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Abstract

Many applications require manipulation and visualization of complex and highly detailed models at realtime. In this
paper, we present a new mesh process and rendering method for realtime high quality rendering. The basic idea is to
send a simplified mesh to hardware pipeline, while use the online tessellation on the GPU to facilitate the rendering
of complex geometric details. We formulate it into an inverse tessellation problem that first computes the simplified
mesh, and then optimizes the tessellated mesh with geometric details to approximate the original mesh. To solve this
problem, we propose a two-stage algorithm. In the first stage, we employ an iterative surface simplification technique,
where we take the requirement of hardware tessellation into consideration to obtain an optimal simplified mesh. In
the second stage, to better utilize the hardware tessellation, we propose a moving vertex strategy to approximate the
tessellated mesh to the original mesh. Results show that our method achieves 2-4 times faster at rendering but still
retains high quality geometrical details.
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1. Introduction

Realtime rendering of complex, highly detailed
model is of great interest in variety of performance de-
manding applications, such as game, visualization, vir-
tual reality, etc. However, due to the bottleneck of I/O, it
becomes a popular strategy to highly simplify the com-
plex model so as to achieve desired frame rate. But, with
the simplification, the rendering quality significantly de-
generates in general.

As a result of recent advances in graphics hardware,
large number of geometry primitives can now be ef-
ficiently and flexibly generated online with the highly
parallel GPU tessellation units. Technically, to fully uti-
lize the power of the GPU tessellation units, it requires
a two-layer representation of model. A coarse model to
be sent from CPU to GPU, and a fine model that are tes-
sellated at rendering. However, given a complex model,
it is challenge to decompose the input model into such
a two-layer representation. First, the coarse model pro-
vides a base to be rendered and tessellated at runtime.
The hardware tessellation performance and quality de-
pend on this coarse representation. Thus, how to get the
best coarse model for hardware tessellation is a prob-
lem. Second, the hardware tessellation requires tessel-
lation parameters and vertex data to recreate the details
of original model. How to obtain optimal parameters

and vertex data to approximate the original mesh is an-
other problem.

Inverse subdivision techniques [1, 2, 3] can be re-
garded as potential solutions for these two problems.
They decomposed the connectivity of original mesh
into a coarse representation for subdivision. Guskov et
al. [4] proposed normal meshes to compress the stor-
age of meshes by constructing a multiresolution mesh
with normal offsets. Cook [5] introduced the ideal of
displacing a surface by a function. Lee et al. [6] intro-
duced the displacement maps as an inverse subdivision
process so that the original mesh can be approximated
by displaced subdivision surface. However, even with
the recent progress to carry out realtime subdivision us-
ing hardware tessellations [7], these inverse approxima-
tion approaches [4, 6] still suffer from two main limi-
tations. First, in computing the coarse representation,
these methods do not consider the hardware tessellation
stage, therefore the coarse representation is not optimal
for hardware tessellation. Second, no matter the nor-
mal offset or the displacement map, these methods only
move vertices along normals, which may fail at captur-
ing some geometric features of original mesh, especially
in case of using a small number of tessellated surfaces.

To address these limitations, in this paper, we propose
a new solution to find optimal decomposition for the
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Figure 1: (Left): the original mesh with 100K triangles. (Middle): the simplified and tessellated mesh generated by our method. It is 2.1 times
faster to render it than directly render the original mesh. Total 222K triangles are tessellated at runtime in tessellation shaders. (Right Top): the
simplified mesh with 8K triangles before the tessellation. (Right Bottom): the error image between the original mesh and ours.

hardware tessellation. In Fig. 1, we show the computed
simplified and tessellated mesh of the Dragon model.
Our algorithm takes two stages. In the first stage, we
employ an iterative surface simplification technique,
and take the requirement of hardware tessellation into
consideration to optimally generate the simplified mesh.
In the second stage, the tessellation stage, we compute
tessellation factors and vertex offset data to tessellate
the simplified mesh into the tessellated mesh. A new
approximation strategy, we name it as moving vertex,
is proposed to move positions of new tessellated ver-
tices to better preserve geometric features of the original
mesh. In the entire approximation, there are several pa-
rameters impacting on the generation of our simplified
and tessellated mesh, which are non-intuitive for users
to tweak. Therefore, we present an optimization scheme
that takes the time budget as input and automatically op-
timizes to an optimal approximation with lowest error.
Results show that our method achieves 2-4 times faster
at rendering but still retains high quality geometry de-
tails. The main contributions of this work include:

• A new mesh simplification and tessellation ap-
proach to utilize hardware tessellation for realtime
high quality mesh rendering and visualization.

