-view rendering
can be easily implemented into multiple separate rendering
passes using modern graphics APIs, such as OpenGL, Di-
rectX or recent variations (Vulkan or Metal). Therefore, im-
proving the shading efficiency beyond multi-pass rendering
becomes a key interest of multi-view rendering research.

A direct extension of stereo rendering research is to coor-
dinate with advances in hardware pipeline and perform two
views of transformation and rasterization simultaneously.
De Sorbier et al. [16] proposed a simple multi-view render-
ing method using vertex and geometry shaders to transform
geometry for two views in one rendering pass. Recently,
NVIDIA released VRWorksTM [17], which was formerly
known as GameWorks VR. This SDK contains a suite of
APIs, libraries, and features, to tackle high-performance VR
rendering. Several graphics features of VRWorks aim at im-
proving the performance of stereo rendering. For example,
Single Pass Stereo uses a new multi-projection architecture of
NVIDIA Pascal-based GPUs to draw geometry only once
and then simultaneously project both right-eye and left-
eye views of the geometry. However, such a technique only
outputs positions with two coordinates in the vertex shader
for two views, and it does not optimally consider geometry
relations in generating two views. Multi-Res Shading and
the latest PASCAL-based Lens Matched Shading render the
image at a resolution that better matches the pixel density
of the lens (i.e., correcting the image by scaling down
resolutions at image edges). However, this multi-resolution
shading is only designed for the distortion of the lens, and
it cannot handle the multi-frequency of the shading signals
of different scenes, which is one of two main targets of our
solution.

To better rasterize geometry between two views, several
previous approaches utilized epipolar geometry in different
aspects. Adelson et al. [4] derived, analyzed and optimized
several classic graphics algorithms, such as scan-line ras-
terization, Gouraud shading, clipping, and hidden surface
elimination, for simultaneous generation of stereo views
using projection correspondences. Halle [5] also presented
a method for multiple viewpoint rendering by rendering
polygons as a multitude of lines in epipolar plane images.
Inspired by this idea, Hasselgren and Akenine-Möller [2]
proposed a multi-view rasterization architecture that raster-
izes each triangle to multiple views simultaneously along a
scanline and reuses fragment colors in neighboring views.
The proposed method in this study is built upon these ap-
proaches and further utilizes epipolar geometry to schedule
the tile pair-based rendering and explore multi-rate shading
on stereo views.

Another kind of solutions exploit the image space simi-
larity of two views. In general, these solutions only generate
one view, and then warp or re-project the view to another
view to save the rendering time. However, the direct warp-
ing or re-projection of one view usually results in image
holes. To fill these holes, different approaches have been
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proposed, such as interpolation [6], ray casting [7], blurring
of the depth buffer [8], [18], and jointly considering two
views [9]. Compared with these image space-based solu-
tions, the proposed solution also reuses shading on image
space, but this solution uses complete rasterization of two
views and only shares shading between them.

Multi-rate Real-time Rendering. In current graphics
hardware and real-time applications, a large portion of
the computational resource is spent on executing per-pixel
shading on GPUs. Therefore, limiting the cost of shading is a
key challenge for both graphics application developers and
GPU architects. Many approaches have been proposed with
one fundamental idea of reusing shading across pixels.

Multisampling antialiasing (MSAA) [19] is used as a
modern GPU feature to reduce shading invocations by
reusing one shading result for multiple samples of each ras-
terized triangle in a pixel. However, in some geometrically
complex situations where many triangles intersect a pixel,
the shading cost rises dramatically because MSAA must
shade each contributing triangle at least once per-pixel. To
address this problem, Fatahalian et al. [20] presented a quad-
fragment merging technique to enable the sharing of shad-
ing computations between adjacent mesh triangles. Ragan-
Kelley et al. [12] proposed a decoupled sampling pipeline
to separate shading and visibility, in which shading is lazily
evaluated over a per-triangle shading grid in image space
and cached for reuse. Such an idea of decoupled sampling
has also been applied into deferred rendering, and shading
is computed after visibility is determined [14], [21]. Crassin
et al. [22] proposed an aggregate G-Buffer representation to
approximate geometry inside each pixel and decouple the
shading rate from the geometric sampling rate.

Shading reuse does not necessarily only depend on
geometry complexity, because it also can be performed with
multi-frequency of shading signals. A simple implementa-
tion [23], [24] is to directly generate a low-resolution buffer
storing low-frequency terms of the shading function, and a
second rendering pass utilizing these low-frequency terms
is then performed for final per-pixel shading. Hasselgren et
al. [25] has also proposed a multi-rate shading method by
executing culling computations over tiles prior to the pixel
shader, and Wang et al. [26] have presented an automatic
optimization scheme to transfer per-pixel computations to
per-vertex or per-primitive, thereby reducing the shading
cost. He et al. [27] then designed a system to allow users
to explore different results of multi-rate shader optimiza-
tion rapidly. Similarly, the work in this study also seeks
to reduce shading costs, but this goal is attempted with
stereo rendering that shares shading between views. Thus,
our contributions are orthogonal and complementary to the
presented approaches.

He et al. [1] extended the traditional pipeline and
designed two levels of shading stages, namely, coarse
and fine fragment shading, to perform multi-rate shading.
Vaidyanathan et al. [11] also have proposed a similar idea
using coarse pixel shading to restrict and quantize shading
rates to a finite set of screen aligned grids. However, these
approaches were designed for a single view. It is still non-
trivial to reuse shading across coarse pixels at stereo views.

