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Abstract

In this paper, we present a new automatic shader simplification
method using surface signal approximation. We regard the en-
tire multi-stage rendering pipeline as a process that generates sig-
nals on surfaces, and we formulate the simplification of the frag-
ment shader as a global simplification problem across multi-shader
stages. Three new shader simplification rules are proposed to solve
the problem. First, the code transformation rule transforms frag-
ment shader code to other shader stages in order to redistribute com-
putations on pixels up to the level of geometry primitives. Second,
the surface-wise approximation rule uses high-order polynomial ba-
sis functions on surfaces to approximate pixel-wise computations in
the fragment shader. These approximations are pre-cached and sim-
plify computations at runtime. Third, the surface subdivision rule
tessellates surfaces into smaller patches. It combines with the pre-
vious two rules to approximate pixel-wise signals at different levels
of tessellations with different computation times and visual errors.
To evaluate simplified shaders using these simplification rules, we
introduce a new cost model that includes the visual quality, render-
ing time and memory consumption. With these simplification rules
and the cost model, we present an integrated shader simplification
algorithm that is capable of automatically generating variants of
simplified shaders and selecting a sequence of preferable shaders.
Results show that the sequence of selected simplified shaders bal-
ance performance, accuracy and memory consumption well.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Rendering;

Keywords: GPU shader, real-time rendering, shader simplifica-
tion, surface signal approximation

1 Introduction

GPU shaders play a very important role in computer graphics [Se-
gal et al. 2013; Microsoft 2013a]. Time-critical applications like
video games, real-time shading, and high-fidelity visualizations
heavily rely on high-performance shader computations. In the lat-
est GPU pipeline, there are five shaders acting in three rendering
stages [Kessenich et al. 2013; Microsoft 2013b]. The vertex shader
processes vertices in the vertex shader stage; the geometry shader
and the tessellation shaders compute and output geometry prim-
itives in the geometry-processing shader stage; and the fragment
shader inputs interpolated geometry attributes and outputs shading
values of pixels in the fragment shader stage. All of these shaders
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Figure 1: (Top) one result using the simplified shader generated
by our approach. (Bottom Left) side by side comparison with the
image rendered by the original shader. (Bottom Right) the error
image to visualize the difference. Compared with the original frag-
ment shader, our simplified shaders raise the FPS from 61 to 229.

are fully programmable, reproducible and reusable, allowing flexi-
ble personalization of real-time rendering effects.

However, the quality of shaders greatly depends on the experi-
ence of shader programmers. Even though there are some rules
and toolkits for interactive modulation and optimization of shader
programs, the entire process is time-consuming, tedious and some-
times inefficient. In general, the most time-consuming part is the
shading computation within the fragment shader. Thus, much ef-
forts have been made to automate the simplification of fragment
shaders. Pellacini [2005] proposed a user-configurable shader sim-
plification method for pixel-wise procedural modeling. Nehab et
al. [2007] and Sitthi-amorn et al. [2008] presented a reprojection
based scheme to optimize the shading of pixels. Most recently,
Sitthi-amorn et al. [2011] used Genetic Programming to fully auto-
mate the simplification process. However, all of these studies only
took simplifications within the fragment shader stage. If we take a
broader view of the entire rendering process, the fragment shader
is only one stage of the entire rendering pipeline, and other shaders
are also of great importance in computing shading values. Foley
and Hanrahan [2011] presented a modular and composable shading
language to cut across multiple pipeline stages. But, their goal is
not the simplification of shaders.

In this paper, we introduce a new approach to represent and ap-
proximate shader computations. We regard the shader computa-
tions as the generation, modulation and combination of signals on
the surface. In this way, the computations in the fragment shader
can be approximated and simplified by surface signal approxima-
tions, and thereby be or transformed to other shaders. This leads
to a novel shader simplification scheme that seeks to “bake” shader
computations on the surface from the point of view of surface sig-
nal processing. Figure 1 shows one of our results applying this
simplification scheme, where the simplified shaders raise the FPS
from 61 to 229 but still retain good visual quality when compared



to the original shaders. To achieve this, three new shader simpli-
fication rules are proposed: a) transforming the shader computa-
tions from the fragment shader to the geometry-processing shaders
to redistribute these computations; b) simplifying the shader com-
putations by means of surface signal approximations and caching
them on the surface; ¢) subdividing surfaces into smaller patches to
provide different qualities of signal approximations. All these rules
bring new challenges for automatic shader simplifications: allowing
across-shader simplification greatly complicates the simplification
process; leveraging surface signal simplifications requires a well-
designed strategy for signal representation, modeling and compen-
sation; subdividing surfaces at different levels greatly enlarges the
exploration space of simplified shaders. Additionally, besides the
rendering time and the visual error, incorporating the approxima-
tion on surfaces introduces a new cost: the memory consumption.
This paper presents a new solution to address all of these problems
with the following contributions:

e A new shader simplification scheme that allows for re-
organization of fragment shader code among different shader
stages by means of a novel code transformation rule;

e A surface signal approximation rule that replaces time-
consuming shading computations with signal approximations
of high-order polynomials on surfaces;

e A surface subdivision simplification rule that incorporates
programmable tessellators to balance approximation quality
and tessellation of surfaces.

e An integrated shader simplification approach that balances
performance, accuracy and memory cost by leveraging the
code transformation, the surface signal approximation and the
surface subdivision rules.