• A new mesh simplification scheme that considers
factors of fast hardware tessellations.

• A new vertex optimization that moves tessellated
vertices to better approximate geometric features
of original mesh.

• An automatic optimization scheme that takes the
time budget as input, and produces optimal simpli-
fied and tessellated mesh with lowest approxima-
tion error.

2. Related Work

Mesh Simplification. Mesh simplification has been
addressed of great interest in a variety of applications.
It takes a polygonal mesh as input and generates an ap-
proximated one with less number of vertices and faces.
In past decades, various methods have been proposed.
A popular strategy is to remove primitives greedily lead-
ing to the lowest error. Error metric of simplification is
the key of this strategy. Different metrics have been pro-
posed to measure the quality of simplifications [8]. As
one of the typical methods, QEM [9] uses local geomet-
ric quadric error as the simplification metric. To pre-
serve more information on the input mesh, Hoppe [10]
extended it by introducing additional attributes such as
color and normals. The metric is even extended to con-
sider tangents, texture coordinate, and animation infor-
mation [11]. Appearance-preserving simplification [12]
applies texture deviation metric to both the texture and
normal maps during simplification process. There are
also other strategies being proposed to simplify the
mesh in different ways. Vertex clustering [13] overlays
a 3D grid on the model and collapses all vertices within
each cell of the grid to the single most important ver-
tex within the cell. Simplification envelopes [14] use
two offset surfaces to guide the simplification process.
Progressive and parallel simplifications [15, 16] accel-
erate the simplification using GPUs. There are several
surveys to compare those different technologies in the-
ory [17, 18] and from the view of practise [19]. How-
ever, the designing of these metrics ignores the specific
requirement of GPU tessellation units.

Inverse Subdivision. Taubin [1] introduced an in-
verse subdivision algorithm to detect and reconstruct
subdivision connectivity. However, his interest was only
at extracting the connectivity of a subdivided mesh but
not at the geometric approximation of the mesh. San-
drine and Marc [2] proposed a reverse Catmull-Clark
subdivision algorithm to generate a coarse mesh from a
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subdivided mesh. Sadeghi et al. [3] presented a smooth
reverse subdivision algorithm. Guskov et al. [4] pro-
posed normal meshes to compress the storage of meshes
by constructing a multiresolution mesh with normal off-
sets. But all of these methods focused mainly on data
compression. Compared with them, our method targets
on approximating a general complex, highly detailed
mesh, which considers the utilization of hardware both
at mesh simplification and mesh rendering. Therefore,
their methods can not be directly applied in our applica-
tion.

Displacement Maps. Cook [5] introduced the ideal
of displacing a surface by a scalar function. Cohen et
al. [12] and Cignoni et al. [20] proposed normal map
to reconstruct mesh’s normal during rendering. Lee et
al. [6] combined the idea of surface subdivision and dis-
placement map to approximate detail surfaces. But none
of these approaches considered the impact of hardware
tessellation during generating the coarse representation.
In addition, displacement maps and normal maps both
try to approximate dense mesh in texture space, where
the approximation quality heavily depends on texture
resolutions. Compared with them, our method moves
tessellated vertices to geometric feature vertices instead
of only moving vertices along normals. In this way, our
method is able to better approximate the original meshes
even using less tessellated vertices.

Hardware Tessellation. While the development of
GPU hardware, hardware tessellation has been intro-
duced along with the DirectX 11 [21] and OpenGL
4.1 [22]. The basic idea of hardware tessellation is to
generate highly detailed geometry at runtime from a
coarser representation. Polygons are directly processed
by parallel streaming processors without involving fur-
ther global memory access, which minimizes memory
I/O, and achieves high-performance. Many methods
have been proposed to utilize the hardware tessellation
for realtime rendering [23]. But, as we know, the goal
of our work that an inverse mesh simplification process
for hardware tessellation is new.

3. Overview

The goal of our paper is to take a triangular model as
input, and generate a simplified and tessellated model,
the two-layer representation, to approximate the origi-
nal model as output. To practically solve the problem,
we divide the entire mesh process into two stages, the
simplification stage and the tessellation stage. At the
simplification stage, we apply mesh simplification on
the original mesh to obtain a simplified mesh. Then,
at the second stage, we tessellate the simplified mesh

into a denser mesh, where new tesselated triangles are
optimized to compensate the quality loss in the simpli-
fication stage so as to better approximate the original
mesh.

