Eurographics Symposium on Rendering 2018

T. Hachisuka and W. Jakob

(Guest

View 1

View 2

View 3

Editors)

Runtime Shader Simplification via Instant Search in Reduced
Optimization Space

Yazhen Yuan, Rui WangT, Tianlei Hu, Hujun Bao

State Key Lab of CAD&CG, Zhejiang University
tCorresponding author: rwang @cad.zju.edu.cn

View 1 View2 | View 3
1
1

2 [} s ——

—Original shader
2 —Our selected shader
—Offline simplified shader

S

Rendering time (ms)
ENY

(a) Original Shader 11.1ms (c) Offline Simplified Shader 6.8ms

S r

Jgr

- 0

Volume 37 (2018), Number 4

0 3000

6000
Frames

9000

=

/

vAd
4 4

(d) Original Shader 11.8ms (e) Our Selected Shader 4.3ms (f) Offline Simplified Shader 7.4ms g
U/ < N\ /) &
- - £
& g 0.01 |*
F ~ s
(ﬁ) b ’\); (..} —Error threshold

—Our selected shader
—Offline simplified shader

0 3000 6000
Frames

9000

(g) Original Shader 12ms (h) Ours Selected Shader 6.94ms (i) Offline Simplified Shader 7.9ms

Figure 1: Result comparison of the original HBAO shader, our runtime selected shader and the offline simplified shader. In this demo, our
system automatically searches optimal simplified shaders under a tolerated visual error threshold, and achieves 1.6 to 2.5 times speedup
comparing to the original shader. Moreover, compared with the traditional offline approach, our method has better performance and quality
at almost all views. This proves that our system is capable of better adapting to the runtime context and producing instant optimal results.

Abstract

Traditional automatic shader simplification simplifies shaders in an offline process, which is typically carried out in a context-
oblivious manner or with the use of some example contexts, e.g., certain hardware platforms, scenes, and uniform parameters,
etc. As a result, these pre-simplified shaders may fail at adapting to runtime changes of the rendering context that were not con-
sidered in the simplification process. In this paper, we propose a new automatic shader simplification technique, which explores
two key aspects of a runtime simplification framework: the optimization space and the instant search for optimal simplified
shaders with runtime context. The proposed technique still requires a preprocess stage to process the original shader. However,
instead of directly computing optimal simplified shaders, the proposed preprocess generates a reduced shader optimization
space. In particular, two heuristic estimates of the quality and performance of simplified shaders are presented to group similar
variants into representative ones, which serve as basic graph nodes of the simplification dependency graph (SDG), a new repre-
sentation of the optimization space. At the runtime simplification stage, a parallel discrete optimization algorithm is employed
to instantly search in the SDG for optimal simplified shaders. New data-driven cost models are proposed to predict the runtime
quality and performance of simplified shaders on the basis of data collected during runtime. Results show that the selected
simplifications of complex shaders achieve 1.6 to 2.5 times speedup and still retain high rendering quality.

CCS Concepts
eComputing methodologies — Shader simplification, Runtime optimization;

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

1. Introduction

Modern flexible rendering pipelines allow programmers to cus-
tomize their own computations in shaders and obtain diverse ef-
fects. With the increasing complexity of shader code and the wide
use of graph-based shader authoring tools, the simplification of
shader has become more and more important and challenging. Sev-
eral approaches have been proposed and developed to automate the
entire process [OKS03, Pel05, SALY*08, SAMWLI11, WYY*14,
HFTF15]. However, most of these methods simplify shaders in
a preprocess, which has several limitations. First, the preprocess
lacks an actual runtime context, e.g., scenes, positions of lights or
cameras, etc. Although people usually use some example contexts
or average all possible values of parameters to create a general con-
text, the adaptability to the change of runtime context is compro-
mised (Fig. 1). Second, code that performs well on one type of
graphics card often faces bottlenecks on another. In this case, the
simplification process must be repeated to port it to new hardware.
Given a large number of hardware customized shaders in current
AAA games (Over 18000 in Bungie’s Destiny [HFTF15]), opti-
mizing all of them for various hardware platforms in a preprocess
is impractical.

To address these limitations and inspired by the idea of recently
developed online auto-tuning work [BHT*10,JTD*12], in this pa-
per, we explore the problem of runtime shader simplification and
develop a system. The proposed system is able to optimize the
shader according to the present scenes or parameters, and instantly
selects an optimal simplified shader for the current context. Al-
though our system is only capable of optimizing one or two of the
most time-consuming shaders, the reduced overall computational
costs and resources have a better chance to be utilized for perform-
ing other tasks, such as enhancing quality of visual effects or im-
proving accuracy of simulation.

Two main challenges are addressed to bring such a system into
practice: 1) The enormous number of all possible simplified vari-
ants form an extremely large optimization space. 2) The runtime
optimization of simplified shaders should be performed fast enough
to satisfy users’ interactive requirements, implying simplifying
shaders in tens or hundreds of milliseconds. For these challenges,
we propose a two-stage simplification scheme. The first stage in-
volves a reduced optimization space containing a set of represen-
tative simplified shader variants, which can be managed and used
for runtime search. Here, a preprocess is employed to select these
shader variants. We present a new representation called the simpli-
fication dependency graph (SDG) to organize these representative
simplified shader variants, as well as a specific clustering algorithm
to construct it. Two heuristic estimates of quality and performance
are presented in a data-oblivious manner to map each simplified
shader variant to a high-dimensional space. In such a space, simi-
lar simplified shaders are grouped to form a compact optimization
space. The second stage is the runtime optimization process. A par-
allel discrete optimization algorithm is developed to find optimal
simplified shaders from the reduced optimization space. New data-
driven cost models that consider the costs of simplified shaders be-
ing already evaluated are presented to predict the quality and per-
formance of unevaluated simplified shaders. The results show that
our system is capable of efficiently optimizing shaders on different
scenes with different runtime parameters from scratch.

The contributions of this work are as follows:

e The first automatic shader simplification system that selects the
optimal simplified shader with runtime context fast and effi-
ciently.

e A new representation, simplification dependency graph (SDG),
to organize simplified shaders and form the optimization space.

e Novel quality and performance cost models to predict costs of
simplified shaders in preprocess and at runtime.

e A runtime multi-objectives search algorithm to find the optimal
simplified shaders.

2. Related Work

Code Auto-Tuning Auto-tuning tools help programmers auto-
mate the tedious and error-prone process of tuning and porting
application code among different hardware architectures and plat-
forms. With the recent developments of hardware and software,
many studies have explored the automation of the process of tun-
ing the code for (parallel) computers [NTCS10]. Several domain-
specific auto-tuners such as ATLAS [WD98] for dense linear al-
gebra, OSKI [VDYO05] for sparse linear algebra, FFTW [FJO5]
and SPIRAL [XJJPO1] for signal processing, etc., have been suc-
cessful in producing highly-optimized architecture-specific code.
These successes have motivated a general interest in extending the
offline auto-tuning methodology to the online tuning framework.
Baskaran et al. [BHT*10] proposed a method to achieve the on-
line tuning of parallel program parameters (e.g., tile sizes). Ti-
wari and Hollingsworth [TH11] presented an auto-tuning frame-
work to compile code and tune parameters at runtime for parallel
programs. Jordan et al. [JTD*12] developed a multi-objective au-
totuning framework to balance efficiency and speedup.

Generally, the automatic simplification of shaders is a domain-
specific auto-tuning technique. However, compared with traditional
auto-tuning methods, shader simplification has its specific require-
ments. First, shader simplification seeks to exploit the tradeoffs
between performance and visual quality. Therefore, it is not a
variable-accuracy auto-tuner, whereas many traditional auto-tuners
are very sensitive to errors and only tune performance parameters,
e.g., tile sizes of parallel programs on multicores. Second, differ-
ent shader simplification rules usually result in a discrete optimiza-
tion space, whereas many auto-tuners entail a continuous parame-
ter space. Finally, shader simplification optimizes the computation
over rendering pipelines, thus requiring GPU-specific integration.
Hence, despite the availability of several open auto-tuning frame-
works [AKV*14,SBR*15] and online auto-tuners [BHT*10,TH11,
JTD*12], the shader simplification during runtime remains an open
problem.