Besides these screen space approaches, shading can also
be reused in object space. For example, the offline realistic

renderer, Reyes [28], computes and interpolates shading
over micropolygons. Burns et al. [29] then proposed reusing
shading among a uniform object space grid separate from
the micropolygon grid. Clarberg et al. [10] further com-
bined object space shading with multi-frequency shading
and designed an object space multi-rate shading pipeline
that performs multi-rate computation with different sizes of
computation kernels on geometry patches. However, these
approaches rely on tessellation patches and cannot reuse
shading across original triangles. To address this problem,
Hillesland et al. [30] performed variable rate shading at
different texture LODs instead of on surfaces. Nevertheless,
this approach requires certain pre-parameterization for each
object, and this pre-parameterization not be feasible for
scenes with many deformable objects or instancing objects,
such as in games.

The proposed tile pair-based method computes shading
of tiles in screen space and constructs corresponding tile
pairs in object space. Therefore, this approach can comprise
the shading frequency occurring both in screen and object
spaces.

Sort-middle Rendering. Sort-middle rendering or bin-
ning rendering has been developed in graphics for quite
some time. For example, in the Pixel Planes 5 project [31],
many techniques for sort-middle rendering have been vali-
dated and invented. Because sort-middle rendering requires
a large amount of computation to sort the geometry into
screen-space bins or tiles in the middle of the graphics
pipeline instead of near the end, sort-middle rendering
architecture was barely used at desktop GPUs until recent
generations. However, this architecture is popular for em-
bedded GPUs [32], [33] because of the relatively low exter-
nal memory bandwidth and the modest amount of on-chip
memory required. In this work, the traditional sort-middle
rendering is extended from one view to stereo views and
propose a tile pair-based shading framework. Hasselgren
and Akenine-Moller [2] also proposed a rasterization strat-
egy to visit corresponding tiles at two views simultaneously.
However, their proposal only rasterizes within one triangle
and does not shade the entire scene from a perspective of tile
pair-based rendering. The latter requires a newly designed
data organization and scheduling scheme, which is the goal
of our work.

3 OVERVIEW

Given the success of sort-middle shading architecture, the
newly proposed shading pipeline shares the fundamental
design philosophy that localizes triangle rasterization and
pixel shading to small image regions and further extends it
to stereo shading by introducing tile pair-based shading. In
this new pipeline, tiles at two views are paired according
to the underlying geometry correspondences and perform
rasterization and shading simultaneously.

Such tile pair-based shading explores a basic observa-
tion that two cameras are naturally horizontally aligned in
stereo rendering, and they usually have a small disparity.
Therefore, pixels shaded at two tiles have high geometry
correspondences, i.e., they present a high possibility for
shading reuse at the scope of tile pairs. To explore such
geometry correspondences among tile pairs, epipolar ge-
ometry is employed. In general, epipolar geometry is the
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Fig. 2: An architectural overview of our tile pair-based adaptive multi-rate stereo shading pipeline.

intrinsic projective geometry between two views [34], lead-
ing to a set of constraints [35] between image points.Several
of them are used in our tile pair-based stereo shading.
When shading tile pairs, the shading of pixels is decoupled
with different shading rates, i.e., coarse fragment shading
and fine fragment shading. The shading results of coarse
fragments of one view are cached and reused at the other
view if possible to save shading costs at pixels with low-
frequency shading signals among triangles and across two
views.

Following the aforementioned idea, a tile pair-based
multi-rate stereo shading pipeline is designed, and its ar-
chitectural overview is shown in Fig. 2. At a high level, the
entire shading process is organized into two stages: tile pair-
based stereo rasterization and multi-rate shading.

Tile Pair-Based Rasterization. The rasterization stage
mainly has four steps. First, stereo views are partitioned
into regular tiles and a triangle binning algorithm is used
to bin triangles into tiles and create tile pairs. Second, along
each horizontal row, the contiguous tile pairs are visited and
scheduled for rasterization at a depth-first manner. Third,
triangle rasterization is performed at tiles of two views
simultaneously to create shading samples. Finally, after all
samples are shaded in multi-rate shading stage, they are
merged with previous samples to output final images.

Multi-Rate Shading. In this stage, adaptive multi-rate
shading is performed on rasterized samples of tile pairs.
Following previous multi-rate shading methods [1], [11], the
shading is divided into coarse and fine fragment shading
to decouple different shading rates. While rasterized coarse
samples are processed into this stage, newly designed cache
and cache reuse shader are used to determine all possible
reusable coarse shaded samples, and if valid cached shading
samples exist, new samples are created by interpolating the
cached shading samples. Otherwise, coarse fragment shad-
ings are performed and the cache is updated. Fine fragments
with low shading frequency are directly interpolated from
coarse fragments, but those with high shading frequency are
executed in traditional per-pixel shading.

4 TILE PAIR-BASED RASTERIZATION

This section describes the details of the rasterization stage
that integrates epipolar geometry into rasterization and
generates shading samples at stereo views in a single draw
operation. As shown in Fig. 2, stereo views are first parti-
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tioned into regular tiles. Triangles are then binned into these
tiles at two views simultaneously. Also, several epipolar
geometry constraints are considered in this tile pair-based
rasterization. First, the epipolar constraint tells us that the
shading of one pixel at one view only can be reused at
the other view’s pixels at the same epipolar line. As a
result, tiles are only grouped at the corresponding epipolar
line into pairs, greatly reducing the number of tile-pairs.
Furthermore, the order constraint states that the order of
neighboring correspondences on the epipolar line is always
preserved for continuous opaque surfaces along that line.
Thus, contiguous non-empty tile-pairs could be scheduled
one by one along the epipolar line to localize shading
calculation and improve the cache access during shading
reuse (Sec. 4.2). Finally, the disparity constraint reveals that
disparity values of pixels are inversely related to scene
depth. Consequently, the tile pairs can be approximately
sorted from the front to the back based on the difference of
tile indexes of one tile pair, further reducing shading costs
by combining with z-culling and early z-test . Although such
a scheduling algorithm violates the current graphics APIs’
ordering guarantees, it should be noted that out-of-order
rasterization can be beneficial in many cases and has al-
ready been supported by current hardware [36]. Rasterized
samples are outputted to the multi-rate shading stage, and
once these samples are shaded, they are merged back with
samples computed previously at this tile to update the color
in the final image.