While taking the tessellation stage into considera-
tion, there are several parameters impacting on the ap-
proximation error and rendering time. It becomes non-
intuitive for users to deduce the error or rendering time
from the number of simplified mesh or the level of tes-
sellations. To address this problem, we then develop
an optimization algorithm to find an optimal simplified
and tessellated mesh by giving a certain rendering time.
The optimal mesh is searched in the time-error space
with different parameters so as to best approximate the
original mesh.

In Section 4, we describe the mesh simplification
stage that generates the simplified mesh for further tes-
sellation under a certain number of triangles. In Section
5, we introduce the tessellation stage that approximates
the original mesh by newly tessellated triangles under
certain number of tessellations. In Section 6, we present
the optimization algorithm that explores a number of
simplified meshes and tessellations to find the best ap-
proximation under a certain rendering time budget.

4. Mesh Simplification

Many methods and error metrics have been developed
to solve the mesh simplification problem. But, in our
method, due to a different goal, we have our own evalua-
tions on simplified mesh that the simplified mesh should
be an optimal mesh for our next tessellation stage. We
consider three criteria at evaluating a simplified mesh.

The multiresolution ability. Since the hardware tes-
sellation process can be regarded as the generation of
triangles from coarse to fine – with appropriate levels of
details, the simplification method should have the abil-
ity to generate multiresolution models.

Better surface approximation. In our tessellation
stage, the approximation to the original mesh is com-
puted from a simplified base mesh. Thus, if the simpli-
fied mesh approximates original mesh well, it will ben-
efit the approximation in the tessellation stage.

The uniform distribution of feature vertices. This
criteria is new for mesh simplification. It is proposed
under the consideration of hardware tessellations. Us-
ing hardware tessellation, the number of features on a
triangle is sometimes more important than the degree of
feature importance. This is because new vertices can
be generated and positioned at any positions. We found
that the variation of numbers of tessellations on differ-
ent triangles have impacts on the rendering time. If all
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Figure 2: Edge vavb are collapsed to a new vertex. va, vb are mapped
to triangle Ti, T j separately. Other feature vertices, ve and v f relevant
to this operation are re-projected to nearest triangles

triangles have the same tessellation factors, the tessella-
tion stage tends to run faster (please refer to Section 7.3
for more discussions). In this sense, we hope every sim-
plified triangle has the same number of features, so that
we can uniformly subdivide triangles into same tessel-
lations to approximate these features.

Based on these criteria, we combine the quadric er-
ror [9] and the features per triangle as the simplification
error metrics, where the quadric error satisfies first two
criteria, and the features per triangle is used to control
the number of feature vertices on simplified mesh:

Q(v) = v>Ev + 2 f>v + g (1)

D(T ) =
∑

(c(vi) > cmin) (2)

where Q(v) is the quadric error, E is a symmetric matrix,
f is a vector and g is a scalar (more details can be found
in [9]), D(T ) is the the number of feature vertices on
a simplified triangle T , vi is the feature vertex that has
been simplified and mapped to triangle T . The feature
vertex defined in our method is the vertex, whose gaus-
sian curvature, c(vi), is larger than a predefined thresh-
old, cmin(0.005 by default).

Using such error metrics, we adapt the established
framework [9] in our method. It iteratively applies edge
collapse operations on geometry primitives, and updates
the cost of a small portion of the mesh being simplified.
The features per triangle is used when the simplification
operation is performed. If one geometry primitive has
too many features, any further simplification operations
will be canceled.

More precisely, the simplification process takes fol-
lowing steps. First, we assign the quadric error as the
cost for each valid operation. Then, we choose the op-
eration with lowest cost and apply it on the mesh. After
that, we re-evaluate the features per triangle of all tri-
angles relating to this operation. We illustrate an exam-
ple of such a process in Fig. 2. After an edge collapse
operation, these two collapsed vertices, va and vb, are
projected along their normals, and assigned to the new
triangle with least distance. Additionally, feature ver-
tices on all influenced faces adjacent to the two vertices,

(a) With features per triangle (b) Without features per triangle

Figure 3: Comparison of simplification results with or without using
features per triangle. With the features per triangle, simplified trian-
gles tend to preserve regions with more vertices. As can be seen, in
(a) more triangles are distributed on the back regions than those in (b),
because these regions have plenty of vertices with high curvatures. On
the contrast, fewer triangles are distributed on the neck, since the re-
gion is relatively flat.

ve and v f , are re-projected to the newly generated tri-
angles. Once one of the features per triangle exceeds a
pre-defined threshold, we cancel this operation. In this
way, the features per triangle of simplified triangle can
be controlled. If the operation goes through the test, we
then update the costs of operations with modified trian-
gles of mesh, and reorder operations according to newly
updated costs. These steps are iteratively executed until
no more operations can be applied (e.g. all triangles are
with maximum features per triangle, or a desired trian-
gle number is achieved). After the simplification step,
we compute a globally smooth parameterization to map
vertices of original mesh to the simplified mesh [24].
Such a parameterization is used to compute the tessel-
lated mesh by mapping features on the original mesh to
the simplified mesh. In Fig. 3, we illustrate two sim-
plified results with or without the features per triangle
criteria in mesh simplification. It can be seen that with
the features per triangle criteria, more triangles will be
used to preserve vertices with high curvatures.