2 Related Work

Shader Simplification The pioneering work of shader simplifi-
cation [Olano et al. 2003] was for procedural fragment shaders.
It gains significant speedup by replacing texture fetches with less
expensive operations. Then, a more general algorithm proposed
by Pellacini [2005] automatically generates a sequence of simpli-
fied fragment shaders based on the error analysis of a set of ex-
pression rules. Thereafter, to adapt to more changes in the in-
put, Nehab et al. [2007] proposed a reprojection-based shader opti-
mization method that uses a screen buffer to cache optimized val-
ues. This method was extended to automate the use of data re-
projection as a general and practical tool for optimizing procedural
shaders [Sitthi-amorn et al. 2008]. More recently, a Genetic Pro-
gramming based shader simplification scheme was proposed to se-
lect optimal shaders that balance between performance and image
quality [Sitthi-Amorn et al. 2011]. Similarly, our approach lever-
ages code analysis techniques, but distinguishes itself from previ-
ous approaches in that ours seeks to not only optimize computa-
tional operations in the fragment shader, but also distribute com-
putations across different stages of shaders. Our method uses ad-
ditional buffers to store approximated surface signals, which bears
some similarity with those cache-based reprojection methods [Ne-
hab et al. 2007; Sitthi-amorn et al. 2008]. However, the representa-
tion and the way we use these buffers are totally different.

Foley and Hanrahan [2011] presented a modular and composable
shading language, Spark. It allows users to define shading effect
across different programmable stages by means of a global opti-
mization. However, the optimization used in their method is de-
signed to eliminate dead-code and make preparations to generate
HLSL shaders. Our shader simplification that generates a sequence
of optimized shaders is beyond their optimization scope.

Surface Signal Approximations Generating the visual appear-
ance of a surface is a process of signal generation, modeling and
reformulation. Many types of surface signals have been used: col-
ors, texture maps, bump maps, displacement maps, bidirectional
texture maps, etc. [Akenine-Moller et al. 2008]. To represent light-
ing signals on a surface, either triangle meshes are adapted to fit the
signal [Hanrahan et al. 1991; Hoppe 1996] or the signals are rep-
resented with nonlinear basis functions [Zatz 1993; Lehtinen et al.
2008; Sloan et al. 2003]. Remeshing is impractical for shader op-
timization, so we choose to approximate the surface signals with
basis functions. We specifically choose Bézier functions because
of their wide usage in graphics.

Recently, Kavan et al. [2011] proposed a vertex-based surface sig-
nal approximation technique, called vertex-baking. By taking linear
approximations of the ambient occlusion on surfaces and storing
them on vertices, their method is able to consume less memory and
achieve better performance than that directly using ambient occlu-
sion maps. Alternatively, our method provides non-linear approx-
imations on surface signals, and targets a different problem: the
shader simplification.

Code Analysis In our paper, we use several code analysis tech-
niques to parse shaders. Abstract Syntax Trees (ASTs) [Much-
nick 1997] are used to construct the syntactic structure of shader
code, which has been widely used in previous shader simplifica-
tion approaches [Pellacini 2005; Sitthi-amorn et al. 2008; Sitthi-
Amorn et al. 2011]. Program Dependence Graphs (PDGs) [Ferrante
et al. 1987] that encode the data and control dependencies of shader
code are used to construct program slices [Weiser 1984] of shader
code. The dependencies of code have been used in specialization
shaders [Guenter et al. 1995]. Unlike their approach, our focus is
on automatic shader simplification.

3 Overview

3.1 Gilobal Shader Simplification Problem

Shaders are programs designed to compute shading on geometry
primitives. In the latest graphic rendering pipeline, five shaders at
different stages are used in an integrated rendering pipeline: the
vertex shader, the geometry shader, two tessellation shaders and
the fragment shader [Kessenich et al. 2013; Microsoft 2013b]. For
simplicity, the set of shaders used in a rendering pipeline is called
a shader configuration.

We represent the entire rendering pipeline as a function f, which
takes a set of geometry primitives with attributes, and generates
shading values for each pixel:

f((z,y),v) =por(goh(v),(z,y)) (1

where (z,y) is the screen position of one pixel, v is the set of ge-
ometry primitives, p denotes the fragment shader, g denotes shaders
in the geometry shader stage, h is the vertex shader, and r is a
fixed rasterization stage that converts geometry primitives into pix-
els with interpolated geometry attributes. Without loss of general-
ity, in the following text we assume that the geometry primitives
processed by shaders are triangles,

The goal of global shader simplification is to generate a sequence
of shader configurations, {pk, gk, b,k = 1,2,3,...}, such that
each triple of {px, gk, hr} produces a rendered image with dif-
ferent rendering quality and different costs, such as different time
consumption and memory consumption. In particular, the render-
ing quality of each optimized shader configuration is measured by



the screen-space color difference:

er = [ Ipor(go ). (e.) =5or(Goi(v). (.9)) | drdy
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where I denotes the entire screen space and || - || is the L? norm
of pixelwise color differences. Similar to previous approaches [Pel-
lacini 2005; Sitthi-Amorn et al. 2011], the difference metric can be
employed subject to additional uniform parameters, such as a set
of lighting and camera positions or a sequence of input frames, u,
distributed on the domain U:

ef = /U/I || por(gov(v), (z,y))—por(gov(v), (z,y)) || d:rdg(/;i)u

3.2 Our Solution

Our shader simplification scheme is motivated by the following
observation: in general, the entire rendering process can be re-
garded as generating signals of the underlying surface, and different
shaders yield various surface signals. Thus, the simplification of
shaders can be regarded as an approximation of the produced sur-
face signals. Specifically, the screen position of one pixel, (z,y),
corresponds to a local point (s;, t;) on a certain object-space trian-
gle z;: (si,t;) = 7~ *(x,y), where 7" denotes the inverse raster-
ization function, and (s;, t;) denotes the barycentric coordinates in
z;. In this way, the shading function on the image f can be approx-
imated by summed surface signals defined on the triangle set of the
scene, {z;}, as:

M

M
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f(xvy) =
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where M is the number of triangles, f-, is the approximation func-
tion only defined on the triangle z;, {b;} are basis functions and
{a; } are weights.

This equation links the fragment shader stage with two other shader
stages, the vertex-shader stage and the geometry-shader stage. By
approximating signals on the rendered image (defined in screen
space) by surface signals (defined on surface), we are able to obtain
a sequence of surface signal approximations with different errors.
This introduces a new strategy for shader simplification: optimiz-
ing shaders by approximating them on the surface, and redistribut-
ing computations across multiple shader stages. Given the fact that
modern fragment shaders usually dominate the computational bud-
get per frame [Sitthi-amorn et al. 2008], in this paper, we only fo-
cus on the simplification of fragment shaders. Below, we describe
three rules following this strategy, and the cost model used in our
approach.