These steps bear some similarities to sort-middle render-
ing but with several novel extensions for tile pairs. The fol-
lowing section describes the new triangle binning algorithm,
presents the novel rasterization scheduling algorithm, and
specifies stereo rasterization.
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Algorithm 1: Pseudo-code of tile-pair list construction
1 TraverseEpipolarTile(tri, tilecoord y)
2 // get leftmost and rightmost covered tile indices for both views
3 [Ls, Le] = CoveredTiles(tri,tilecoord y,Left)
4 [Rs, Re] = CoveredTiles(tri,tilecoord y,Right)
5 [ILs , ILe ] = InsertToTileList(tri,[Ls, Le],tilecoord y,Left)
6 [IRs , IRe ] = InsertToTileList(tri,[Rs, Re],tilecoord y,Right)
7 // only visible in one view, no tile pair
8 if [Ls, Le] is empty or [Rs, Re] is empty:
9 return;

10 // calculate PBs in tile boundaries
11 [TLs , TLe+1

] = TileBoundaryBarycentric([Ls, Le],tilecoord y)
12 [TRs , TRe+1

] = TileBoundaryBarycentric([Rs, Re],tilecoord y)
13 // calculate efficient measures
14 d = TLs+1

− TLs

15 compute [ELs , ELe+1
] [ERs , ERe+1

] as E = d · T
16 Li = Ls; Rj = Rs

17 while Li <= Le and Rj <= Re:
18 // insert to tile pair triangle list
19 if [ELi

, ELi+1
] overlap [ERj

, ERj+1
]:

20 InsertToTilePairList((Li,Rj ), (ILi
,IRj

))
21 // visit next tile pair
22 if Ei+1

L < Ej+1
R : i+=1;

23 else if Ei+1
L > Ej+1

R : j+=1;
24 else: i+=1; j+=1;

4.1 Triangle Binning and Tile Pair Construction

Similar to the tile-based rasterization, a triangle list called
triangle tile list is built for each tile. In addition, for each tile
pair, triangles are further binned into a list called triangle
tile pair list, storing triangles that overlap both tiles. Fig. 3
illustrates the data layout to store such two lists, and indexes
of triangles in the triangle buffer are first stored in the tile
list. Subsequently, indexes of triangles in the tile list are
stored in the tile pair list. Such a double index buffer allows
us to easily access the triangle tile list while processing the
triangle tile pair list.

To bin triangles into these two lists, triangles are pro-
cessed individually. Given one triangle, all tiles at two views
that the triangle covers is computed, and then tile pairs from
these tiles are constructed. Note that only two tiles sharing
the same portion of geometry are a valid tile pair, meaning
that only tiles having same vertical coordinates could be
grouped into tile pairs. To distinguish between scanline and
tile, we will call these tiles are at same epipolar tile. There-
fore, the process per triangle and per epipolar tile could be
parallelized. Whether two tiles share the same portion of a
triangle is based on the test result of their overlaps in the
triangle’s object space. Specifically, the perspective-correct
barycentric coordinates (PBs) are used and the tile-based
multi-view traversal algorithm proposed by Hasselgren and
Akenine-Möller [2] is adapted. The original tile-based multi-
view traversal algorithm is used to sort the order of rasteri-
zation of tiles, thereby sorting all texture accesses to improve
texture cache performance. However, the proposed method
in this work uses the order of tiles and finds tiles sharing
the same portion of geometry (i.e., the overlaps of tiles in
the PB space). The key difference between the two methods
is that the proposed method exploits the the coherence of
shading in stereo view space defined on the entire scene,
while what the previous method exploits the coherence of
shading in the PB space defined on each triangle.

Alg. 1 shows the pseudo-code to construct the tile-pair
list, and an illustrative example is given in Fig. 4. Alg. 1

Tile Li Tile Li+1 Tile Rj Tile Rj+1 PB space

𝑇𝑅𝑗 𝑇𝐿𝑖+1𝑇𝑅𝑗+1𝑇𝐿𝑖+2
𝑇𝑅𝑗+2

𝑑 = 𝑇𝐿𝑖+1 − 𝑇𝐿𝑖

𝑇𝐿𝑖

Fig. 4: An example showing the triangle in screen space and its
overlapping tiles in PB space. In this case, total three tile-pairs are
created (Li,Rj), (Li+1,Rj) and (Li+1,Rj+1)

first computes all the covered tiles along this epipolar tile,
and add them into corresponding tile lists of views (lines
3-6), where indices of tiles in the tile lists, [ILs

, ILe
] and

[IRs
, IRe

], are stored for constructing tile pair list. Then, for
each tile, left and right boundary points are chosen at the
center epipolar line as reference points (the colored dots in
Fig. 4), and their PBs, TLi

and TLi+1
are then computed

(lines 11-12), where L or R indicate the left or right view and
i and j are the tile indices. Using reference points, the PB
traversal direction d is computed along the center epipolar
line. Note that tiles at two views share the same epipolar
line. Therefore, the direction can be computed from only
one tile, i.e., the left tile in our algorithm (line 14). Using d,
the efficiency measures of reference points are calculated as
E = d · T (line 15).

If this triangle is only visible to one view, no tile pair is
constructed (lines 8-9). Otherwise, the proposed algorithm
iteratively visits tiles from left to right. Also, in the PB
space, tiles from both views can be sorted according to
the efficiency measures, where overlaps of tiles only occur
between adjacent tiles. Therefore, the efficiency measure of
tiles and pair overlapped left and right tiles in the PB space
are incrementally iterated (lines 19-24) and this procedure
ends when all visible tiles are visited (line 17).