5. Approximation by Tessellated Mesh

After we obtain the simplified mesh, we then simulate
the tessellation in tessellation shader to compute the tes-
sellated mesh. Newly tessellated triangles are used to
approximate the original mesh. In tessellation shader,
the number of tessellations is determined by two tes-
sellation factors, the outer tessellation factor, lout, that
determines the subdivision on triangle edge, and the in-
ner tessellation factor, lin, that determines the numbers
of vertices and sub-triangles inside the triangle [21].

We use equal spacing model to make sure all tessella-
tion factors are integers. The modern hardware supports
different tessellations per triangle. But, to void cracks
and T-joins, we need to make sure the outer tessellation
factors on two adjacent triangles are the same. There-
fore, the inner tessellation factor is set per triangle, and
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Figure 4: Applying our moving vertex strategy, T-joints happens when
outer tessellation factors on adjacent triangles are different.

the outer tessellation factor is set per edge. We show
a failure example in Fig. 4, when the outer tessellation
factors on two adjacent triangles are different.

In this section, we first introduce the error metric used
to evaluate the quality of approximations. Then, we de-
scribe our new approximation strategy, the moving ver-
tex, to compute the vertex offset data for tessellated ver-
tices. An illustrative example is shown in Fig. 5. We
approximate geometrical features on the original mesh
by moving the new tessellated vertices to the positions
of feature vertices. For the computation efficiency, we
store the tessellated vertices’ new position and normals
and use them at runtime. Due to the utilization of hard-
ware tessellation, we can reduce the cost both in time
and memory.

5.1. Error Assessment
To measure the error produced by the approximation,

we both consider the geometric difference and normal
variations as:

e(S ′, S ) = d(S ′, S ) + w · n(S ′, S ) (3)

where S is the original surface, S ′ is the approxima-
tion surface and w is the weight to combine these two
terms. d(S ′, S ) is the Hausdorff distance between two
surfaces [25], which is defined as

d(S ′, S ) =

∫ ∫
x′∈S ′

‖ d(x′, S ) ‖∞,

d(x′, S ) = inf
x∈S
‖ x′ − x ‖∞

(4)

where x and x′ are points on surfaces S and S ′ respec-
tively. We only use the non-symmetric distance since
we only want our simplified and tessellated mesh best
approximates the original mesh. n(S , S ′) is the normal
distance between two meshes. It is defined as:

n(S ′, S ) =

∫ ∫
x′∈S ′
‖ dot(n(P(x′)), n(x′)) ‖2 dx′ (5)

where P(x′) is the mapping from the point x′ to the sur-
face S . The reason to consider the normal variations
is mainly because in many rendering cases, perceptual
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Figure 5: Illustration of Moving vertex strategy.

errors brought by normals are more obvious than geo-
metric difference.

To compute the error between the tessellated mesh
Mt and the original mesh Mo, we first generate a set of
samples {x}K on each triangle of the tessellated mesh
Mt, where K = 1 ∼ 32 according to the size of tessel-
lated triangle. Then, we use Eq.(3) to compute the error
between two meshes as

e(Mt,Mo) =
∑

i

e(Ti,Mo) (6)

where Ti are triangles on the tessellated mesh Mt.

5.2. Approximation by Moving Vertex Strategy
Given inner and outer tessellation factors, we employ

a hardware tessellation simulator to generate subdivided
triangles and vertices. To achieve a better approxima-
tion, we hope most features on the original mesh should
be preserved. Therefore, we propose a new strategy that
moves tessellated vertices to feature vertices so as to
better reconstruct the original mesh.

To carry out this strategy, we differently process ver-
tices on edges or vertices inside of simplified triangles.
For tessellated vertices on edges, we need guarantee the
boundaries between triangles are kept. Thus, we first
interpolate the normal from the base vertices, and then
project the vertex along normal direction or the reverse
normal direction. If there exists a projection on the orig-
inal mesh, we store the position of hit point. However,
in some rare cases, there may not exist a valid projec-
tion, we will store the vertex for later interpolation.