Shader Simplification The pioneering work of shader simpli-
fication [OKS03] was proposed to simplify procedural shaders.
Inspired by this work, Pellacini [Pel05] presented a method to
automatically generate a sequence of simplified shaders by er-
ror analysis of a fixed set of expression rules. Sitthi-Amorn et
al. [SAMWLI11] introduced the genetic programming into auto-
matic shader simplification to search for the Pareto-optimal sim-
plified shaders that best represent the tradeoffs between rendering
time and quality. Wang et al. [WYY*14] proposed new simplifica-
tion rules that treat the shader simplification as signal approxima-

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

tion on surfaces to simplify shaders across multiple shader stages.
However, these methods perform optimization in an offline scheme
and are thus unable to optimally adapt to the runtime changes of
context. Additionally, such an offline preprocess is usually time
consuming, espeically when the scene features a large domain of
uniform parameters, e.g., a scene with many possible viewports or
light directions. In these cases, existing methods need to evaluate
one simplified shader at every viewport and direction, and aver-
age the performance and quality errors. In contrast, our proposed
approach only optimizes for the instant parameters, therefore is
faster and more efficient, and the simplified shader is optimal for
the present context.

Scherzer et al. [SJWO07] and Sitthi-amorn et al. [SALY*08] ex-
plored the idea of utilizing temporal coherence between different
frames. A cache-based re-projection strategy was used to simplify
shaders. However, this method still requires hours of training the
error and performance model for each context.

Dorn et al. [DBLWI15] presented a new method that au-
tomatically generates band-limited procedural shaders. Yang et
al. [YB18] extended this idea to smooth procedural shader with
mean-variance of the program. These methods only focus on ana-
lyzing and transforming a set of analytic expressions to improve a
specific visual property (low sampling rate), hence they can not be
applied to general shader simplification.

He et al. [HFTF15] proposed a system that automatically gener-
ates level-of-detail (LOD) shaders. They also introduced a heuris-
tic model to estimate performance and a fast search algorithm to
reduce the simplification process from hours to minutes. We ex-
tend their work from offline simplification to simplification during
runtime by reducing the optimization time from minutes to tens
of milliseconds. This significant improvement in optimization time
results in a new shader simplification framework that comprises
different cost models and a search algorithm.

He et al. [HFF16] proposed another system for rapid exploration
of shader optimization choices, which virtualizes the shader and
the rendering engine. In this way, it can move the computation
at different rendering stages and simplify the shader. Their recent
work [HFH* 17] proposed a new modular shader language designed
to update parameters more efficiently. The goals of both of these
works are different with our interest that we seek the optimal shader
variant under changing rendering context.

3. Overview

This section first briefly describes the problem of automatic shader
simplification, and then provides an overview of the proposed so-
lution.

3.1. Problem Definition

Traditional automatic shader simplification is an offline process to
generate a sequence of increasingly simplified shader variants fj.
The process starts from an original shader fj, where each step in
the sequence has a decreasing rendering quality between fy and
fx» as well as a decreasing computation cost between f;_ and fj.
While using one shader variant f; to render a particular scene, the
computation cost is usually measured by the rendering time ¢, and
the rendering quality can be measured by errors defined at pixels as

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

the following:
eva) = [[I fotvw) = filv) fadudy (D)
xy

where x and y are the integer pixel coordinates, v is a set of input ge-
ometry primitives with attributes, u is a set of uniform parameters
(such as camera position and light position), and || - || is the norm,
(i.e., L* norm used in this paper). Based on the measured rendering
time and image error, shader simplification is formulated as a multi-
objective problem in the two-dimensional cost space (g,), and
seeks a Pareto-optimal solution [SAMWL11, WYY * 14, HFTF15].
To consider the variations of geometry primitives and uniform pa-
rameters, offline shader simplification usually integrates the error
over the domain of each uniform parameter, and averages over dif-
ferent geometry models. As a result, the Pareto-optimal shaders op-
timized by these offline approaches are only averagely optimal with
respect to all the uniform parameters and different geometry mod-
els, but not instantly optimal to the present context. In addition, the
shader may fail in some general cases, such as, changes in the ren-
dering context that were not considered during offline optimization.

The proposed simplification framework, instead, seeks to find
optimal shader simultaneously in response to changes of rendering
context. The users sets an error tolerance of rendering quality as
€max. Theoretically, the optimization problem can be formulated as
the following:

Sopt = argmfint(v,u) s.t. €(v,u) < emax, ?2)

where fop: is the optimal shader that produces less error than €max
but runs the fastest in terms of the runtime context of geometry v
and the uniform parameters u.

3.2. System Design

Designing a practical shader simplification system that optimizes
the shader for current rendering context entails several challenges.
First, because the system computes during runtime, the optimiza-
tion process must be very fast to satisfy the interactive require-
ments of users. However, the number of shader variants for a
complete application can be enormous. Simplified shader variants
should be judiciously selected to keep the optimization time at a
manageable level. Second, given that shader simplification is car-
ried out in a two-dimension space, the search algorithm should be
very efficient to explore the space at runtime.

To solve these two challenges, we design a two-stage system.
The system takes an HLSL shader program as input, initially pre-
processes on it to construct an optimization space and then explores
in the space at runtime. Fig. 2 illustrates these two stages.

e Preprocess stage: process and prepare simplified shader variants
for runtime optimization, including parsing HLSL shader, op-
timizing the shader variants into a small set of representative
shader variants, compiling these shader representative variants,
and generating a simplification dependency graph.

e Runtime optimization stage: iteratively optimize the shader dur-
ing runtime, including monitoring runtime context changes,
searching the candidates for optimal shader variant, evaluating
these candidate shader variants and selecting the optimal one.

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

(Shader)
v
Preprocess
Applying simplification | o Clustering shader
rules variants
A
| Estimating quality and performance |
¥
(SDG) (C_Scene] ((Parameters]
[} i ¥
Runtime
Measured data
Runtime optimization I Rendering
Rendering request
¥
(Image)

Figure 2: System overview

4. Preprocess Stage

Various simplification rules have been proposed and introduced to
simplify the shader code. While applying these rules to a shader,
the number of simplified shader variants grows exponentially with
the number of instructions of the code. A brute-force approach to
search an optimal simplified shader from all of them at runtime
is, however, impractical. Therefore, we take a preprocess stage to
simplify the optimization space into an affordable scale that can be
efficiently managed and explored. This simplification mainly takes
three steps. First, the shader code is parsed to create its abstract syn-
tax tree (AST) and program dependency graph (PDG) [FOW87].
Then, simplification rules are applied to generate simplified shader
variants. Finally, these variants are clustered into representative
shader variants by two estimates, parameter influence and instruc-
tion cost, and organized into a new representation, the simplifica-
tion dependency graph. All the representative shader variants are
compiled into binary code for use at runtime.

4.1. Simplification Rules

Inspired by previous approaches, three types of simplification rules
were considered: the expression reduction rules modified from the
previous approach [Pel05], the shader code transformation rule, and
the surface subdivision rule [WYY™14].

Expression reduction is a type of effective and efficient rules that
eliminates algebraic operations. It has been used widely in sev-
eral shader simplification systems [Pel05, SALY*08, SAMWLI11,
HFTF15]. In this paper, we adopt three expression reduction rules
proposed by Pellacini [Pel05], but discard the rules requiring run-
time data and information, e.g., the average substitution rule. More
precisely, let us consider the binary operator a @ b, when both a
and b are expressions. We will have two simplified expressions,
a@®b — a and a@b — b. For loops from ¢, to c., we randomly
choose two values, i and j, and substitute the loops from ¢, +1i to
ce — j instead, where we ensure that ¢, +1i < c. — j.