4.2 Scheduling Using Epipolar Geometry

Once all tile pairs are obtained, the rasterization of triangles
on these tile pairs is then scheduled. The tile pair-based
rasterization is performed in parallel at different epipolar
tiles. For simplicity of exposition, one epipolar tile is used
as an example to describe the scheduling approach and the
tile pairs are processed from left to right by default. At one
epipolar tile, if two tile pairs are not neighbor tile-pairs, the
shadings at these two tile-pairs probably cannot be reused
because no geometry continuity exists among these tiles.
Therefore, to explore the consistent geometry surfaces, we
design a two-step algorithm to first finds all neighboring
tile pairs, and then uses the neighboring order to schedule
rasterization of these tile pairs.

The first step scans all tile pairs at one epipolar tile from
left to right. We start with the leftmost tile pair in the left
view, which is denoted as (Ls, Rs). It is marked as the start
tile-pair of one sequence of neighboring tile pairs, and it
is used as a seed to trigger the search of neighboring tile
pairs. For each seed, its neighboring tile pairs are fetched
by the monotonously increasing index of tiles at two views.
For example, (Ls+1, Rs), (Ls+1, Rs+1), and (Ls, Rs+1) are
neighboring tile-pairs of the tile pair (Ls, Rs), and whether
these neighboring tile pairs exist is checked. If any of these
neighboring tile pairs are valid tile pairs, they are added to
the sequence and marked as seeds to continue the search of
neighboring tile pairs. If none of the neighboring tile pairs
exist, then geometry continuity is absent at neighboring tile
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Sequence 1:

(L9, R2)→(L10, R2)→(L10, R3)→(L9, R3)→(L11, R3)→(L11, R4)

→(L10, R4)→(L10, R5)→(L11, R5)→(L11, R6)→(L10, R6)→End

Sequence 2:

(L11, R1)→(L12, R1)→(L12, R2)→(L11, R2) →End

Tiles of View L … L6 L7 L8 L9 L10 L11 L12

Tiles of View R R1 R2 R3 R4 R5 R6 R7 …

CRCL

Fig. 5: An example of tile pair scheduling using epipolar geometry.
Two tile pair neighboring sequences are explored and used to
schedule rasterization and shading of tile pairs.

pairs, the search from this tile pair is stopped, and the search
is restarted from another seed. The search is performed in
a depth-first manner. Once all tile pairs of this sequences
of neighboring tile pairs are collected, then another round
of searching for other sequences of neighboring tile-pairs
is started by selecting the leftmost tile-pair in the left view
that has not been processed yet. Fig. 5 shows an example
of two sequences of neighboring tile-pairs that have been
constructed by the proposed algorithm. The sequence of
neighboring tile pairs preserves the continuity of geometry
surface, and a depth-first search is used instead of a bread-
first search to sort the neighboring tile-pairs in good order
even with a complex geometry surface. As shown in Fig. 5,
the order of sequence 2 of neighboring tile pairs reflects the
local continuity of geometry surface well, even in a scene
with multiple layers of geometry surfaces.

Once the sequences of neighboring tile pairs are ob-
tained, naive scheduling can be performed by iteratively
processing all sequences as well as sequentially rasterizing
individual tile pairs in sequence one by one. However, in
the configuration of stereo views, the disparity constraint
can further help accelerate rasterization and shading by
combining with depth related optimizations. Specifically,
the larger index of tile at the right view indicates the larger
disparity with less scene depth. Also, in the first step, the
leftmost unprocessed tile pair was always used to construct
a sequence. Thus, the first tile pair of each sequence was
sorted by the index of tile at the right view, and the neigh-
boring tile pairs were scheduled under such an order where
such an order approximately reveals depths of tile pairs in
the sequence. The rasterization of tile pairs with less depths
first, usually bring considerable performance gain when
enabling depth related optimizations, such as hierarchy-z
culling and early-z tests and these optimization techniques
are common in modern hardware. Section 6.3 shows the
benefits of enabling the scheduling optimization using such
a disparity constraint.

4.3 Stereo Rasterization

When rasterizing triangles of one tile pair, rasterizations
are simultaneously performed at two tiles, and all samples
are outputted to our multi-rate shading stage. To avoid re-
rasterizing triangles multiple times, once a triangle is first
rasterized, this triangle in the triangle tile list is tagged by
simply signing the index of this triangle to negative.

5 MULTI-RATE SHADING

Once rasterized samples of triangles are obtained from the
rasterization stage, we introduce our multi-rate shading
stage that enables adaptive, multi-rate shading on these
samples. Specifically, the shading is performed in image
space, and the stage is separated into three steps: coarse,
cache query and fine fragment steps.

As shown in Fig. 6, given a triangle-screen coverage,
a block of four coarse fragments is emitted for shading
(shown in blue), where each coarse fragment covers 2 × 2
or 4 × 4-pixel regions. A cache query is always performed
before the invocation of the coarse fragment shader. If the
query is missed, a coarse fragment shader is executed for
coarse shading results (Fig. 6(a)). If reusable coarse shading
results are queried at the same view, then they are directly
resampled to fine fragment shading sample positions and
combined with per-pixel texture in fine fragments to gen-
erate final shading results (Fig. 6(b)). If the queried results
are not at the same view, then the cached values are first
interpolated to coarse fragment sample positions at this
view and then resampled to fine fragments (Fig. 6(c)).

The following sections describe the on-chip cache and its
queries, introduce our cache reuse shader, and show how to
use such a shader to reuse cached shading results.