For those tessellated vertices inside of the simplified
triangles, the key of this strategy is to find an appropriate
match between tessellated vertices and feature vertices.
To achieve this, we first use the local parametrization
to map the feature vertices onto the local barycentric
coordinate of simplified triangle. Then, we formulate
the matching as a minimum weighted bipartite match-
ing problem [26], where the distance in the barycentric
coordinate between tessellated vertices and feature ver-
tices is set as the weight. After solving this problem, we
have the matching to move tessellated vertices.

To avoid the flips of triangles, we check the nor-
mals of all subdivided triangles after moving vertices.
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For these triangles with flipped normals, we cancel the
movements of vertices one by one. The feature ver-
tex, which has smaller curvature, will be unanchored
first. Once there is no flipped triangle, we anchor all
moved matching vertices and project unmatched ver-
tices to original mesh. After that, another triangle flip-
ping check is taken to guarantee there are no flips of
triangles. For these vertices produce flipped triangles,
we cancel the projections and interpolate their positions
and normals from adjacent vertices. In Algorithm 1, we
illustrate main steps of this strategy.

Algorithm 1 Moving Vertex
1: procedure MOVINGVERTEX(Ms,Mo)
2: for Ti in Ms

3: {v j} = TESSELLATETRIANGLE(Ti)
4: PROJECTVERTEXONEDGE({v j})
5: // Get the feature vertices on this face
6: {uk} = EXTRACTFEATUREVERTEX(Mo, Ti)
7: // Vertices match and move
8: {(v jp , ukp )}= MINBIGRAPHMATCH({v j},{uk})
9: MOVEANDVALIDATE({(v jp , ukp )})

10: // Project remaining vertices
11: PROJECTANDVALIDATE({v j})
12: v list ← VERTEXCAUSEFLIP({v j})
13: end for
14: INTERPOLATE(v list, Ms)
15: end procedure

6. Optimization for Optimal Simplified and Tessel-
lated Mesh

Given one original mesh, we can generate numerous
simplified and tessellated meshes with different simpli-
fied triangles and tessellation factors. However, given
one rendering time budget, there exists one optimal sim-
plified and tessellated mesh that produces the least error.
In this section, we introduce the optimization algorithm
to automatically find such an optimal mesh.

In the simplification stage, we generate a simplified
mesh under certain number of triangles, ns, and in the
tessellation stage, we recreate details by presetting tes-
sellation factors, lt = (lin, lout). Thus, the tessellated
mesh can be represented as a function of these two kinds
of parameters as Mt(ns, lt). Obviously, these two kinds
of parameters are non-intuitive for users. Therefore,
we introduce an optimization algorithm to automatically
explore these two kinds of parameters after user gives a
budget of time, and then optimize a simplified and tes-
sellated mesh with minimum approximation error. We

use tmax to denote the given time. The optimization
problem can be formulated as

min e(Mt(ns, lt),Mo)
s.t. t(Mt(ns, lt)) < tmax

(7)

where t(Mt(ns, lt)) is the time to render tessellated mesh
Mt(ns, lt).

Since there is no analytical formation of Mt(ns, lt),
we take the numerical solution to optimize it. Given a
tmax, we first compute the estimated upper bound of tri-
angles of simplified mesh by scaling the triangle number
of original mesh as Nmax = tmaxNo/to, where No and to
are the triangle number and rendering time of the origi-
nal mesh respectively. Though the time to render mesh
is not completely linear to the number of triangles, in
our practice, Nmax is a good bound to generate a sim-
plified mesh without any tessellation factors. We then
always use 1K triangles as the minimum bound of sim-
plified triangles. To find the optimal number of simpli-
fied mesh, we use binary search between Nmax and Nmin.
To find the best tessellation factors for a given triangle
number of simplified mesh, ns, we first enumerate the
tessellation factors by setting the same outer and inner
tessellation factors for all triangles, so that we could es-
timate the maximum bound of tessellation factors, when
t(Mt(ns, Lmax)) > tmax. We set the minimum bound of
tessellation factors as 0, i.e. no tessellations. We also
take a binary search to find the tessellation factor lt to
produce the minimum approximation error. Note that lt
is set as a global estimation for all triangles. For each
triangle, we enumerate the outer and inner tessellation
factors from 0 to lt on each edge and in each triangle re-
spectively to find the local optimal approximation to the
original mesh. In summary, our optimization globally
employs binary search to explore two parameters ns and
lt, but locally takes linear search to find best tessellation
factors per edge and triangle.