Code transformation [WYY*14] moves the slice of one piece
of code computing on pixels to on vertices. This transformation
can be regarded as using a linear basis defined on vertices to ap-
proximate pixel-wise computations. The surface subdivision rule is
combined with the code transformation rule that tessellates trian-

gles into smaller pieces. Although the tessellation takes extra time,
tessellated triangles improve code transformation by providing a
denser domain to approximate the original computations on pixels.
Owing to the different tessellation levels, tessellation rule can gen-
erate a set of simplified shader variants with different computation
times and rendering qualities.

4.2. Constructing the Optimization Space

Once these rules are combined and applied to the AST and PDG of
the original shader, a collection of all simplified shader variants is
obtained. The next task is to select some representative variants to
represent all other variants and form the optimization space for the
runtime optimization.

Note that while we select these representative variants, the run-
time context is unavailable at this time. Therefore, the selection
is performed in a context-oblivious manner. We utilize the depen-
dence of code and simplification rules to obtain two heuristic esti-
mates of error and performance costs. These estimates map each
simplified shader variant to a high-dimensional space, in which
variants are clustered into groups, and organized into the SDG.
These steps are described in following sections.

4.2.1. Simplification Dependency Graph

The SDG is a directed acyclic graph where the root node is the orig-
inal shader, and each children node is a simplified shader variant.
We use a directed edge to represent the dependency of simplifica-
tion from one shader variant to another; specifically, one node A
having a directed edge to node B indicates that the shader variant
B is simplified from A by applying one rule on A. Fig. 3 shows the
SDG of an example shader. In the figure, the nodes directly linking
to the original shader are shader variants with only one simplifica-
tion rule. As more and more rules are applied to these nodes and
their children, the entire simplification space is represented in a
graph.

To better understand the dependence in the graph, let us con-
sider two statements, Sy and S, in Fig. 3, where Si: eye_dir = eye
- pos; and Sy: H = normalize(eye_dir + [_dir). Applying the trans-
formation rule to statement S, (Variant 2) will inevitably transform
statement S (Variant 1). In this case, the shader variant with the
transformation of S| will be the parent of the variants with the trans-
formation of S;. When the expression reduction rule is applied to
statement S, as H = normalize(l_dir) (Variant 9), S; is eliminated.
In this case, applying the expression reduction rule on S (Variant 7)
is seen as the parent of Variant 9. To bridge nodes that simplified by
different rules, we add sibling edges between two nodes that have
different rules applied on same expression/statement, take Variant
2, 8,9 as an example. The green nodes represent variants that are
generated by applying more than one simplification rule upon orig-
inal shader. For example, Variant 6 moves the statement S3: return
spec + diff; to vertex shader, and Variant 12 reduces the diffuse light
calculation, so Variant 16 only has specular lighting calculated in
the vertex shader.

4.2.2. Estimating Quality and Performance

Our goal is to reduce the number of variants and use only a small
set of representative ones to approximate the space of all variants.
Ideally, if these representative shader variants well represent other

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

N\
(O Original shader @ Code transformation 0)
© Expression reduction @) Combination of rules
¥ Parent to children

// Original Shader

float3 1_dir,eye;

float4 main(in float3 pos,in float3 N){
float3 eye_dir =eye - pos; S1
float3 H = normalize(eye_dir +1_dir); S2
float NdotH = saturate(dot(H, N));
float4 spec = 0.5f * pow(NdotH, 10.0f);
float4 diff = 0.5f* dot(N, L_dir);
return spec + diff;} S3

== Sibling

[simplified shader 12

float4 main(...){
+++ //computation of specular
return spec;}

// simplified shader 16
/I vertex shader code

float4 main(...){
«.. /[Computation of NdotH
float4 spec = 0.5 *pow(NdotH,10.0f);
return spec;}

/I fragment shader code

float4 main(in float3 spec){ 12: [0,

return spec;} 16:3

Figure 3: The simplification dependency graph

variants, then in the runtime optimization, the Pareto-optimal vari-
ants of the representative shader variants should be or be close to
the original Pareto-optimal variants in terms of quality and perfor-
mance space (g,¢). However, the quality and performance are un-
available at this time. Therefore, we need new metrics to predict the
actual rendering quality and performance. Two heuristic cost esti-
mates, namely parameter influence and instruction cost, are pro-
posed in this paper, to replace the actual costs, quality and perfor-
mance, of one shader variant. Note that these cost estimates are not
designed to accurately compute the actual quality or performance
of simplified shader variants, but only need to roughly reflect the
order of quality and performance in the cost space when we actu-
ally evaluate them with real data.

Parameter influence is designed to measure how much impact
the different simplification rules have on one shader variant with
respect to the inputs(including geometry attributes and uniform pa-
rameters). The basic observations behind this estimate as follows:
first, if two variants both simplify one parameter, then at runtime,
these errors produced by the two variants have correlations; sec-
ond, for the same expression or statement, different simplification
rules will produce different errors; finally, the more simplifications
performed on the statements of one parameter, the more errors will
be produced. Based on these observations, we define the parame-
ter influence as a vector, of which each element corresponds to one
input uniform parameter with one type of simplification rules. For
example, in Fig. 3, the shader has two uniform parameters and two
geometry attributes, and we only apply two types of simplification
rule, the expression reduction and the code transformation here for
simplicity. Therefore, the parameter influence is an eight-element
vector. The value of the (2k + i)-th element measures how much
the computations of the k-th parameter have been simplified by i-th
type of rules as

N
ql2k+i] =Y rl (k) 3)

J

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

where N is the total simplified expressions by the i-th rule directly
or indirectly dependent on the k-th parameter in this variant, r[j re-
turns how many elements are simplified by the i-th rule in the j-th
simplification on the k-th parameter.

Examples are shown in Fig. 3. According to Eq. (3), we denote
the parameter influence vectors as [Ny, N1, posg, posi, eyeq, eyey,
I_dirg, I_dir], in which the code transformation and expression
reduction rules are denoted by subscripted 0 and 1 respectively.
As can be seen, Variant 12 deletes the diffuse term from the orig-
inal shader by reducing the uniform parameter N and /;;.. Both N
and [_dir are float3, thus the rl! (k) returns 3. There is only one ex-
pression with respect to N and [_dir. As a result, the parameter
influence vector of Variant 12 is [0,3,0,0,0,3,0,0]. Another example
is Variant 16, which is a combination of different rules: the diffuse
term is first reduced, and then the specular term is moved to the ver-
tex shader. The specular term itself has a parameter influence vec-
tor [3,0,3,0,3,0,3,0]. Based on the combination of different rules,
the simplified parameter influence for Variant 16 is then denoted as
[3,3,3,0,3,3,3,0].

Instruction cost is designed to estimate the computation cost. For
one shader, the computation cost directly relates to the number and
type of instructions of the shader code. However, obtaining an ac-
curate estimation of the cost of different instructions is a challenge.
In this paper, we use the performance model proposed by He et
al. [HFTF15]. This model weighs the cost of DAG nodes by the
number of scalar instructions needed to perform them (e.g., a float4
addition incurs cost 4), and assigns a cost of 100 units to texture
operations. To unify the total cost of the entire shader program in-
cluding per-vertex and per-fragment computations, a weighted cost
of the vertex, Cy, and fragment, Cy, plus a penalty term for the size
of the vertex-fragment interface, Ny, is employed as follows:

Ciotal = 0.3Cy + 077Cf + 10N, “)

4.2.3. Clustering Simplified Shader Variants

By using these two heuristic cost estimates, we can map all simpli-
fied shader variants to a high dimensional space, and cluster them
into a small number, e.g., hundreds or thousands, of representative
simplified shader variants. Given that the full optimization space
could be very large, especially for a complex shader with several
simplification rules, we adopt the idea of the genetic program-
ming [WYY* 14, SAMWLI11] to iteratively cluster shader variants.
In supplemental document, we give the pseudo-code of this algo-
rithm.