5.1 Cache Queries

The storage and query of the on-chip cache share the con-
cepts of cache design in AMFS [10] that a coarse fragment
quad can be described by a quantized shading resolution n
and the coarse fragment index q. In our case, all caching and
querying of the coarse fragments are performed on image
space instead of patch space, and we add an extra view
flag to distinguish left and right views. Specifically, a hash
function is used to index the coarse fragment, and it uses
the following key:

key = h(q,n, v) (1)
where h is an appropriately chosen hash function, and

v represents the left or right view. Based on the selected
shading rate, n is quantized to the power-of-two, e.g., 2× 2
or 4 × 4, and q is the effective screen space position of
that quad. Fig. 6 shows three different cases of our cache
query. In Fig. 6(a), when one triangle (red one) is rasterized
and coarse fragments are emitted, the key is first generated
and queried at the coarse fragments’ own view (left view
in this case) and then it is queried at the other view if the
first query is missed. In this case, where both views return
cache misses, the coarse fragment shader is invoked and the
resultant shading results are updated to cache. In Fig. 6(b),
when the query returns a cache hit at the local view, the
execution of coarse fragment shader is skipped, but the
reuse shader is executed to test whether the cached shading
values can be re-sampled to fine signals. In Fig. 6(c), where
the cache hit is from the other view, we then project and
interpolate coarse fragments from the cached values. Note
that a coarse fragment represents fine fragments in 2 × 2
or 4 × 4 quad. After the projection, such a rectangle quad
is usually distorted to a parallelogram p. To query such a
parallelogram, like AMFS, we also quantize the extent of
p to the power-of-two to ensure limited grid resolutions.
Specifically, we quantize n by the projected pixel footprint
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Fig. 6: Illustration of multi-rate shading process at different cases. (a) After one triangle is rasterized, four coarse fragments are emitted
for shading. These coarse fragments are first queried on cache. If a cache miss occurs on both left and right views, then the coarse
fragment shader is executed and resampled to fine fragments. (b) If a cache hit occurs at the local view (left view in this case), then the
cache reuse shader is executed. If it returns true, then the cached values are reused for fine fragments. (c) If a cache hit occurs at the
other view, then the cached values are first interpolated to the local view and then processed for fine fragments.

Algorithm 2: An example of cache reuse shader
struct Coarse In{ float3 norm, pos; }
struct Coarse Out{ float diff, spec, rdotl; bool refine flag; }
uniform float3 eye pos[2], light dir;
bool reuse(Coarse In in, Coarse out out,
int query view id,int cache view id){

// evaluate whether cached value can be reused or not
if(len(in.pos − CachedIN.pos) > THRESHOLD0) return false;
if(len(in.norm − CachedIN.norm) > THRESHOLD1) return false;
// cross view check
if( cache view id != query view id){

float3 view = eye pos[query view id] − in.pos;
float rdotl = dot(reflect(view,in.norm),light dir);
if(abs(rdotl − CachedOUT.rdotl)> THRESHOLD2) return false;
}
out = CachedOUT;
return true;}

px as n = 1 << log2(px). The projected size is only
quantized at the x-axis because the distortion only exits
along x. Fig. 6(c) shows an example of coarse fragment
projection and query. The coarse fragment position may not
be perfectly aligned with the cached fragments. Therefore,
the inputs of cached coarse quad are bilinearly interpolated
to align them with the query coarse quad.

Cache data is stored on a fast-on chip memory and
operated similar to that proposed by Ragan Kelly et al. [12].
The least recently used cached data is evicted, when the
cache is full. In the implementation, a fixed size on-chip
shading cache is pre-allocated for each epipolar tile. For each
epipolar tile, the cache is only cleared when a neighboring
tile-pair sequence is fully processed, because all the shading
coherences along this sequence are no longer used.

5.2 Cache Reuse Shader

One issue remains before the queried shading result is
used. Specifically, many distinctly different surfaces are
mapped on the same pixel region. For example, the surface
in (L11,R1) and (L11,R4) in Fig. 5 both map to tile L11,
but the shading results should not be reused among them.
Thus, after every successful query, a cache reuse shader is
used to test whether the shading results of two surfaces are
reusable. Our cache reuse shader is designed on the basis of
an observation that for certain shading effects (e.g., diffuse
and specular lighting and shadows), if the outputs of coarse
fragments can be reused across other coarse fragments,
then the inputs to these fragment shaders (e.g., fragment

sample positions and triangle attributes) should be similar.
Thus, the differences of inputs of fragment shaders could
be used to predict the similarity of outputs, and outputs
can be reused when inputs are similar. Such a frequency
check shader bears some similarities to the merge function
proposed by Fatahalian et al. [20], but the execution of
our shader does not require adjacent information of the
geometry; thus, the test can be performed in more general
cases, such as shading reuse for different meshes or views.

Alg. 2 lists an example code used. We evaluate whether
the lighting computation can be reused by comparing the
input of positions and normals, as well as reflected lighting
direction at two views. For each executed coarse fragment,
the input and output are stored in the cache as CachedIN
and CachedOUT, respectively. Once a cache query from a
new coarse fragment is triggered, the cache reuse shader
is executed to compare the inputs of this new coarse frag-
ment (i.e., position, normal, and reflected lighting direction),
with cached inputs. If the cache reuse query passes, then
the cached outputs of coarse fragments are reused; thus,
the actual computations of the coarse fragment shader are
saved. However, if the test fails, this shader returns false to
allow the actual computations of coarse fragments.

Note that in our pipeline, coarse fragments are always
shaded in blocks of four to support interpolation and finite
difference calculations. Consequently, the actual computa-
tions of coarse shader are skipped only when all four coarse
fragments are reused. To handle the divergence of execu-
tions caused by cache query and reuse shader execution,
we adopted the same two-phase scheduling method that
has been used in several multi-rate shading papers [1], [10].
Specifically, coarse fragments having different reuse results
are sorted to different fragment processing queues. The
fragments that fail to reuse cached results are queued for
executing fine fragment shaders, and those coarse fragments
that can be reused are queued to interpolate shading values.