7. Results

We have implemented our algorithm on a PC with
an Intel CoreTM i7 4770 CPU, 16GB RAM. We test our
method on several graphic cards with different hardware
tessellation capabilities, NVIDIA GeForce GTX 680,
GTX 760 and GTX 780. We use the hardware coun-
ters, gpu time, provided by the NVIDIA PerfSDK to
measure the rendering time.

7.1. Projecting Vertex Strategy
To compare our method with previous inverse subdi-

vision methods [4, 6], we adapted the idea of computing
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Figure 6: Dragon model.

Figure 7: Buddha model.

displaced vertices [6] from the Loop subdivision to our
hardware tessellation. We name it the projecting ver-
tex strategy. While applying this strategy, we compute
and store offset values along the interpolated normals of
tessellated vertices, i.e. the height values of tessellated
vertices. Each offset value is computed by projecting
the vertex along the normal or the reverse normal di-
rection to the original mesh. If there exists a projec-
tion on the original mesh, and it is within the maximum
distance threshold based on mesh size, we regard it as
a valid projection, and store the height and normal of
the projection on the original mesh in height array and
normal array respectively. This strategy is used in our
example models for comparisons.

7.2. Example Models

Three models are used to testify our method. Re-
sults of Dragon, Buddha and Lucy models are shown
in Fig. 1 6 7 8. For each model, The first image shows
the original mesh. Following two results are optimized
by our method under two different time budgets. The

final result is generated by the projecting vertex strat-
egy for comparison, where the rendering time, memory
cost or the error was set to be the same as that of the
second result. For every result, we report the simpli-
fied mesh (bottom left), error image (bottom right), and
the triangle number of simplified mesh Ms , the maxi-
mum tessellation factor L, the error e, the time t and the
memory consumption m. To be distinct with the moving
vertex strategy, we use “Projecting” to denote the results
of using the projecting vertex strategy.

Dragon. The Dragon Model is a model with 100K
triangles and tested on a graphic card GeForce GTX
760, Fig. 1. The resultant simplified and tessellated
mesh has a maximum 10 tessellation factors, and the av-
erage tessellation is 4.13. The rendering time of original
mesh is 0.37 ms, and the time to render simplified and
tessellated mesh is only 0.18 ms. More results of dragon
model can be found in Fig. 6, in which we set two time
budgets: 0.14 ms and 0.12 ms. The Dragon model has
some sharp features and bumps on its head and body. If
we set the target triangle number very small, the mesh
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Figure 8: Lucy model.

simplification method tends to remove small details to
maintain mesh’s shape. For example, the head and body
of the dragon model are flat after mesh simplification,
which can be seen in the simplification mesh image be-
low every result. But our method has the advantage to
tessellate new vertices to compensate the loss of geo-
metric details, and does not incur much costs. The first
result, which was bound to 0.14 ms, shows that the tes-
sellated mesh keeps all main features and is very sim-
ilar to the original mesh. The resultant mesh is tessel-
lated from 6K to 130K triangles, but is still 2.6 times
faster than that of directly rendering the original mesh.
And because of the use of coarse mesh save large in-
dex buffer of triangle, the memory cost is still less than
original mesh. If we set a lower budget time, we get a
simplified mesh with smaller tessellation factor, L = 7.
Under the new budget time, our method still captures
main details, while the rendering time has about 3 times
speedup. Compared with the projecting vertex strategy,
it can be seen that at the same error, e = 0.027, the result
generated by the projecting vertex strategy is slower and
costs more memory than our method.

Buddha. The Buddha Model has about 100K trian-
gles and was tested on a graphic card GeForce GTX
680, Fig, 7. This model is shaded by its normals, which
directly reveal the quality of reconstructed normals. We
set the time budget to 0.13 ms and 0.11 ms. As shown
in the simplification image, the mesh simplification pro-
cess remove the geometrical details on Buddha’s face
and belly, and the table below the Buddha model. But
after we tessellate and reconstruct the mesh with our
moving vertex strategy, as can be seen in the second im-
age, we get a very smooth normal reconstruction of the
Buddha model, and with 3 times improvement on ren-
dering efficiency. When we set the time budget to 0.11
ms, the resultant simplified and tessellated mesh has a
maximum 10 tessellation factors, and 4.6 average fac-
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Figure 9: Experiment on variance of tessellation factors

tors. The rendering time of original mesh is 0.36 ms,
while our tessellated mesh speeds up 3.4 times. Beyond
the performance improvement, we save additional 0.47
MB memory usage. In this model, we bound the mem-
ory to be 2.2 MB and then apply the projecting vertex
strategy. Result is shown as the third result. The resul-
tant mesh has a larger error and slower rendering time
comparing to our result. It demonstrates our method is
supreme than the projecting vertex strategy.