In the clustering, we always maintain a set of representative vari-
ants as seed variants, where the original shader is set as the initial
seed variant. Then, at each iteration, we use these seed variants to
populate a new generation of simplified shader variants by apply-
ing simplification rules on only one expression or statement in each
seed variant. So based on our SDG’s definition, for each populated
variant, it connects to the seed variants that generated it.

While clustering variants, since these two cost estimates repre-
sent different purposes of the optimization, combining them numer-
ically and defining a scalar distance function are difficult. Instead,
observing that the instruction cost is a scalar metric, we divide the
values of the instruction cost into buckets, and group variants in
each bucket by their parameter influence vectors. More specifically,

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

Offline variant ® Representative variant <@=Offline pareto =®=Our pareto

Dragon Demo Warrior Demo

Time (ms)
Time (ms)

04 ‘ : ;
0 0.003 0.006 0.009 0 0.002 0.004 0.006 0.008
Image error Image error

Figure 4: Comparison of our reduced and offline optimization
space.

first, we sort all shader variants by their instruction costs. Then, we
uniformly divide the values of costs into N groups, i.e., N=8 as
default, and in each group, we use vector dot (-) to measure the
difference between two parameter influences. K-Means clustering
is used to cluster variants into M clusters, where M=10 as default.
In each cluster, the variant closest to the cluster center is selected
as the representative shader variant and used as one of the new seed
variants for the next round of population. After each iteration, we
have at most 80 representative variants. When the specified number
of iterations/variants are generated, or there are no statements/ex-
pressions left to be simplified, we terminate the clustering algo-
rithm. These representative variants are organized as the SDG and
will be used as the reduced optimization space at the runtime stage.

The total number of shader variants is influenced by the com-
plexity of shader code as well as the numbers of rules applied on it.
As we reported in Tab. 1, although shaders in the Head and Sibenik
demo have very different LOC(lines of code), the only used expres-
sion reduction rule results in a similar number of variants. However,
even the shader in Dragon demo has a small number of LOC, more
variants are generated by being applied with all three rules. The
maximum number of selected representative shaders is controlled
by the group numbers (N, M) and a maximum allowed iterations. In
our test, 5-10 iterations with default group number setting are usu-
ally good enough to create a reduced optimization space. Ideally, if
the reduced optimization space well approximates the original op-
timization space, the Pareto-optimal shaders obtained in both opti-
mization spaces should be the same. To test it, we compare these
Pareto-optimal variants of one view that are obtained in our op-
timization space and the full space using an offline genetic pro-
gramming method [SAMWLI11, WYY*14]. In Fig. 4, we visual-
ized these Pareto-optimal variants of the Dragon demo (Left) and
the Warrior demo (Right). More results can be found in the sup-
plemental document. As shown in these results, the Pareto frontiers
generated by our system are quite similar to those generated at of-
fline.

5. Runtime Optimization Stage

Once the rendering context, e.g., the scene and uniform parameters,
are available at runtime, our system seeks an automatic scheme to
search the collection of representative simplified shaders for the
optimal shader. Generally, the rendering and optimization tasks are
simultaneously performed in different threads. In the main thread,
rendering tasks are assigned to GPUs to generate images to the
user. Meanwhile, all optimization tasks are computed in the work-

11 Render base shader to window " "1 Running in worker thread

000 Evaluate candidates (render to texture) 1 Running in rendering thread

e i Search | @ < o> ________
T N = ! o
| Initialization P o o Poformace & I Selection;
b Y et Quality
Candid (1) - X
Candid (2) (@.1) (1) (est) Latent query | Base shader
Candid (3) @ T T error and time
N - L i aneome o _
Rendering
Thread HEREREERREEREEERNNEE BENIEEEEEREEEENE i,

~ T 7

Figure 5: One iteration of runtime optimization

Error bound

Shader variants

(b) Start from the base shader

Ist @2nd@3rd@ Bascvariant O Predicted Varaints
(a) Start from the original shader

—
—_

Time (ms)
o
oo

<
)

<
)
o

0 0.001 0.002 0 0.001 0.002
Image error Image error

Figure 6: A visualization of runtime optimization.

ing thread except some draw calls, which are executed in the main
thread and coordinated between two threads.

The optimization is iteratively performed. One iteration of our
runtime optimization is shown in Fig. 5. A base shader is set as the
main shader generating images for the user. At the very beginning,
the base shader is set as the original shader. Then, our system per-
forms four steps in each iteration. First, an initialization step is used
to monitor the changes in rendering context, including the scene
and uniform parameters. Once the rendering context dramatically
changes, a new round of optimization is triggered, the optimization
moves to the serach step. In this step, our system searches for some
candidate shaders that may potentially reduce computational cost
but still retain the quality error under the error threshold. It explores
optimization space to search variants, then uses proposed runtime
prediction models to predict most promising variants . These can-
didates are actually rendered in the evaluation step to obtain the
actual rendering error and time. These data can be used to pre-
dict shader variants’ performances and qualities during search step.
When all promising candidates are evaluated, a selection job is in-
voked to select the best candidate from all the evaluated variants to
replace the base shader or to start new search in the next iteration.

We visualize two rounds of runtime optimization during
Monster demo in Fig. 6, one starts from the original shader (Left),
the other starts from the simplified base shader (Right), variants
are plotted in (g,7) space. Starting from the base shader (red dots),
the system searches possible variants in the SDG (marked as red
circles). Based on our proposed cost models, four most promis-
ing candidates are selected and evaluated (linked by the dashed and
solid lines to current base shader). In these examples in Fig. 6, from

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

the evaluated variants, the system selects the optimal shader variant
(the blue and olive green dots) to replace the previous base shader.
After several iterations, it converges to one optimal shader variant.
The pseudocode of the entire runtime optimization is given in the
supplemental document.

5.1. Initialization

Since our optimization is performed during runtime, the scenes and
uniform parameters are all subject to changes. To detect such a
change efficiently, we monitor some changes of scenes (load/un-
load of the scene, dramatic changes of camera and uniform param-
eters, etc.). Besides these drastic movements, we also periodically
(e.g., 200 ms as default) compare the current rendering result with
the previous result rendered by the base shader to handle incremen-
tal changes. Once the error is larger than a threshold, we regard
that the optimization context changes and trigger a new round of
optimization. To compare quality and performance of two shaders
rendered at different times during searching the optimal shader, we
use the same input data cached after the optimization starts. Specif-
ically, we take a snapshot of the scene and all values of uniform
parameters for a short period of time (e.g., 200 ms) and use this
snapshot to carry out optimization during this period.

If there is no change, our optimization continues its iterations.
If there is a small change, we use current base shader as the start
point to launch a new round of optimization (Fig. 6(Right)). How-
ever, if a big change occurs, we immediately set the base shader
to the original shader and restart the optimization. In supplemental
documents, we give out the pseudo code of this step.

5.2. Searching

The optimization space is organized into the SDG with discrete
nodes, therefore we formulate the searching of optimal shader vari-
ants as a discrete optimization problem. The key is to make the
optimization efficient and fast. First, we propose data-driven cost
models to estimate quality and performance from runtime data.
While using such models to estimate shader quality and perfor-
mance, rather than running the shader to measure its actual values,
we can avoid actually evaluating shaders, accelerating the speed
of the searching algorithm. Then, having the estimates of time and
quality, we employ a parallel searching algorithm to explore the
graph. Note that in this step, no actual draw calls are required,
therefore it is totally performed in the working thread.