3.2.1 Simplification Rules

Transform Code between Shaders. One basic rule is to cut across
the boundaries between the fragment shader stage and two other
shader stages, and allow for transforming code between them. This
rule converts the pixel-wise computations to a combination of com-
putations on vertices and interpolations on pixels. In this sense, the
code transformation can be regarded as using a suite of linear basis
functions to approximate surface signals. For a triangle z, it can be

represented as:

3
fo(s,t) o~ ) bi(s,t)f(v) )
J
= fd)s+ fi)t+ f(03)(1—s—1)
where {v3,j = 0,1,2} are vertices of z, and f is the function

similar to f but computed at vertices instead of pixels. When the
object-space complexity is smaller than the screen-space complex-
ity (usually true in many real-time rendering applications), redis-
tributing computations from pixels to vertices is effective in reduc-
ing the computational consumption.

Approximate Shader Functions on Surface. The second rule is to
approximate shader functions by non-linear basis functions defined
on surfaces, i.e., Bézier triangles in this paper. This yields:

f(sit) = Y Biuls,t)ci ©)
i+j+l=n

n

where B}, (s, t) are the Bernstein polynomials defined on triangles:

(s, t) = i!’;;“sltj(l —s—t)'i+j+1=n,and {c;} are
control points. It implies that the original surface signal on a trian-
gle z; can be approximated by a set of Bézier functions with several
control points, ¢;;;. With the form of the error metric in Eq.(3), we
can compute these control points by minimizing the error defined

on the entire surface of object as:

min / | £(s.8) — F(s.8)) [l2 dp(s, 1) ™

Giji

where T denotes the entire triangle set, and u(s, t) denotes the as-
sociated surface measure. By storing these control points, we are
able to simplify the runtime computations in shaders by interpolat-
ing pre-cached approximations on surface.

Subdivide Surface. In Eq.(4), the original signal is approximated
by basis functions defined on discrete domains, i.e., piecewise trian-
gles. This enables an alternative way to improve the approximation
by partitioning the discrete domain into a denser tessellation. In
our application, this increases the number of triangles. With the ge-
ometry shader or the tessellation shaders, new geometry primitives
(vertices or triangles) can be generated in the rendering pipeline at
runtime, and thereby be combined with previous two simplification
rules to provide better approximations. Therefore, the code trans-
formation approximation can be further represented as:

K 3
folmy) =D 0> bi(sw,te) f(v5*) ®)
ko

where K denotes the number of new generated triangles, {zx }, and
{1);’“} are vertices on the new tessellated triangles. Similarly, the
Bézier triangle approximation is changed to

K n
flay) =Y > Bk tr)cil ©)

k it+j+l=n

where ¢}, are control points on the new tessellated triangle zx. To
guarantee that the approximation domains remain unchanged after
the subdivision, the positions of new geometry primitives are all
kept on the original triangles.
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Figure 2: Algorithm overview
3.2.2 Cost Model

Visual error and rendering time are two common cost functions
that have been used in previous cost models [Pellacini 2005; Sitthi-
Amorn et al. 2011] to evaluate simplified shaders. In this work, we
introduce the third cost function: memory consumption. When we
approximate shader functions on surfaces, control points of fitted
Beizer triangles are stored as extra textures for accessing at runtime.
According to different types of signals, the memory consumption
varies. That is, if these Bézier triangles approximate intermediate
variables, the simplified shader may require more memory storage.
If original textures are approximated, the overall memory consump-
tion may be reduced.

Given the importance of memory consumption in our shader simpli-
fication scheme, we define a triple, (¢, e, m), to evaluate simplified
shaders, where ¢ is the shader computation time, e is the visual er-
ror and m is the memory cost. Specifically, we count the rendering
clocks of shaders on the GPU as the time cost, compute the aver-
age per-pixel L? distance in the RGB space over all representative
frames as the visual cost, and measure the overall memory usage as
the memory cost.

We extend the partial order defined in [Sitthi-Amorn et al. 2011]
to three dimensions: one simplified shader with (¢1, €1, m1) domi-
nates another simplified shader with (t2, e2, m2), if t1 < t2 Aex <
eas Amp < mo,and t1 < t2 Vel < e Vmp < me. Thatis,
one simplified shader dominates another if it improves in rendering
time, visual error or memory consumption, and is at least as good
in the others. Based on the partial orde, the preferred simplified
shaders are selected from a Pareto surface in the three dimensional
cost space. The actual distribution of simplified shaders in the cost
space is plotted for every example shader in the result section.

4 Shader Simplification using Surface Ap-
proximation

4.1 Algorithm Overview

The flowchart of our algorithm is illustrated in Figure 2. The input
includes one shader configuration with shaders and a set of uniform
parameters sampled from their domains. As a preprocess, we first
parse these shaders, and convert shader code into Abstract Syntax
Trees (ASTs) [Muchnick 1997] and Program Dependent Graphs

(PDGs) [Ferrante et al. 1987]. AST is a tree representation of
the abstract syntactic structure of shader code, and PDG records
the data and control dependencies of each variable and operation.
Then, for each variable and operation in the shader, we compute
a program slice [Weiser 1984], called a shader slice in our paper.
A shader slice is a shader program that is taken with respect to a
certain program point and a variable x; a slice consists of all state-
ments of the program that might affect the value of x at a certain
program point. One shader slice is regarded as one basic simplifi-
cation primitive for our shader simplification.