6 RESULTS

A CPU-based software simulator, adopted from the CPU
implementation of work [15] is implemented to evaluate
our proposed pipeline. The simulator runs shaders by using
SIMD instructions through an abstraction similar to that
of the Microsoft HLSL shading language. For coarse and
fine fragments, we use an interface similar to that proposed
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Arena Sponza Fairy Castle∗

#Tri 138K 265K 170K 1644K
Pixels/Tri 125 161 102 17

Tile 8×8
#Tile/Mem 48K/1.5 58K/2.7 58K/2.1 46K/5.1
#Tile-pair/Mem 61K/1.2 120K/1.9 75K/1.5 71K/3.5

Tile 16×16
#Tile/Mem 12K/0.8 14K/1.4 14K/1.1 11K/3.2
#Tile-pair/Mem 14K/0.6 24K/0.9 17K/0.7 16K/1.95

Tile 32×32
#Tile/Mem 3K/0.5 3.6K/0.9 3.6K/0.8 2.8K/2.3
#Tile-pair/Mem 3.3K/0.3 5K/0.5 4.1K/0.4 3.6K/1.36

TABLE 1: Statistics of four test scenes (Castle∗ is a tessellated
scene). Columns ”#Tile” and ”#Tile-pair” refer to the number of
tiles and tile pairs, respectively, with their storage cost (Mem in
megabytes) presented.

by He et al. [1]. Several rendering optimizations, such
as back-face culling, hierarchical z-culling and early-z test
techniques were also used.

The pipeline was tested on five scenes, namely, Arena
(Fig. 1) Sponza, Fairy, Castle (Fig. 10) and a small test scene
Ogre (Fig. 9) for various tessellation levels and methods.
The Arena scene includes a dragon with skinning animation
and the Castle scene is subdivided once. In these scenes,
different shading effects, such as diffuse and specular light-
ing [1], [10] and 5×5 PCF shadowing [1], are enabled. The
statistics of these four scenes are presented in Table 1. The
inter-camera distance is set at 70mm, as suggested by Ocu-
lus [37]. All the results are rendered at 2560×1440 resolution
(1280×1440 for each view) with a tile configuration of 16×16
pixels unless otherwise specified.

We first analyze the proposed scheduling algorithm. All
the memory reads/writes during rasterization and shad-
ing are reported and compared with the traditional sort-
middle renderer as well as the multi-view rasterization
framework [2]. The results of the proposed method were
compared with several multiple rate/frequency shading
methods, such as that of He et al. [1], AMFS [10], and Texel
shading [30]. Also the recommended DYNAMIC4×4 mode
is the default configuration in the coarse fragment stage,
and the static corner is the coarse sample position when
implementing our method and that of He et al. [1]. To com-
pare these methods fairly, we adopt the global cache based
shading in AMFS [10] and Texel shading [30] to use a local
cache like ours, and employ the same frequency detection
proposed in [1] (i.e., check surface flatness, reflection lobe
and shadow penumbra). In addition, we enable our tile pair-
based scheduling for rasterization while comparing these
methods. In this way, the differences of the resultant shading
rates of these methods are only from different shading reuse
frameworks. Except for the work of He et al. [1], which is
not a cache based method, all other methods are backed by a
24 KB fast on-chip shading cache that stores both the inputs
(16-bit floats) and the outputs of the coarse fragments (32-bit
floats).

The comparison of an entire 150-frame animation is
presented in the supplementary video. During these eval-
uations, the results of different cache and tile sizes, and
optimizations used in our method are studied.

6.1 Tile pair Scheduling

In this subsection, we first analyze the memory footprint of
our newly proposed tile pair-based scheduling and further
compare the bandwidth of our approach with those of the
traditional sort-middle rendering and the tiled multi-view
rasterization method [2].

Memory Footprint. To utilize the shading coherence
between two views, two types of lists are presented: tri-
angle tile list and triangle tile pair list. The latter is newly
proposed in our method, and the numbers and memory
footprints of these two types of lists at different tile sizes
for the four test scenes are presented in Tab. 1. Each entry
of triangle tile list and triangle tile pair list is represented
by a 32-bit unsigned int and a 16-bit short, respectively.
In most cases, the number of tile pairs is less than one
and a half of the number of tiles, except in the Sponza
scene with tile size of 8×8. This finding indicates that a
small tile size configuration in a scene with a high depth
complexity should be avoided. The numbers of tiles and tile
pairs decrease rapidly as the tile size increases.

Although the number of triangle tile pair lists is higher
than the number of triangle tile lists, the memory for storing
the former is less than that for the latter because the number
of triangles overlapping one tile pair is considerably less
than the number of triangles overlapping the entire tile. As
shown in Table 1, we only require 50% - 70% memory space
of triangle tile lists to store triangle tile pair lists, which is
negligible compared with other resources.

Bandwidth. Off-chip memory bandwidth is an impor-
tant criterion to realize a shading pipeline. To compare
the proposed scheduling method with previous methods,
such as the traditional sort-middle rendering and the tiled
multi-view rasterization method proposed by Hasselgren et
al. [2], we collect runtime memory usage by tracing shading
executions on per-pixel shading with diffuse texture and
shadow effect. The L1 cache system was extensively used
at various stages (e.g. vertex cache and depth/color/texture
cache) in our simulator, as it is a common practice. Data is
accessed with 256 bytes cache line. As suggested by Clar-
berg et al. [14], the relation of different system costs highly
depends on the specific hardware implementation, so dif-
ferent bandwidths are reported separately to better review
our design. Overall, four types of data buffers are involved
in our pipeline. Depth+Color includes the 32-bit depth buffer
and the RGBA float color buffer with read/write accesses.
The bandwidth of depth and color is compressed four times
and two times, respectively, as those proposed in the work
of Seiler et al. [38]. Indices buffer includes reading/writing
the triangle tile and triangle tile pair lists. The Triangle Data
refers to the bandwidth of triangle data used for triangle
rasterization, and the output vertex data generated by the
vertex shader. In the case studied in this work, the data
comprises eight floats (vertex position, vertex normal and
texture coordinate). Texture is the total amount of texture ac-
cesses during shading. The multi-view rasterization method
does not have Indices. The standard sort-middle shading also
requires four types of data buffers, but its bandwidth of
Indices does not include the bandwidth of reading triangle
tile pair lists.