5.2.1. Data-Driven Cost Models

While we construct the SDG, we used a heuristic model in the lack
of runtime context. Now, at the runtime, we can further improve
our estimates by taking into account of the data that shader vari-
ants actual performed (even only a small number of variants are
evaluated). We propose two data-driven cost models to estimate the
quality and performance respectively.

Runtime Performance Model To better estimate the rendering
time of a shader, besides the number of instructions, we now extend
Eq.(4) to include the rendered scenes and the actual hardware draws
into consideration. The overall performance model is designed as

Ciotat = NGty +NyCrty+ Na*1q 5)

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

where N, is the number of vertices, N f; is the number of fragments,
and ty, ty and #, are the units of time to perform each piece of com-
putation on one vertex, one fragment or the overhead, respectively.
We directly query Ny and Ny from APIs of DirectX and store them
in the data snapshot, which is used for this period of optimization.
But, these units of time depend on different hardware and are dif-
ficult to query. Instead, we use actually evaluated time to optimize
them by regression. Initially, we set them 1.0, 1.2 and 1200 as de-
fault. While more and more shader variants are evaluated, we fit
these units of time to the actual data, and use them in later esti-
mates of the performance of shader variants.

Runtime Quality Model In the preprocess stage, we propose
the parameter influence to measure the differences of simplified
shader variants with respect to different uniform parameters. But,
the parameter influence is only a relative metric, not the actual error
to let us rank variants under certain rendering context. Therefore,
we need a runtime error model to convert parameter influences to
errors. Our basic idea is to take advantage of the evaluated shader
variants, and regard the error produced by one simplified shader
variant as a combination of some ‘basis’ simplifications. Notice
that in the SDG, one shader variant, if it is not directly simplified
from the original shader, is a child of a combination of other nodes
with different simplifications. If we regard the entire error also as a
combination of their parent nodes, we can project and spread their
errors onto its parent nodes, or gather and estimate the error from
them as well.

More precisely, once we have evaluated a shader variant and ob-
tain the error, for example e; of variant s, to spread the error onto
its parent nodes, we first retrieve its parents from the SDG. Then,
we regard that the parameter influence vectors reflect the error con-
tributions of parents, therefore project the error e; to each parent
as:

(9j-9i) ,
Yi(a-a;) 7
Then, the projected error is averaged by all previous computed er-
rors on the node ij. To accelerate the projection when the dimension
of influence vector is high, we precompute and cache all dot prod-
ucts of parent nodes for one variant along the path to the original
shader.

(6)

€y new =

While predicting the error of one shader variant, s;, it can be
predicted as:

ej =2 (4 4i)e, ™
Ik

where i; is the index of all parent nodes in the simplification de-
pendence graph of variant s;, q; and q;, are parameter influence
vectors of the shader variants, s; and its parent s;. In some cases,
not all parent nodes have been evaluated or spread error. So, for
such a parent node without error, we use the error of the closest
evaluated shader variant as to compute its child, where the distance
is defined in the parameter influence space.

To better understand these heuristic models, we use the normal-
ized t-distance [Ken38] to evaluate every prediction with the real
cost. The averaged t-distances on all demos are reported in Tab. 1.
The small t-distances demonstrate that our cost models performed
well in predicting runtime quality and time. In Fig. 7, we plot the t-

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

Sibenik Demo

—Time
-#Error

Monster Demo

—-Time
-=-Error

o
o
4
o

I

=
4
=N

(=3
o
t-distance
o
'S

t-distance
o
s

=3
=3

2. . .3 . 4
Optimization iteration

3. . .5, .7
Optimization iteration

Figure 7: The convergence of our predicted quality and perfor-

mance’s T-distances.
4000 ~
g 3000 SN RN N
2000 —Without quality model

1000 —With quality model |
0

0 5 10 15 20 25 30
Frames (x1000)

Figure 8: Optimization with and without the quality model.

distances of performance and quality in one round of optimization.
At first several iterations, the T-distances have high values. How-
ever, while more and more variants have been evaluated, both 1-
distances drop quickly. Additionally, we also conduct experiments
on the Monster demo to measure the impacts of the quality model
in the optimization. We turn on and off it in the optimization. If
the quality model is off, we only use the performance model to
select candidate shader variants. The FPSs (frame per second) of
two approaches are shown in Fig. 8. The results show that missing
the guide of the quality model, the runtime optimization converges
slower, resulting in a significant performance drop.

5.2.2. Parallel Searching

Starting from some seed nodes, the searching step aims to explore
neighbors, and find most promising candidates that reduce the com-
putation cost as well as produce errors under the error threshold. In
our system, seed nodes are these variants that are Pareto-optimal
variants in last iterations. To efficiently explore the optimization
space, we use the parallel Best-first search [WDHS88]. Specifically,
given an error threshold, we maintain a list to store unexplored
nodes that produce smaller quality errors than the threshold, and
all nodes are sorted by performance. The quality and performance
are both estimated by aforementioned cost models. To add new
nodes to the list, we visit all connected nodes of seed nodes, not
only children, but also including parents and siblings. After adding
new nodes, we then select best candidates from the list. Accord-
ing to the goal of our optimization, these best candidates should
be Pareto-optimal, so our system enumerates nodes in the list and
selects K-best candidates with most performance gain and on the
Pareto frontier. In our system, K is set to 4 as default.

At the very beginning of optimization, no shader variants have
been evaluated, so neither the time or error can be predicted by
cost models. In this case, we only use the heuristic performance
estimate in the preprocess stage to predict the performance, and
select K fastest candidates to start the optimization.

5.3. Evaluation

Once having these candidates from the searching step, we then per-
form the real evaluation of them to actually obtain the error and
time. Such an evaluation is to insert draw calls in the main thread

and read back the error and time from the pipeline. As a common
practice to hide the latency between CPU submission and GPU ex-
ecution, we postpone the read back of both time and error by 3
frames (Fig. 5, Evaluation). We use the performance query APIs of
DirectX to measure the performance. To reduce the noise brought
by the query, we average the actual measured time with the time
we estimated to obtain the measured time. To get image error of a
shader variant, we render the shader variant to texture and compare
it with the reference image generated by the original shader. We use
the compute shader [Boy08] to compare Mip-mapped values at up-
per levels to reduce the overhead of comparison. This optimization
works well in practice. In the supplemental document, we show this
MIP-map error is accurate enough.

5.4. Selection

After the evaluation step, we obtain the actual costs of the qual-
ity and performance of several shader candidates. Multiple candi-
dates may be Pareto optimal, so our system selects the one based
on the following two criteria. First, the shader variant should have
the biggest performance gain but is still under the error threshold.
Second, the shader variant should not produce much error com-
paring to the base shader, i.e., the error is less than a threshold.
The second criterion is to avoid the obvious sudden changes of the
image when replacing the base shader. Once one newly evaluated
shader variant is selected, we then replace the base shader with it.
But, if no better variant exists, we then iterate back to the searching
step to find other shader candidates. If in several iterations, the base
shader variant has not been updated. We then regard the optimiza-
tion converges. The number of blank iterations used to detect the
convergence is set to 3 by default.

6. Results

We use a desktop PC with an Intel CoreTM i7 3770 CPU and two
different graphics cards (an NVIDIA GeForce GTX 680 with 2GB
RAM and a GTX 980Ti with 4GB RAM) to generate the results in
this paper. Except for the Sibenik demo, all images are rendered at
aresolution of 1920x1080. All shaders in six demos are optimized
during runtime with rendering context changes of uniform parame-
ters. Please refer to the supplemental video to see the entire runtime
optimization process. To avoid the cost of recording videos, we use
an external video capture card to directly record the graphics card
output through DVI at 60 FPS. Note that due to the lower recorded
FPS, the captured video may exhibit some blurring effects. To com-
pare our method with others, we record the user input and then play
back these inputs in different methods.