Lucy. The Lucy Model is a model with 150K trian-
gles and tested on a graphic card GeForce GTX 780,
(Fig. 8). The wrinkle on her cloth is the most complex
part in all example models. From these results, it can
be seen that these features have been well reconstructed
by our tessellated meshes. Additionally, it also can be
seen that when we set the time budget to 0.1 ms, our
method produces a simplified and tessellated mesh with
a very small error and less memory. The second result
shows that the rendering archives 2.3 times faster but
has few noticeable errors at sharp edges, as well as re-
duces memory to 1.6 MB. We also apply the projecting
vertex strategy under the 0.07 ms time budget. The re-
sultant mesh quality is much worse and the memory is
more than those of our method.

7.3. The Impact of Tessellation Factors on Triangles
In the simplification stage, we introduce a new error

metric, the features per triangle, to control the simpli-

9



Figure 10: Comparison between the simplified mesh and our final tessellated mesh. Two meshes are rendered at the same rendering time. Our
simplified and tessellated mesh (middle left) is much more accurate than the mesh being only simplified (middle right).

(a) Time-error (b) Memory-error

Figure 11: The capability of simplified and tessellated mesh.

fication of triangles. The use of this metric is based
on the observation that the more uniform the tessella-
tions are on the mesh, the less time the tessellations are
taken. We carry out an experiment to validate this ob-
servation. We first simplify these three test models used
in our paper into simplified meshes with approximately
the same triangle numbers. Then for every simplified
model, we randomly set maximum and minimum tes-
sellation factors on the model to generate a tessellated
mesh. No matter what tessellation factors are set on the
mesh, we always keep the final number of tessellated
triangles same, and record the rendering time. Once
get the tessellated model, we compute the variance of
tessellation factors of triangles over the entire model.
For each model, we use such a method to generate 120
tessellated meshes. After generating these meshes, we
sort these tessellated meshes according to the variance
of tessellation factors, and plot them in Fig. 9. The x-
axis is the index number of sorted tessellated meshes,
where the index number increases with the increase of
variance of tessellation factors. The smaller the index is,
the less variance of tessellation factor is. The y-axis is
the rendering time. From this experiment, it can be seen
that, for all three models, the more uniform the tessella-
tion factors are, the less rendering time is.

7.4. The Capability of Simplified and Tessellated Mesh

To analyze the capability of our simplified and tes-
sellated mesh, we conducted an experiment on the Bud-

dha model using Geforce GTX 680. We enumerated
the triangle number of simplified mesh, ns, and the tes-
sellation factors, lt. For each pair of ns and lt, we
then used the algorithm proposed in Section 6, i.e. the
linear search of local tessellation factor on each trian-
gle, to optimize the best approximation for the origi-
nal mesh. The rendering time, memory and error are
plot in Fig. 11. The green dot and line are the render-
ing time and memory usage of the original mesh. The
blue dots and red dots are tessellated meshes generated
by the moving vertex and projecting vertex strategies
respectively. In these two diagrams, we draw out the
Pareto frontiers by dash lines. Based on the definition
of Pareto frontier, the tessellated meshes on the Pareto
frontier are more preferable and better than other tessel-
lated meshes. Thus, the shape of the Pareto frontier indi-
cates the best performance that our method can achieve
to trade-off between the error and the time or the mem-
ory for this model. From the time-error plot, the maxi-
mum speedup is approximately 4 times, and at that time,
the error is approximately 0.05. From the memory-error
chart, the best memory save is approximately one third
and at that time, the error is 0.1.

We also highlight two optimal simplified and tessel-
lated meshes optimized by our method in Fig. 11(a).
As can been seen, these two results (marked as red and
black dots) are both on the Pareto frontier. Not that re-
sults plotted in Fig. 11 are computed by enumerating
two global parameters, (ns, lt), and linearly searching
local lt on each triangle. Our optimized results on the
Pareto frontier demonstrates that our method provides
optimal simplified results.