Simplifying a shader configuration is performed with three simpli-
fication rules. The first rule transforms shader slices in the frag-
ment shader to shaders in other stages. The second rule optimizes
the original shaders by approximating the surface signals gener-
ated by shader slices with different orders of Bézier basis func-
tions. The final one is to employ tessellation shaders or geometry
shaders to generate new vertices and triangles. For each new gen-
erated triangle, we iteratively apply the previous two rules, namely,
either transform code from the fragment shader to new vertices, or
fit a new Bézier approximation for the new triangle. Every pos-
sible variation of applying these rules to the selected shader slice
will generate a new shader configuration. Each new shader con-
figuration is evaluated with costs concerning rendering time, mem-
ory consumption and the difference of rendered image. A Genetic
Programming based optimization [Sitthi-Amorn et al. 2011] with
our specific modifications is used to select potentially preferable
shaders from the Pareto surface in the three dimensional cost space,
and drive the optimization iteratively.

4.2 Parsing Shaders

Beginning from given shaders in the original shader configuration,
we parse these shaders and construct ASTs and PDGs for each
shader. In Figure 3, we show an example case where a geometry
shader and a fragment shader are given as the original shader con-
figuration.

To extract the shader slice, we take several operations in addition
to the standard program slicing techniques [Tip 1995]. First, we
take the input uniform parameters into consideration in computing
the shader slices from the PDGs, so as to omit some dependencies
that do not occur in the execution of the particular shade code with
these parameters. Second, for loops with fixed iterations or itera-
tions determined by uniform parameters, we unfold the loop and
encapsulate each iteration into a shader slice so that these iterations
can be optimized individually using the code transformation or the
Bézier surface approximation scheme. All extracted shader slices
are stored in a list in the order of their locations in the original
shader and are processed in the shader optimization step one-by-
one.

4.3 Transforming Code across Shaders

We take shader slices as basic primitives to perform code trans-
formation. Three types of code transformations are supported in
our approach: from the fragment shader to the vertex shader, to the
geometry shader, and to the domain shader (the tessellation evalua-
tion shader). In practice, the shader model version of the graphics
hardware determines the type of the code transformation.

Though destinations are different, operations of different types of
code transformations commonly take three main steps. They are
statement relocation, repetition removal, and output merge. First,
the statements of one shader slice are appended to the target shader,
and are removed from the fragment shader. If the target is a vertex
shader or a domain shader, it is directly appended to the end of all
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tessellation code are shown in blue. After all simplification rules are applied, new shader code is generated from these ASTs of shaders, and

is used to render scenes.

computations. If the target is a geometry shader, these statements
are added before the vertex emission statements. Thereafter, a code
scan is performed to eliminate all repetitive statements. The output
variables of the transformed shader slice are added into the output
list of the vertex shader and domain shader, or the emitted vertex
attributes of the geometry shader. One shader slice transformation
produces a new shader configuration (a simplified fragment shader
and an enlarged vertex, geometry or domain shader).

In Figure 3, we illustrate a code transformation for one shader
slice, of which the statement is marked in the red box. Such a
shader slice is transformed from the fragment shader to the geome-
try shader. The resultant changes on ASTs of simplified shaders are
highlighted in the red dashed box. After such a code transforma-
tion, the computation of shader slice in the red box is taken in the
geometry shader. Only their interpolations are input to the fragment
shader and take part in following computations. Please refer to the
supplementary document for more details and code examples.

4.4 Approximating Shader Slices on the Surface

Our approach allows for computing the output of each pixel and ap-
proximating them on the projected surface. The key idea is to fit the
distribution of each output variable (a kind of surface signal) with
Bézier triangles. The approximation is performed for each shader
slice with three steps: sampling the surface signal discretely; fitting
discrete samples with Bézier triangles; integrating the computed
Bézier triangles to generate simplified shaders. An illustrative ex-
ample case applying this rule is given in the supplementary docu-
ment.

4.41 Sampling Surface Signals

The signal of one shader slice on the surface can be modeled by
discretely sampling its output variables. For a shader slice in a frag-
ment shader, we first extract all triangles shaded by this fragment
shader, and then uniformly generate samples on each triangle and
compute signal values on these samples. In practice, to compute
these output values, we interpolate required geometry attributes and
evaluate the values using a shader simulator.

4.4.2 Fitting Surface Signals

Fitting sample points generated by one shader slice with Bézier
triangles is performed globally on the entire sampled surface. To

compute the optimal control points of triangle, z;, with certain or-
der, a discrete least square optimization equation can be formed by
substituting Eq.(6) into Eq.(7), and formulating it into a matrix for-
mation:

Al A.c., = ALt (10)

where A, is the observation matrix, each element of which is the
value of the Bernstein polynomials at the sample points. c., are
control points, and f., denote the variable values at sample points.

In many situations, the surface signals are continuous at a large
scale. Accordingly, a smooth constraint on the boundaries among
surface triangles is demanded, yielding a global least square equa-

tion:
T T T
R I B

where A = [A;, ..., A.,,...] is a diagonal matrix composed from
all triangles, H denotes the smooth constraints on boundaries, and
« is the Lagrange multiplier. Our approach employs open source
software [Guennebaud et al. 2010] to solve the linear equation.

4.4.3 Simplifying Shaders with Fitted Functions

Note that the motivation for signal fitting is to replace the original
shader slice with fitted Bézier triangles, and thereby reduce compu-
tations. To allow the fitted Bézier triangles be correctly accessed by
pixels in the fragment shader, we first store all control points in an
additional buffer, and index each set of control points of Bézier tri-
angles by the triangle ID. Then, we bind the buffer to a texture and
pass the texture ID and triangle ID to the fragment shader through
the vertex shader. To let pixels be correctly interpolated, we explic-
itly pass the barycentric coordinates to the fragment shader as well.
This is done with the geometry shader by creating the barycenteric
coordinates of vertices and interpolating within the raterization pro-
cess [Baentzen et al. 2008].

4.5 Subdividing Surfaces

The runtime surface subdivision relies on the hardware implemen-
tation of programmable tessellations. To make it adaptable to dif-
ferent hardware, we implement two versions of surface subdivi-
sion with geometry shader or tessellation shaders, respectively. For
hardware compatible with shader model 5, we perform the subdi-
vision in tessellation shaders. For those compatible with shader



model 4, we use the geometry shader to subdivide surfaces. The
implementation details vary for the tessellation shaders and the ge-
ometry shader, but mainly take two steps.