Fig. 7 shows the results of experiments on different
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Fig. 7: Traditional sort-middle framework (Sort-M.), multi-view
rasterization method (M.View) proposed in [2] and our tile-pair
scheduling are tested on different configurations. Left: Arena
scene with fixed 16KB texture cache size. Right: Sponza scene
with 16×16 tile. Our tile pair-based shading always has a lower
memory bandwidth.
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Fig. 8: Compared with previous methods, our method consumes a
considerably lower memory bandwidth over the entire 150-frame
animation

configurations. Two key aspects are explored. In Fig. 7(a),
under the same texture cache size (16KB), the effects of
different tile configurations are shown. Fig. 7(b) shows that
the bandwidth decreases with the increased cache size. It
should be noted that because our method requires rasteriz-
ing two views simultaneously, for all methods, the size of
depth and color cache are set to be able to hold two tiles
at the same time. Thus, when the tile size is 16×16, the
depth and color cache is 2KB and 8KB, respectively. Of all
the methods under different configurations, our tile pair-
based approach consumes the least memory bandwidth.
The traditional sort-middle method (Sort-M.) requires the
least amount for depth/color read/write, but the cache miss
rate for accessing texture is high, and the bin-spread is
an important issue when the tile is small. In the work of
Hasselgren et al. [2] (M.View), they scheduled the raster-
ization along the texture access order to reduce much of
the bandwidth needed for accessing texture. However, their
method negatively affects the locality of the framebuffer.
Our method requires slightly greater bandwidth to access
the depth/color buffer. As it may visit some tiles multiple
times. It does not follow the texture access order strictly,
so the texture bandwidth is slightly larger than that in [2].
However, our proposed tile pair scheduling has the benefits
of both methods, achieving the least bandwidth at all tile
configurations. In addition, at a fixed size of texture cache,
when the tile size increases, our method closely approaches
to traditional sort-middle method, as shown in the 64×64
configuration. Larger texture cache can be beneficial for our
method. In Fig. 7(b), when the texture cache size increases,
the difference of the texture cache miss rate between our
method and that presented by Hasselgren et al. [2] is greatly
reduced. Furthermore, Fig. 8 shows that the performance of
our method is stable from frame-to-frame and consistently
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Fig. 9: The Ogre scene at three levels of PN-triangle [39] subdi-
vision. Similar to two previous methods, Texel shading [30] and
AMFS [10], the shading rate of our method does not increase
significantly with more levels of subdivision.

outperforms previous methods.

6.2 Multi-rate shading

In this subsection, we compare several multi-rate ap-
proaches, such as that of He et al. [1], AMFS [10], and Texel
shading [30] both at shading rates and image quality.

Shading Rates. Comparison of multi-rate shading with
traditional per-pixel shading shows that all multi-rate meth-
ods remarkably reduce the shading cost by reusing low-
frequency shading results, such as shadow umbra and dif-
fuse regions. However, in the work of He et al. [1], when two
triangles covere the same region, two executions of coarse
shader quads are invoked, as shown in the heat map where
higher shading costs are noted at the boundaries of triangles
than on the inside. As shown in Fig. 9, the shading costs of
He et al.’s method increase with decreased average pixel
coverage of a triangle. The results in Fig. 1, 9, and 10 show
that our scheme can further reuse shading across triangles
and views, thereby allowing us to achieve a considerably
lower shading cost (30%∼40% costs compared with that
in per-pixel shading, and less than two-thirds of the cost
of the method proposed by He et al. [1] in the Sponza
scene). Fig. 1(b) shows a detailed breakdown of instructions
executed at different stages (”FineInst.”,”CoarseInst” and
”ReuseInst.” represent the instructions executed at per-pixel
shading, 4×4 or 2×2 coarse shading, and our cache reuse
shader execution, respectively). By executing the simple
cache reuse shader, we can reuse more than half of the coarse
shading result, thereby greatly reducing the shading cost.

We also conduct experiments to compare our method
with the multi-rate shading approaches in other spaces,
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Left View
Per-Pixel (100%)
SSIM 100%

He et al. (43.9%)
SSIM 99.992%

Our (28.9%)
SSIM 99.989%

Right View Per-Pixel (100%)
SSIM 100%

He et al. (44.3%)
SSIM 99.992%

Our (29.2%)
SSIM 99.985%

(a) Sponza

Left View
Per-Pixel (100%)
SSIM 100%

He et al. (57.9%)
SSIM 99.998%

Our (42.2%)
SSIM 99.989%

Right View Per-Pixel (100%)
SSIM 100%

He et al. (58.9%)
SSIM 99.998%

Our (41.2%)
SSIM 99.988%

(b) Fairy

Per-Pixel L. (100%) Per-Pixel R. (100%) He et al. L. (62.5%) He et al. R. (61.2%) AMFS L. (33.1%) AMFS R. (29.1%) Our L. (27.6%) Our R. (27.0%)
SSIM 100% SSIM 100% SSIM 99.996% SSIM 99.996% SSIM 99.98% SSIM 99.98% SSIM 99.96% SSIM 99.96%.