7.5. Comparison

Comparison with Simplified Mesh. To better un-
derstand the advantage brought by our tessellation
stage, we compared our simplified and tessellated
meshes with meshes that are only simplified by [9].
We generated a sequence of simplified meshes of the
Dragon model from triangle number 95K to 4K, and

10



Figure 12: A simple case to illustrate the different of the projecting
vertex and moving vertex strategies.

render them to get the rendering times and errors. Then,
from each simplified mesh, we compute the correspond-
ing tessellated mesh, and render them as well. The time-
error diagram of these two meshes are shown in Fig. 10.
The red line is composed by only simplified meshes, and
the blue dot line is the Pareto frontier of simplified and
tessellated meshes generated by our method. As we can
see, after applying the tessellation stage, the tessellated
mesh is far more accurate than the simplified mesh. Two
meshes with the same rendering time are compared. It
demonstrates that the tessellation stage is necessary to
better approximate the original mesh.

Comparison with Projecting Vertex Strategy. To
better compare the projecting vertex strategy used in [4,
6] with our new moving vertex strategy, we applied the
projecting vertex strategy in the experiment that we de-
scribed in last section, and plotted the rendering time,
memory and error in charts shown in Fig. 11. As we
can see, the Pareto frontiers of the moving vertex strat-
egy is lower than the Pareto frontiers of the projecting
vertex strategy in both of the time-error chart and the
memory-error chart. It demonstrates that our new strat-
egy has better performance and quality. When the error
budget is 0.05, the moving vertex strategy takes 0.12
ms to render a scene, which is about 1.3 times faster
than the projecting vertex strategy. Such an improve-
ment of efficiency at runtime is mainly from the reduc-
tion of instruction in tessellation shader and less mem-
ory I/O. Specifically, the moving vertex strategy only
needs one assign operation, while the projecting vertex
strategy needs normal interpolation, normalization and
some algorithmic operations to calculate the final po-
sition of tessellated vertex. The memory save of our
moving vertex strategy is because our strategy is able to
achieve good approximations by only using much less
vertices.

Comparison with Displacement Maps. Our pro-
jecting vertex strategy only employs the idea of dis-
placed vertices along normals [4, 6], but does not ac-
tually compute in the texture space. To better com-
pare with results tessellated from displacement maps,

we use a 3rd-party software, AMD GPU Meshmapper
demo [27], to generate the displacement map and the
normal map for a low-resolution mesh based on the de-
tails from a high-resolution mesh. Results are shown
in Fig. 13. The ninja model (Fig. 13(a)) is an example
model distributed with Meshmapper, where the original
mesh and the coarse mesh are both provided to compute
the displacement map and the normal map. In our exper-
iment, we set the resolution of computed displacement
map and normal map to 1024×1024, and use 5 inner and
outer tessellation factors while render it (Fig. 13(d)). To
generate our result (Fig. 13(b)), we first simplify the
original mesh into a coarse mesh with the same trian-
gle number of that provided by Meshmapper, and then
use 5 as global tessellation factor to compute the tes-
sellated mesh. These two error images (Fig. 13(c)(e))
clearly show that our result is superior, especially at re-
gions with sharp features. The rendering time of our
method and displacement map + normal map are 0.18
ms and 0.34 ms respectively. At the same time, our
method consumes about 6 MB memory to store posi-
tions and normals of tessellated vertices, while the costs
of these two maps are 12 MB (normal map) and 4 MB
(displacement map).

To better explain why our method is better at cap-
turing sharp features, we show an illustrative example
in Fig. 12. We built a mesh with several sharp bumps,
and used it to test on our method and the displacement
maps. From the tessellated results, it can been see that
the moving vertex strategy perfect matches the original
mesh, while the offsets along normals miss the key ge-
ometric features. A 2D illustration is shown in Fig. 12
bottom left.

8. Conclusion and Future work

Inspired by the advance in graphic hardware, we
present a new mesh process and rendering method for
realtime high quality rendering. By formulating the
mesh approximation as an inverse tessellation problem,
we propose a two-stage algorithm to process the mesh,
the mesh simplification and the mesh tessellation. Then,
we take an optimization to iterate on these two stages
to obtain an optimal simplified and tessellated mesh by
given a fixed time budget. Results show that our method
is capable of achieving 2 to 4 times speedup, but retain-
ing good rendering quality.

In future, there are several directions worthy of fur-
ther explorations. First, currently, we partition the in-
verse tessellation approximation into two stages. It will
be an interesting and important topic to explore a global
approximation solution to optimize the simplification
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Figure 13: Comparison between our method and the Displacement Map + Normal Map. (a) Original Mesh. (b) Tessellated mesh using our method.
(c) Our method’s error image. (d) Tessellated mesh using Displacement map + Normal map (e) Displacement map + Normal Map’s error image

and tessellation together. Second, view-dependent ren-
dering is an important application of hardware tessel-
lation. The adaption of our algorithm to dynamic and
view-dependent tessellations are regarded as interesting
future directions.
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