First, to generate one simplified shader, we choose a certain tes-
sellation factor to control the number of sub-triangles. In the hull
shaders, we use different inner and outer tessellation factors to con-
trol the subdivision level and the pattern of sub-triangles. In the
geometry shader, we use a number of iterations to generate sub-
triangles at different subdivision levels. For simplicity, in the ge-
ometry shader, we always partition one triangle into triangular grids
with a uniform tessellation factor on each edge.

Second, we apply two different simplification rules on these new
generated sub-triangles. For the code transformation rule, we ap-
pend transformed shader slice code into the domain shader or in-
sert the code before the vertex emission statements in the geometry
shader. For the Bézier triangle approximation, we assign each sub-
triangle a unique triangle ID using the original triangle ID with the
tessellation pattern. Then, we use the signal fitting method pro-
posed in the previous section to compute the control points for each
sub-triangle. To let each fragment shader correctly index the sub-
triangle ID and access corresponding control points, we use the ge-
ometry shader to compute the unique ID of each sub-triangle, where
the original triangle ID, the local sub-triangle ID and the tessella-
tion pattern are input as parameters. More details and the example
code are provided in the supplementary document.

4.6 Selecting Simplified Shaders

For each shader slice, there are tens of potential simplified variants
by means of the three simplification rules. Given the hundreds or
thousands of lines of shader code, the size of all variants of simpli-
fied shaders is the combination of simplified variants of all shader
slices. Such a shader space is too large to be fully explored. To
better select simplified shaders, we adapt the Genetic Programming
(GP) proposed in [Deb et al. 2002; Sitthi-Amorn et al. 2011] with
several modifications.

First, in our approach, the element of the population is a combi-
nation of shader slices applied with our simplification rules. The
mutation in our optimization is to change the simplification rules
applied on shader slices that have been simplified. The crossover
is to exchange simplified shader slices for two variants. Second,
we observe that for one shader slice, its simplified variants can be
sorted by their partial orders. Thus, before taking the Genetic Pro-
gramming optimization, we first compute all simplified variants for
one shader slice, and select local preferred shader variants lying on
the Pareto surface. Only those local preferred shader variants are
regarded as candidates of this shader slice to be mutated by itself
or crossover with other shader slices. These local preferred shader
variants are also used to initialize the population. Third, we order
all shader slices according to their locations in the original shader
code, and use the order to help in mutation and crossover to gener-
ate new variants. Since the shader slices usually have dependencies
on their previous shader slices, in code transformation, the location
order of the shader slice is very helpful to reduce the number of
variants.

After the final iteration, all variants ever produced and evaluated
are used to compute a single unified Pareto surface. The variants on
that surface are output as preferred shaders.

5 Results

We implement the approach with Visual C++ and HLSL (Di-
rectX3D). Our shader parser is built on Lex and Bison, and the

GPU Importance |y p1e | TR2 Imrod
Sampling

Scene
Triangles # 20K 10K 7.2K 26 K
Vertices # 39.7K 8.6 K 5.1K 133K
Memory # 2.0 MB 62.5KB 2.0 MB 5.38 MB
Line of Code
Source 120 99 157 194
Shader slices 180 66 129 272
Shader Simplification
Generated variants 1778 1501 1296 7597
Pareto variants 76 59 34 75
Time (hours) 2.5 7.1 14 6.8
Code transform 69.7% 76.08% 81.7% 78.9%
Bézier fit 64.4% 74.7% 55.9% 61.5%
Subdivision 26.% 70.0% 61.0% 28.9%
Results
S@pz‘fggg 12 error 2.10 3.67 1.77 3.76

Table 1: Configurations and statistics of example shaders. From
top to bottom: the scene complexity; the code complexity, the statis-
tics in the shader simplification section including the number of all
generated variants, the number of variants on the Pareto Surface,
the computation time, and usages of different simplification rules;
and the speedup ratio given a visual error threshold.

Genetic Programming-based shader selection algorithm is modi-
fied from NSGA-II [Deb et al. 2002; Sitthi-Amorn et al. 2011].
Experiments are conducted on a PC with an Intel Core™ i7 3770
CPU and different graphics cards. We use the hardware counters,
gpu_time, provided by the NVidia PerfSDK to measure rendering
times. All images were rendered at a resolution of 1920 x 1080.
In the following figures, some images are cropped to 1080 x 1080
for comparisons. In all results, the texture mipmaps are disabled to
better compare the approximated signals with the original surface
signals. Please refer to the supplementary files for full resolution
images, and the supplementary video for side-by-side comparisons.
Note that the supplementary video is downsampled to 720P for a
smaller file size.

5.1 Example Shaders

We test our approach on four example shaders: the GPU-based Im-
portance Sampling shader on the Buddha model, the Marble shader
on the Dragon model, the NPR shader on the Heavy model and a
complex lighting shader on the Imrod model. Table 1 summarizes
configurations and statistics of these example shaders, including the
scene complexity, the shader complexity, details of the shader sim-
plification, and the speedup with 0.075 L? visual error. For each
example, we also plot out the distribution of variants in the 3D cost
space. Each shader variant is plotted as a sphere. Variants on the
Pareto surface are marked in orange. Three highlighted shaders are
colored in blue, green and red respectively. Other variants are plot-
ted in purple. To better understand the distribution of variants in
the space, we projected each variant on three planes, i.e., the time-
error plane, the error-memory plane and the time-memory plane.
These projections provide a good hint on how these variants dis-
tribute in the space. The source code of all simplified shader vari-
ants on Pareto surfaces are provided as supplementary files.