(c) Castle

Fig. 10: Comparison of shading methods in Sponza, Fairy and Castle scenes, relative shading cost is shown in brackets.
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Fig. 11: Comparison of relative shading costs of several multi-rate
shading methods over 150-frame sequence. The shading cost of
tile-based shading is set as 100%.

namely, the patch space used in AMFS [10] and the texture
space in Texel shading [30] (we only compare Texel shading
in the Ogre model because this method requires a non-
overlapping texture parameterization, which is not attain-
able in other scenes). These two methods perform shading
execution and cache query at spaces that are independent of
view and can span multiple triangles. Thus, both methods
scale well when tessellation level increase. The Texel shad-
ing performs worse because it tends to incorrectly estimate
the frequency at regions with high parameterization distor-
tion such as surfaces with high curvatures (around Ogre’s
eye and lips). The shading rate of our method is better than
that of AMFS at first level because we can reuse shading

results across patch boundaries. However, when triangles
became increasingly smaller, the additional overhead of our
cache reuse test increase the shading cost slightly. The Castle
scene in Fig. 10(c) shows a case in which, compared with
AMFS [10], the ability to reuse across patches can further re-
duce approximately 4% of the shading cost. Compared with
these two methods, our approach is more general because it
does not have additional requirements regarding the input
scene, e.g., tessellation patch or specific parameterization.
Fig. 11 shows that the shading costs using our algorithms
are stable and consistently lower than that of other methods.

Image Quality. Based on the SSIM errors, all the multi-
rate methods preserve very high visual quality (over 99.95%
visual similarity). Zoomed insets of different methods are
presented in the top row of Fig. 10(c). To better distinguish
between methods, we only show the lighting result and
adjust the gamma. The error of the multi-rate method [1] is
barely noticeable compared with the per-pixel result (thus,
the per-pixel result was omitted). Our method can reuse
shading across neighboring triangles. In this highly curved
sphere, blocks artifacts with our technique are due to we
reuse the extrapolation outside previous triangle bound-
aries. The AMFS has inconsistent shading when reusing
shading across the triangle in the patch. Besides, the specu-
lar highlight in the right view of AMFS is distorted since it
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Fig. 12: We test our method with different shading cache sizes
under a fixed 16×16 tile configuration (Left, Fairy scene). A 24
KB cache is usually sufficient to cache both the shading input and
output for reuse shading across triangles and views. Additionally,
we found that under fixed 24KB cache size (Right, Sponza scene),
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also increases, thereby stressing the fixed size shading cache and
reducing the shading reuse ratio. However, the impact is still
small.
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Fig. 13: Comparison with or without utilizing disparity con-
straint in tile pair scheduling.

directly uses the result of the left view. Our method use the
cross view check code (Alg. 2) to avoid the distortion caused
by reusing the specular highlight.

6.3 Optimization with Disparity Constraint

In our method, several epipolar geometric constraints are
utilized to guide the rasterization and shading of tile pairs.
The proposed optimization with disparity can provide ad-
ditional benefits when depth complexity is high. In Fig. 13,
a visualized per-pixel shading cost at one frame with and
without such an optimization is presented. The results show
that such an optimization of disparity constraint can further
reduce shading costs and memory bandwidth. For that one
frame, shading cost is reduced from 22% to 19.5%, and
memory bandwidth is saved 20%.

7 CONCLUSION AND FUTURE WORK

We present a novel shading pipeline for stereo render-
ing that can effectively reduce shading costs and achieve
less memory bandwidth. Several novel concepts have been
presented and validated in this paper. First, the newly
introduced tile pair shading utilizes epipolar geometry to
schedule tile pairs, which consider stereo views at rasteriz-
ing triangles, thereby better utilizing geometric correspon-
dences among triangles and between views. Second, multi-
rate shading performed among tiles and triangles efficiently
explores low-frequency shading signals and reduces shad-
ing cost. All the aforementioned improvements on runtime
data bandwidth, memory storage, and computational per-
formance are essential for modern graphics hardware. We
believe that the proposed tile pair-based stereo shading
pipeline will inspire future graphics hardware for stereo
rendering.

Several directions are also worthy of further investiga-
tion. First, it would be interesting to extend our current
shading pipeline to general multi-view shading. In our
current implementation, we consider only stereo views, in
which epipolar lines are naturally aligned. For multiple
views, epipolar geometry still holds for two or more views,
in which camera centers are at a coplane. Views can be
possibly rectified to share epipolar lines; however, this
process will cause distortions of pixels and tiles. Solving
these distortions and extending the tile pair-based multi-rate
shading pipeline to multiple views are interesting future
topics.

Second, the use of tile pairs in our shading pipeline
partitions the entire scene into spatial grids through tile
pair frustums. However, such partitioning is irregular and
independent of scene complexity. Therefore, the number of
triangles in each tile pair may vary dramatically across a
scene. Occasionally, this scenario may become critical for
the parallelism of rasterization and shading computation.
An improved partitioning in geometric space, instead of by
tile pairs, is another interesting future direction for stereo or
multi-view rendering.

Third, our approach is designed by improving the ras-
terization and shading locality through tile pairs in forward
rendering pipeline. However, the idea also has potential
to be applied in deferred rendering to reduce the cost of
stages with geometry rasterization and shading. For exam-
ple, our tile pair-based rasterization can be used to reduce
the memory bandwidth in generating stereo G-buffers. In
addition, the scheme of reusing cross view shading can also
be adopted for screen space shading pass. However, owing
to the difference between forward and deferred rendering,
we regard it as the extension of our framework as future
work.

Finally, another interesting direction is to combine our
pipeline with existing automatic shader simplification meth-
ods [26], [27] that enable a system to automatically de-
compose shaders or compute pixels into coarse and fine
fragments to fully utilize the proposed multi-rate shading.
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Möller, “Amfs: adaptive multi-frequency shading for future
graphics processors,” ACM Transactions on Graphics (TOG), vol. 33,
no. 4, p. 141, 2014.

[11] K. Vaidyanathan, M. Salvi, R. Toth, T. Foley, T. Akenine-Möller,
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