6.1. Shaders and Demos

Six demos (Fig. 1, Fig. 9) are used to evaluate our system. Config-
urations and statistics of these demos are listed in Tab. 1.

Dragon demo: The Dragon model is rendered with a shader that
has four octaves of Perlin noise and Phong BRDF shading model.

Monster demo: The Monster model has both albedo and spec-
ular textures. The glossy reflections from environment lighting are
computed by the GPU importance sampling shader. 40 samples are
used in the original shader.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

Dragon

Monster

View 1

View 2

Warrior Head

View 1 1 yiew 2

Ocean

1.8 18 15 18 1 iviewl | View2
—~ i N
7 12 4% \JW_
1.2 H 1
E2 9 S 12 }
2 i —Original shader : H
0.6 0.6 M 6 064 ¢ 1
.E —O;iginal shader —Original shader : —Original shader 3 —Our selected shader i —Original shader
o0k —Our selected shader 0 L —Our selected shader 0+ —Qur Sel?Cted ﬂl'gder , o L —Offline simplified shader i —Our sclected shader
0 0 0 0 0 600

20 40 6 10 20
Frames (x1000) Frames (x1000)

10 20 30 4
Frames (x1000)

200 400 5 10 15 20
Frames (x30) Frames (x1000)

Figure 9: Results of different demos, both original shader (Upper left) and selected simplified shader (Bottom right) at two views are

presented.

| Drag0n| Monster| Warri0r| Head| Sibenik| Ocean
Scene
Triangles 130K | 14K 16K 12 2 1400K
Vertices 75K 8K 10K 8 4 475K
LOC 94 117 50 175 88
Inst. (Pixel) 6K 12K 202K | 153K | 1K
Preprocess
SDG Node# 324 835 290 285 460
Timespa(s) 1.5 39 0.4 1.0 4.2
Timecompite(s) | 27.2 64 75 424 19
Shader
Mem(mb) 1.4 34 0.59 | 1.15 22
Runtime
€max 0.003 | 0.002 0.004 0.001| 0.014 | 0.014
Overheadcpy 0.2% 1% 3% 0.4% | 0.3% 0.3%
Overheadgpy 0.17% | 0.4% 1.15% | 1.1% | 1.3% 0.3%
Seq. time(s) 87 32 67 242 121 39
Saved time(s) 29 15.6 23 54 52 36
Saved time(%) | 33% 49% 34% 22.3% 43% 7.6%
T-dist. of time 0.12 0.08 0.39 0.06 | 0.25 0.29
T-dist. of error | 0.20 0.22 0.22 0.15 | 0.27 0.28

Table 1: Configuration and statistics of demos, from top to bottom:
scene configuration, preprocess statistics, and runtime statistics.

Warrior demo: We apply the same GPU importance sampling
shader in the Warrior demo. Two intensely fighting warrior models
are included.

Head demo: We adopt the ray marching volume rendering
shader to a 3D volume head [DCH88]. The head data is stored in a
256 x 256 x 225 3D texture. In the original fragment shader, a total
of 800 steps of each ray are marched from the front faces to the

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

back faces of the bounding box. In each step, the transferred color
and transparency are computed from an intensity transfer texture
and then accumulated to the final color.

Sibenik demo: We adopt the HBAO [BSDOS] shader and ren-
der a 1280 x 720 AO image in four passes. They are the depth
buffer generation, full-resolution AO with 24 x 24 samples per
pixel, along with two bilateral filter passes. Given that the other
passes are simple, our system only simplifies the most costly shader
on the second pass: the AO sampling pass. We still use the final re-
sult to compute image errors instead of the output of AO pass.

Ocean demo: This demo contains three major steps: inverse FFT
based on spectral algorithm [TesO1], Quad-tree tile-based LOD-
ing, and ocean shading. We perform an inverse FFT of resolution
128 x 128 on GPU to generate height and normal map. The gener-
ated LOD meshes lead to lots of draw calls, about 1.5 million tri-
angles are submitted. While the ocean shading is very simple, con-
stant water body color combine with reflected high specular sunrise
environment map, noise texture is used to perturb reflections.

6.2. Simplification Results

In each demo, we interact with the model and leave the simplifi-
cation system running in the background. We record a sequence of
frames and show two example views in Fig. 1 and 9. In addition,
we plot performance comparisons between original shader and our
selected simplified shaders. For the Head and Sibenik demos, we
further present the performance of the offline simplified shader. The
instant FPS of demos can be seen in the supplemental video, we av-
erage every 1000 frames (30 frames in the Head demo) to obtain
the reported time in Fig. 1 and 9. Results show that the proposed
system is well adapted to the changes of runtime context and suc-

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

cessfully improves the performance. In the following, we provide
more details and analyses on the optimizations performed by our
system in these demos.

In the Dragon, Monster and Warrior demos, we rotate the
model, along with zooming the camera in and out. Generally, the
more we zoom out the camera, the simpler shader we get. However,
our system performs simplifications differently in these demos. For
example, at view 1 of the Dragon demo, one of four octaves in the
shader is reduced (which saves about 0.2 ms). At view 2, our sys-
tem reduces two octaves and also moves the noise texture and dif-
fuse lighting to the vertex stage (which saves about 0.5 ms). While
in the Monster demo, our system tends to transform some lighting
computation to tessellation shader with two levels of tessellations,
resulting in a 1.6x speedup. When the camera is further zoomed
out, our system chooses a more aggressively simplified shader: all
lighting sampling is moved to the vertex stage and without any tes-
sellation, which brings 1.8x speedup. The Warrior demo shows
the capability of our system to handle drastic changes of scenes and
cameras. While these two warriors are fighting, our system con-
stantly responds to runtime changes of scenes, and achieves similar
performance improvements to those in the Dragon and Monster
demos.

The Sibenik and Head demos only have fragment shaders exe-
cuted in screen space. These screen space based shaders are impor-
tant, since they have been widely used in the deferred shading, but
are more challenging, because they are usually more costly than
those in forward rendering. Our system also performs well in these
two demos. As shown in Fig. 9 (Head, View 1), just after first few
frames (total 20 shader variants are evaluated), our system finds
an optimal shader skipping the last 30% of marching steps but
still retains good rendering quality. This simplified shader brings
1.4x speedup. While we rotate the camera about 45 degrees (View
2) requiring more steps to march through the diagonal of the vol-
ume, our system automatically reverts to select a shader with more
marching steps, which leads to an increase in rendering cost (still
faster than original shader), but ensures quality. Fig. 1 shows re-
sults of the Sibenik demo. For an HBAO shader, our expression
reduction rules mainly result in two simplifications that reduce the
number of sample rays and the searching steps at each sample. At
View 1, the number of searching steps reduces to half, since most
occlusion can be found by only a few steps. At View 2, while the
floor occupies a large portion of scene space, our system tends to
select shaders with fewer ray samples (since most rays are unoc-
cluded), but keep the searching steps in one ray sample (so as to
find occluders in some distances). At View 3, both the number of
ray samples and searching steps are reduced a little bit to adapt the
visible scene at this view.

The Ocean demo shows an extreme case that a scene with a
large number of triangles but with a very cheap shader. The total
time spent on executing original shaders (both vertex and fragment
shaders) occupy less than one-fourth of the total rendering time.
However, our system is still able to squeeze a little bit speedup.
In the Fig. 9 (Ocean, View 1), our system moves most computa-
tions from pixel to vertex. Additionally, at View 2, while the re-
flected sun lights become less noticeable, our system further re-
moves some specular perturbations to save time. These optimiza-

Figure 10: Two example applications for the saved rendering cost
from runtime simplification. For each row, left shows the original
shading results, while the right show results of simplified shader
with additional bloom effect (Top) and finer (256x256) inverse
FFT simulation (Bottom), but render them cost less and similar
rendering time respectively.