5.1.1 GPU-based Importance Sampling Shader

The GPU-based Importance Sampling Shader is adapted from [Col-
bert and Krivanek 2007] and runs on an NVIDIA GTX 760 graphic
card. This shader enables real-time relighting of glossy objects un-
der environment maps. The importance sampling guides the sam-



Time(ms)

Original Shader, 5.96 ms, 2.0MB @ c=0.029,r=492, m=2.17

e=0.058,7=3.23,m=2.0 ®c=0.18,r=171,m=0.172

Figure 4: The Importance Sampling Shader on the Buddha model.

pling of a number of directions from the material function of ob-
ject. For these directions, a set of mipmap filters with different
sizes given by probability density function values are used to filter
the environment map. In our implementation, we generate 40 sam-
ples, leading to 40 looped iterations in the fragment shader. The
performance of each simplified shader is measured by 64 image
frames with varying lighting directions and viewpoints. A total of
1778 variants are generated, and 76 variants on the Pareto surface
are finally selected as preferable shaders. The code transformation
rule is the most used rule, and the subdivision rule is the least used
one. This is mainly because the base mesh of the Buddha model is
dense. Shader variants with low level tessellations are able to pro-
vide good balance between rendering time and visual quality. The
distribution of these shaders in the cost space is plotted in Figure 4
(Top). Rendering results of the original shader and three variants
are highlighted in Figure 4 (Bottom).

The first highlighted shader, shown in blue, is simplified by both
the code transformation rule and the Bézier triangle approximation
rule. 18 of 40 sampling iterations are transformed to the vertex
shader, and an intermediate variable is fitted by Bézier functions.
These two simplifications yield a 1.21 times speedup, a slight loss
in visual quality, and an extra buffer to store control points. The
second highlighted shader, shown in green, is only simplified by
the code transformation rule. All 40 sampling iterations are trans-
formed to the vertex shader. That is, the relighting computations
are all taken on vertices instead of on pixels. It causes some loss
of pixel-wise glossy reflections but has 1.84 times speedup. The
final shader, shown in red, is highlighted to show an extreme case

e=0.033,7=3.56 ,m=0.0625 @ e¢=0.073,7=4.42, m=0.0625

Figure 5: The Marble shader on the Dragon model.

resulting from our simplifications. This shader is simplified by an
aggressive Bézier triangle approximation, where the final color of
pixels computing from different lighting directions and view posi-
tions are all approximated by a 1-order Bézier functions. It yields
3.48 times speedup, and reduces the memory consumption to 0.172
MB. It uses a smaller memory foot print because all environment
lighting has been baked on the surface, and only control points are
stored for runtime rendering.

5.1.2 Marble Shader

The Marble shader renders a model of four octaves (generated with
a standard procedural 3D noise function [Perlin 1985]) with the
Phong BRDF shading model [Phong 1975]. It runs on an NVIDIA
GTX 680 graphics card. The representative image sequence con-
sists of 64 frames that depict the model at different spatial positions
and with different lighting directions. A total of 1501 variants are
generated by our approach, where 50 of them are on the Pareto
Surface. It takes the longest time to simplify this shader. This is
mainly because 70% and 74.7% of shader variants are simplified
by the subdivision rule or the Bézier approximation rule, or both.
While many sub-triangles are tessellated and approximated on sur-
faces, fitting signals on these sub-triangles occupies a large amount
of time. The distribution of these shader variants in cost space is
plotted in Figure 5 (Top). Three variants on the Pareto surface are
highlighted and shown in Figure 5 (Bottom).

The first highlighted shader, shown in blue, is simplified by all three
simplification rules. It contains a code transformation, a 2-order



Original Shader, 0.72 ms, 2.0 MB @ ¢=0.009, =0.53, m =2.0

Time(ms)

Original Shader, 16.4 ms, 538 MB @ ¢=0.007,¢=7.17, m = 5.38

e=0.020,7=0.41,m=2.0 ® c=0.0751=094,m=1.1

Figure 6: The NPR shader on the Heavy model.

Bézier triangle approximation and a two-level triangle subdivision
(tess_factor=3). A total of 13 sub-triangles are generated to ap-
proximate the original noise signal from pixel-level to vertex-level.
Additionally, a portion of shading computation that computes spec-
ular per-pixel shading is moved to the domain shader to compute
per-vertex. After applying these three simplifications, this shader
variant runs 1.76 times faster than the original shader with a 0.025
L? visual error and an extra 0.681 MB memory consumption. The
second highlighted shader, shown in green, is also simplified by a
combination of rules. In this shader variant, one triangle is sub-
divided into 6 sub-triangles, and some portion of the specular re-
flections are computed on vertices. These simplifications make this
variant 1.88 times faster and with a 0.026 L? error. The final high-
lighted shader, shown in red, moves all shading computations from
pixels to vertices, and only fits the noise signal on original triangles
by an 1-order Bézier triangle functions. As expected, it heavily
speedups the rendering time but produces a large visual error.

We also simplify this shader on an NVIDIA GTX 280 graphic card,
which only supports shader model 4.0. On this hardware, we use
the geometry shader instead of the tessellation shaders to perform
surface subdivision rule. These simplified shaders on the Pareto
surface are provided in the supplementary shader files.

5.1.3 NPR Shader
We adapt the real-time Non-Photorealistic Rendering (NPR) shader

used in the game “Team Fortress 2 (TF2)” [Mitchell et al. 2007] to
test our method. This NPR shader combines a variety of view-

® ¢=0.074,1=543,m=5.38

e=0.009, r=4.36, m=5.59

Figure 7: The complex lighting shader on the Imrod Model.

independent and view-dependent terms. The view-independent
terms consist of a spatially-varying directional ambient term plus
modified Lambertian lighting terms. The view-dependent terms
are a combination of Phong highlights and customized rim light-
ing terms. All lighting terms are computed per-pixel with an albedo
map. We apply this shader on the Heavy character model with 9
point lights. The simplification is taken on 54 image frames with
respect to an animated sequence. A total of 1296 variants are gener-
ated, and 34 variants are selected from the Pareto surface. Figure 6
shows the distribution of shader variants (Top) with several high-
lighted shader variants (Bottom).