Fi # 13630
5 0.003 [-| —Error threshold rame Frame# 14238
g ==Our selected shader
S 0002 | o sefectec s i
80 ==Qffline simplified shader
5
£ 0.001 |
0 T

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Frame Sequence

© ——

Frame #13630
Offline simplified shader

Frame #13630 Frame #14238
Our selected shader

Frame #14238

Figure 11: Comparison of optimization during runtime and offline
optimization. Top: errors among animations. Bottom: Rendered im-
ages and difference images using the runtime selected simplified
shaders (Left) and offline simplified shader (Right) at two frames.

tions saved about a half of the shader execution time (0.12~0.18
ms), resulting in about 5% increase in FPS.

The saved GPU execution time by our runtime simplifica-
tion system could be used to dynamically invoke other tasks,
thereby improving the rendering applications at different aspects.
In Fig. 10, we show two examples. In the Monster demo, we use
the saved time from a simplified shader to enable the bloom ef-
fect, which highlights the lighting effects and provides better vi-
sual effects (Top right). For the Ocean demo, the saved time from
the simplified shader gives more time budget for GPU simulation.
Since the inverse FFT is quite cheap, we successfully increase the
resolution of inverse FFT to 4 times (from 128 x 128 to 256 x256)
using saved GPU time. By repeatedly using these inverse FFT map
on the ocean, we obtain more details on the ocean surface (Bottom
right), but render it at the similar rendering time.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

6.3. Comparison with Offline Simplified Shader

In previous offline optimization methods [Pel05, WYY*14,
HFTF15], all possible uniform parameters are enumerated to gener-
ate a general context and errors are averaged while optimizing. We
compare our runtime selected simplified shaders with the shaders
optimized by the aforementioned offline strategy. There were 30
different views in or out of the sequence of the demo used as the ex-
ample contexts to simplify shaders in the Head and Sibenik demo.
In the Head demo, we select the optimal one with a similar av-
erage performance of our selected simplified shader, and plot its
rendering time and errors at Fig. 11(Top). We select two views and
visualize the error in Fig. 11(Bottom). The figures show that our
system automatically detects the context changes, and quickly op-
timizes a new optimal shader to avoid further artifacts. However,
in contrast, the offline simplified shader fails at adapting to these
changes and continues producing these significant artifacts.

An offline simplified shader was also selected in the Sibenik
demo having a similar averaged error to the error threshold, and
the offline simplified shader was compared with simplified shader
selected by our runtime system. The results of the comparison are
shown in Fig. 1. It can be seen that at some frames, e.g., from 3200
to 4800, the offline shader produces the optimal results as ours.
However, at most of the other frames, our runtime selected shader
has lower rendering cost and produces tolerable errors, especially
at View 2, where the runtime simplified shader is about 1.7 x faster
than the offline simplified shader. In addition, at View 3, the of-
fline simplified shader is not only slower but also produces much
larger error than our runtime selected shader, demonstrating the
adaptability of our runtime scheme.

6.4. Overheads and Artifacts

Similar to many other auto-tuning works, our method has a com-
mon limitation that the runtime computation may bring some over-
heads. Mainly, our system has two kinds of overheads. One over-
head is the memory that stores the representative shader variants
and some cached data, and the other overhead is the time spent in
the preprocessing and at runtime. We list the statistics of prepro-
cessing time, memory, and the runtime computation time in Tab. 1.

Most of the time spent in the preprocessing involves compiling
shader variants, varying from tens to hundreds of seconds (Row
Timecompije), whereas clustering shaders and generating the SDG
only take seconds (Row Timegpg). However, this step is only one-
time processing, and the processed shaders can be applied to dif-
ferent objects and on different hardware platforms. In our demos,
these preprocessed shader variants and the SDG occupy few MBs,
we suggest applying this runtime optimization only to those per-
formance critical ones. Compared with resources such as complex
geometry models and high-resolution textures, such a memory cost
is quite affordable for many applications.

Two kinds of computational resources are required for our run-
time optimization: CPU and GPU. The overall overheads of extra
CPU and GPU time for all of our demos are measured and re-
ported in percentage by comparing the total sequence time (Row
Overheadcpy,Overheadgpy). The reported GPU overheads in-
clude all performing draw calls to generate ground truth and evalu-
ate candidate shader variants, image down-sampling and Mip-map

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

error calculation. Our runtime system usually takes 5-8 iterations to
complete one round of optimization, in which 20 to 30 variants are
evaluated. The total time spent to evaluate shader variants varies
with demos, e.g., from less than 15 ms in Monster demo to a max-
imum of 80 ms in the Sibenik demo. In the cases such as Dragon
and Monster demos, the newly optimized shader variant is much
faster than the original shader. Usually only after one iteration, the
performance gain has already compensated the cost of optimization
iterations. Therefore, punctual slowing of instant FPS was not ob-
served in these two demos. However, when the original shader was
very costly, instant latencies from the optimization may bring some
impacts on the FPSs, such as at frame 9300 in the Sibenik (Fig. 1)
demo and at frame 13800 in the Head demo (Fig. 9). Please refer
to these frames in the supplementary video for the visual and in-
stant FPS impacts brought by these latencies. But, in most cases,
the overheads of our optimization are negligible.

Although the instant overhead for one round of optimization is
not neglectable in some demos, the overall overhead of both CPU
and GPU is still low, e.g., usually around or less than 1%. The ex-
ception is the Warrior demo because of the more rounds of opti-
mization triggered by the animation, and the overall CPU and GPU
overhead in this demo is only 3% and 1.15% respectively. There are
three reasons the overhead was lowered. First, cost models are em-
ployed to predict performance and quality, significantly reducing
the cost of runtime evaluations. Second, the optimization does not
necessarily need to be frequently performed. Only when the scene
has a large change and the system detects that the visual error of the
current shader is larger than the threshold, the optimization is actu-
ally launched. Third, the optimization does not need to start from
scratch. In many cases, the previous simplified shader is a good
candidate to start (Fig. 6(Right)), leading to fast converge.

Our optimization is progressively conducted at runtime. There-
fore, updating the optimal shaders may occasionally cause incon-
sistent artifacts. Sec. 5.4 introduced a criterion to guide the selec-
tion of visually similar shader variants. However, this strategy can-
not eliminate all artifacts. Another source of inconsistent artifacts is
from the assumption of context coherence. As discussed in Sec. 6.3,
all monitoring and snapshotting are performed at a period. If the
assumption is violated in this period, artifacts may be produced be-
fore a new round of optimization is performed.

7. Conclusion

This paper presented a runtime shader simplification system, and
to make it practical, a two-stage algorithm was designed, the pre-
process and the runtime optimization. In the preprocess, the SDG
was proposed to represent simplified shaders, as well as a specific
clustering algorithm to reduce the optimization space. Two heuris-
tic metrics were introduced to estimate quality and performance. At
runtime, to efficiently search optimal shader variants, we employ a
parallel discrete optimization algorithm and explore in the reduced
optimization space. Results show that our system outperforms the
previous offline simplification method and can adapt to different
scenes with respect to runtime contexts. However, in the current
implementation, we did not consider optimizing different levels of
shaders for multiple instancing objects. To support different levels
of optimality for objects with one shader, several interesting opti-
mizations might exist, such as grouping similar objects and sharing

Yazhen Yuan, Rui Wang, Tianlei Hu, Hujun Bao / Runtime Shader Simplification via Instant Search in Reduced Optimization Space

predictions inside the group. We would regard them as important
future works.

Besides, our system also has several directions worthy of further
exploration. First, in the current implementation, the shaders are
compiled at the preprocess stage. The time to compile hundreds or
thousands of shader variants is still long to be fit in the runtime op-
timization. Therefore, it will be an interesting work to combine the
pre-compiling with runtime compiling to enable greater adaptivity
of runtime shader simplification. Second, we use the queried in-
formation of DirectX pipeline to predict the performance, but with
more pipeline information, we may provide more accurate estima-
tion about the performance of shaders and scenes. Third, we pro-
pose the parameter influence to estimate the quality change of sim-
plified shader. But how the visual error is related to all kinds of
input parameters is still an interesting future work.

Acknowledgements

We would like to thank all reviewers for their insightful comments.
This research was partially funded by National Key R&D Program
of China (No. 2017YFB1002605), NSFC (No. 61472350), Zhe-
jiang Provincial NSFC (No. LR18F020002) and the Fundamental
Research Funds for the Central Universities (No. 2017FZA5012).

References

[AKV*14] ANSEL J., KAMIL S., VEERAMACHANENI K., RAGAN-
KELLEY J., BosBooM J., O’REILLY U.-M., AMARASINGHE S.:
Opentuner: An extensible framework for program autotuning. In Par-
allel Architecture and Compilation Techniques (PACT), 2014 23rd Inter-
national Conference on (2014), IEEE, pp. 303-315. 2

[BHT*10] BASKARAN M. M., HARTONO A., TAVARAGERI S., HEN-
RETTY T., RAMANUJAM J., SADAYAPPAN P.: Parameterized tiling re-
visited. In Proceedings of the 8th annual IEEE/ACM international sym-
posium on Code generation and optimization (2010), ACM, pp. 200—
209. 2

[Boy08] BoOYD C.: The directx 11 compute shader. shading Course SIG-
GRAPH (2008). 8

[BSD08] BAVOIL L., SAINZ M., DIMITROV R.: Image-space horizon-
based ambient occlusion. In ACM SIGGRAPH 2008 talks (2008), ACM,
p-22.9

[DBLW15] DORN J., BARNES C., LAWRENCE J., WEIMER W.: To-
wards automatic band-limited procedural shaders. In Computer Graph-
ics Forum (2015), vol. 34, Wiley Online Library, pp. 77-87. 3

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Volume ren-
dering. In Computer Graphics (Proceedings of SIGGRAPH) (1988),
vol. 22, ACM, pp. 65-74. 9

[FJO5] FRIGO M., JOHNSON S. G.: The design and implementation of
fftw3. Proceedings of the IEEE 93, 2 (2005), 216-231. 2

[FOW87] FERRANTE J., OTTENSTEIN K. J., WARREN J. D.: The pro-
gram dependence graph and its use in optimization. ACM Trans. on
Program. Lang. and System. (TOPLAS) 9, 3 (1987), 319-349. 4

[HFF16] HE Y., FOLEY T., FATAHALIAN K.: A system for rapid explo-
ration of shader optimization choices. ACM Transactions on Graphics
(Proceedings of SSIGGRAPH) 35, 4 (2016). 3

[HFH*17] HE Y., FOLEY T., HOFSTEE T., LONG H., FATAHALIAN
K.: Shader components: modular and high performance shader devel-
opment. ACM Transactions on Graphics (Proceedings of SSIGGRAPH)
36,4 (2017), 100. 3

[HFTF15] HE Y., FOLEY T., TATARCHUK N., FATAHALIAN K.: A sys-
tem for rapid, automatic shader level-of-detail. ACM Transactions on

Graphics (Proceedings of SSGGRAPH ASIA) 34, 6 (2015), 187. 2, 3, 4,
5,11

[JTD*12] JORDAN H., THOMAN P., DURILLO J. J., PELLEGRINI S.,
GSCHWANDTNER P., FAHRINGER T., MORITSCH H.: A multi-
objective auto-tuning framework for parallel codes. In High Performance
Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for (2012), IEEE, pp. 1-12. 2

[Ken38] KENDALL M. G.: A new measure of rank correlation.
Biometrika 30, 1/2 (1938), 81-93. 7

[NTCS10] NAoNO K., TERANISHI K., CAVAZOS J., SUDA R.: Software
automatic tuning: from concepts to state-of-the-art results. Springer Sci-
ence & Business Media, 2010. 2

[OKS03] OLANO M., KUEHNE B., SIMMONS M.: Automatic shader
level of detail. In Proceedings of the ACM SIGGRAPH/EUROGRAPH-
ICS conference on Graphics hardware (2003), Eurographics Associa-
tion, pp. 7-14. 2

[Pel05S] PELLACINI F.: User-configurable automatic shader simplifica-
tion. In ACM Transactions on Graphics (Proceedings of SSIGGRAPH)
(2005), vol. 24, ACM, pp. 445-452. 2,4, 11

[SALY*08] SITTHI-AMORN P., LAWRENCE J., YANG L., SANDER
P. V., NEHAB D., X1 J.: Automated reprojection-based pixel shader
optimization. In ACM Transactions on Graphics (Proceedings of SIG-
GRAPH ASIA) (2008), vol. 27, ACM, p. 127. 2,3, 4

[SAMWLI11] SITTHI-AMORN P., MoDLY N., WEIMER W,
LAWRENCE J.: Genetic programming for shader simplification.
ACM Transactions on Graphics (Proceedings of SSGGRAPH ASIA) 30,
6(2011), 152. 2,3,4,5,6

[SBR*15] SAMPSON A., BAIXO A., RANSFORD B., MOREAU T., YIP
J., CEZE L., OSKIN M.: Accept: A programmer-guided compiler frame-
work for practical approximate computing. University of Washington
Technical Report UW-CSE-15-01 1 (2015). 2

[SJWO07] SCHERZER D., JESCHKE S., WIMMER M.: Pixel-correct
shadow maps with temporal reprojection and shadow test confidence.
In Proceedings of the 18th Eurographics conference on Rendering Tech-
niques (2007), Eurographics Association, pp. 45-50. 3

[TesO1] TESSENDORF J.: Simulating ocean water. Simulating Nature:
Realistic and Interactive Techniques. SSGGRAPH 1,2 (2001), 5. 9

[THI1] TIwARI A., HOLLINGSWORTH J. K.: Online adaptive code gen-
eration and tuning. In Parallel & Distributed Processing Symposium
(IPDPS), 2011 IEEE International (2011), IEEE, pp. 879-892. 2

[VDY05] Vubuc R., DEMMEL J. W., YELICK K. A.: Oski: A library
of automatically tuned sparse matrix kernels. In Journal of Physics:
Conference Series (2005), vol. 16, IOP Publishing, p. 521. 2

[WD98] WHALEY R. C., DONGARRA J. J.: Automatically tuned linear
algebra software. In Proceedings of the 1998 ACM/IEEE conference on
Supercomputing (1998), IEEE Computer Society, pp. 1-27. 2

[WDHS88] WHITLOCK D., DEY P., HYATT R.: A parallel best-first
search. In Proceedings of the 1988 ACM Sixteenth Annual Conference
on Computer Science (1988), CSC ’88, pp. 735-. 8

[WYY*14] WANG R., YANG X., YUAN Y., CHEN W., BALA K., BAO
H.: Automatic shader simplification using surface signal approximation.
ACM Transactions on Graphics (Proceedings of SSIGGRAPH ASIA) 33,
6(2014), 226. 2,3,4,5,6, 11

[XJJPO1] XIONG J., JOHNSON J., JOHNSON R., PADUA D.: Spl: A
language and compiler for dsp algorithms. In ACM SIGPLAN Notices
(2001), vol. 36, ACM, pp. 298-308. 2

[YBI8] YANG Y., BARNES C.: Approximate program smoothing using
mean-variance statistics, with application to procedural shader bandlim-
iting. In Computer Graphics Forum (2018), vol. 37, Wiley Online Li-
brary, pp. 443-454. 3

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