The first highlighted shader, shown in blue, is simplified by a code
transformation rule and a surface subdivision rule. The lighting of
8 of 9 point lights are computed on vertices instead of on pixels. To
compensate the error brought by this simplification, 6 sub-triangles
(tess_factor=2) are subdivided per triangle to capture the shading
signal on smaller patches. This shader variant reduces rendering
time to 0.53 ms and only generates a relatively low visual error,
0.009 L? error. This is mainly due to the low frequency of the
NPR shading signal on pixels. The interpolation of shading values
from vertices produces good approxiamtions. The next highlighted
shader, shown in green, is simplified by the same code transfor-
mation of the first highlighted shader, but skips the subdivision.
It leads to better performance, 1.76 times speedup compared with
the original shader, but has a larger error than the first shader vari-
ant. Without the subdivision, some loss of specular reflections on
the character’s arm can be noticed. The final shader in red is a
shader with Bézier triangle approximations. Two shader slices are



(b) Gradient-based const.
[Kavan et al. 2011]

(a) Original shader:
Diffuse + AO Texture

(c) Edge-based const.
[Kavan et al. 2011]]

(e) 3-order Bézier approx.
Our simplification

(d) 2-order Bézier approx.
Our simplification

Figure 8: Comparisons with the vertex-baking of [Kavan et al. 2011]. The texture and ambient occlusion are applied on the Lion head model
with 3.5K triangles. (a) the ground truth shading effect of the Lion head model. (b-c) show results of the vertex-baking technique using a
gradient-based and an edge-based regularization respectively. (d-e) show our results with a 2- and 3-order approximation respectively.

approximated in this shader. First, the shading of 7 point lights is
linearly approximated on triangles, while the remaining two lights
are still computed independently. Second, the computation of spec-
ular lighting effects at rims and with other textures are approxi-
mated on triangles. Though the overall error and rendering time of
this shader variant are larger than previous shader variants, its total
memory consumption reduces to 1.1 MB by baking some textures
and the specular lighting effects at rims on the surface.

5.1.4 Complex Lighting Shader

We test our approach on a complex lighting shader on the Imrod
model using an NVIDIA GTX 760 card. We adapt the GPU im-
portance sampling shader to this scene, and add a complex shading
model using a shadow map (which is computed in an independent
pass) and several material textures, including albedo, specular, nor-
mal, emissive and ambient occlusion maps. Environment lighting
and one point light cast light on the model. We use 64 representative
frames with different view positions as input uniform parameters.
A total of 7597 variants are generated, and 75 of them are on the
Pareto surface. This example shader has the largest number of vari-
ants, but only 28.9% of them use the surface subdivision rule. This
makes the simplification process take less time than that of the Mar-
ble shader. The resultant distribution of shader variants with three
highlight results are shown in Figure 7.

The first highlighted shader, shown in blue, is simplified by a code
transformation. 37 iterations that sample the environment light-
ing are transformed from the fragment shader to the vertex shader.
From the rendered image, it can be seen that though some shading
details are smoothed, it still leaves main details on the surface. The
second highlighted shader, shown in green, is simplified by a code
transformation and a Bézier triangle approximation. First, the tex-
ture fetch of the ambient occlusion map is moved from the fragment
shader to the vertex shader. It converts the pixel-wise ambient oc-
clusion signal to a vertex-wise surface signal. For a low frequency
signal like ambient occlusion, such an approximation only incurs a
slight visual loss but reduces some texture reads. The second sim-
plification is to approximate the shading from environment lighting
by a Bézier triangle approximation. This simplification sacrifices
some memory but has a big performance improvement, 3.75 times
speedup, and only produces a small visual error, 0.009 L? error.
The insight behind such a big improvement is that even in a model
that has complex material and is lit by complex lighting, not all in-
teractions between the lights and materials produce high frequency
signals. Some resultant signals might be relatively low-frequency.
In these cases, our method automatically approximates signals on
surfaces and select variants that have good approximations of those
low frequency signals. The final highlighted shader, shown in red,
is simplified by transforming two computations to the vertex shader.
One is the texture fetch of the normal map and some portion of the

specular computations using the normal map. It smooths the shad-
ing details on the surface. As can be seen in the image, the detailed
glossy reflections on the character’s belly and back are dimmed.
The other code transformation is taken on the sampling of tbe envi-
ronment lighting. All environment lighting is computed at vertices.
Such simplifications produce 0.073 L? visual error, but achieve 3
times speedup of rendering time. Compared with the second high-
lighted shader, this shader consumes less memory.

5.2 Discussions

Approximation Errors. Given these simplification rules, our ap-
proach tends to perform a low-order approximation on the under-
lying surface signals. Apparently, it works well when such signals
are low-frequency. Figure 8 illustrates the comparison between our
approach and the vertex-baking technique of [Kavan et al. 2011]. It
can be observed that with the increasing of orders of Bézier func-
tions, our approach is able to better reconstruct the original surface
signals, and yields a more accurate approximation when the surface
contains coarse details. However, not all signals are low-frequency
and can be approximated well by our low-order approximations.
For example, the generation of all four octave noises on the Dragon
model, and the specular reflections from the bump mapping on the
Imrod model. These approximation errors may be large. In these
cases, our Genetic Programming-based optimization always tends
to select variants that produce smaller visual errors, or produce
large errors but reduce the time or memory consumption, i.e., the
variants around the Pareto surface. These variants approximating
high frequency signal and producing large errors will be automati-
cally omitted because they are far away the Pareto surface. In this
way, without any frequency analysis or knowledge of the frequency
of surface signals, our method is still able to automatically explore
the shader variant space, and produce a set of preferable simplified
shaders. It will be an interesting topic to conduct specific frequency
analysis on signals generated by the fragment shader and derive bet-
ter approximations for the shader simplification. We will regard it
as future work.

Other Simplification Rules. Compared with previous shader sim-
plification methods, our approach does not simplify within the frag-
ment shader but takes the simplification across multi-shader stages.
Thus, it can be regarded as an orthogonal approach to previous
methods. In Figure 9, we give two examples showing that our
shader simplification can be combined with simplification rules in
previous methods and achieve better results. We use two expression
simplification rules proposed in [Pellacini 2005] and [Sitthi-Amorn
et al. 2011] to simplify the NPR shader respectively. From [Pel-
lacini 2005], we use an expression aggregation rule, a+b — a, and
from [Sitthi-Amorn et al. 2011], we use a random operation swap.
Results simplified by these two rules are shown in Figure 9(b) and
Figure 9(d). Then we take these two simplified shaders as input



(a)e=0,t=1.42ms,
Original shader
Figure 9: Results of combined simplification rules from previous methods and our approach. (a) The original shader. (b) The shader
simplified by rules proposed in [Pellacini 2005] (c) The simplified shader in (b) is further simplified by our approach. (d) The shader
simplified by rules proposed in [Sitthi-Amorn et al. 2011]. (e) The simplified shader in (d) is further simplified by our approach. As can be
seen, with a similar visual error, our approach further reduces the rendering time.

(b) e =0.043, t = 1.35 ms,
[Pellacini 2005]
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Figure 10: Shader simplification on the Dragon scene with differ-
ent views. View 1 is the default view used in Figure 5 with 660K

shading pixels. View 2 is a zoomed out view with 330K shading
pixels. View 3 is the furthest view with 165K shading pixels.

shaders to further simplify them by our rules. Results are shown in
Figure 9(c) and Figure 9(e). After applying our simplification, re-
sults are generated with similar visual qualities but with additional
reduced rendering times.

Pixel-wise Computation vs. Geometry-wise Computation. The
basic idea of our solution is the approximation of pixel-wise com-
putations by geometry-wise computations. Triangles are used as
basic primitives to store and approximate pixel-wise surface sig-
nals. Once the number of geometry primitives is much less than
the number of pixels, our approach will bring benefits on reduc-
ing computational time. To better understand our method, we con-
duct two experiments on the Marble shader. One experiment uses
a fixed view and three Dragon models with different numbers of
triangles. The other one uses one Dragon model but with different
views, i.e. different shading pixels. For each experiment, we first
employ code transformations to move all computations from pixels
to vertices. Thereafter, we apply the tessellation rule to subdivide
triangles into different number of sub-triangles. Supposedly, with
more sub-triangles, the rendering time increases but the visual error
decreases. Detailed rendering times and visual errors are plotted in
Figure 10 and Figure 11 for these two experiments respectively.

In Figure 10, three different views are tested. One is the default
view used in Figure 5 with 660K shading pixels, and the other two
are views zooming out with 330K and 165K shading pixels, re-
spectively. Because the geometry-wise computation only depends
on geometry primitives, the relative visual errors and the rendering
times under three views are similar. From the chart, it can seen
that with the increase of tessellation levels, the visual errors fast
drop below the 0.075 L? error threshold, but at the same time, the
rendering time of simplified shaders is still much less than the orig-
inal shader. It indicates that there is a much space to apply our
simplification rules. For the near view, the vertex-wise computa-
tions on a level 6 tessellation (tess_factor = 6) is still faster than the

(c)e=0.048,t=1.15 ms,
Our simplification on (b)

(d)e=0.035,t=1.25ms,
[Sitthi-Amorn et al. 2011]

(e)e=0.035,t=1.1 ms,
Our simplification on (d)
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Figure 11: Shader simplification on the Dragon scene with differ-
ent base models.

original shader. Even under the furthest view, a level 4 tessellation
(tess_factor = 4) still brings some benefits from the original shader.
But it also can be seen that while the number of shading pixels de-
creases, the simplification gain decreases. For example, with the
same tessellation factor, tess_factor = 4, the approximation of trans-
forming all pixel-wise computations to vertex-wise brings a 0.80
ms, 0.30 ms and 0.05 ms faster on different views.

In Figure 11, three base models with 5K, 10K and 20K triangles
are tested. We highlight the spots where simplified shaders are just
faster than the original shader. From the chart, it can seen that we
can apply our simplification rules over a big range of triangle num-
bers before the vertex-wise computations finally become slower
than pixel-wise computations. Another interesting time statistic is
that different base meshes have different performance in tessella-
tions. For example, compared with other two meshes, the mesh
with 20K base triangles has the best performance at a tessellation
of 750K triangles, but the mesh with 10K base triangles performs
worst around 600K triangles. Thus, it seems impractical to derive
a simple and general equation to determine the best tessellation
for a model with a certain number of base triangles. Our auto-
matic method employs an automatic selection step to explore the
shader variant space and find the tessellation factors with best per-
formance. This makes our method general for different scenes. Ad-
ditionally, the different time performance curves of different base
models also indicate that for a model with certain shaders, there
may exist a best base mesh to apply simplified shaders. Such a
base mesh may depend on many factors, such as the hardware, the
computation in shaders, etc.. It will be interesting future work to
compute the best tessellations for one model with ceratin shaders.

6 Conclusion

This paper introduces a novel and practical scheme for automat-
ically simplifying fragment shaders. The key idea is to solve a
global shader simplification problem using a surface signal approx-



imation and distributing computations in multiple rendering stages.
Three simplification rules are proposed: the code transformation,
the shader function approximation and the surface subdivision. We
provide an integrated simplification scheme to automatically select
simplified shaders, and demonstrate its effectiveness and efficiency
with a suite of examples. Our approach offers an orthogonal method
to existing fragment shader simplification solutions, and can be
combined with them to further simplify fragment shaders.

In the future, we want to continue exploring some problems that
have been discussed in the Section 5.2, such as other surface signal
approximations, the potential best tessellation for one mesh, etc..
We also would like to explore and study a more sophisticated cross-
shader optimization scheme that not only simplifies the fragment
shaders but optimize all shaders in all stages.
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