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Denoising Monte Carlo rendering with a very low sample rate remains a ma-
jor challenge in the photo-realistic rendering research. Many previous works,
including regression-based and learning-based methods, have been explored
to achieve better rendering quality with less computational cost. However,
most of these methods rely on handcrafted optimization objectives, which
lead to artifacts such as blurs and unfaithful details. In this paper, we present
an adversarial approach for denoising Monte Carlo rendering. Our key in-
sight is that generative adversarial networks can help denoiser networks
to produce more realistic high-frequency details and global illumination by
learning the distribution from a set of high-quality Monte Carlo path tracing
images. We also adapt a novel feature modulation method to utilize auxiliary
features better, including normal, albedo and depth. Compared to previous
state-of-the-art methods, our approach produces a better reconstruction of
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the Monte Carlo integral from a few samples, performs more robustly at
different sample rates, and takes only a second for megapixel images.
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1 INTRODUCTION
Along with the rapid improvements in hardware and gradually in-
creasing perceptual demands of users, Monte Carlo path tracing is
becoming more popular in movie production and video games due
to its generality and unbiased nature [Keller et al. 2015; Zwicker
et al. 2015]. However, its high estimator variance and low conver-
gence rate motivate researchers to investigate efficient denoising
approaches at reduced sample rates with the help of inexpensive
by-products (e.g., feature buffers). In the past few years, regression-
based kernel filtering approaches [Bitterli et al. 2016; Moon et al.
2014] and learning-based methods [Bako et al. 2017; Chaitanya et al.
2017; Kalantari et al. 2015; Vogels et al. 2018] have achieved great suc-
cess. In particular, the deep learning based methods have achieved
more plausible denoising results, since they effectively leverage con-
volutional neural networks to break the limitation of only utilizing
information from pixel sets in specific images. However, based on
our practice of employing the state-of-the-art methods, we found
that nearly all of them rely on handcrafted optimization objectives
like MSE or MAPE loss which do not necessarily ensure perceptu-
ally plausible results. Fig. 1 shows some typical cases where recent
works [Bako et al. 2017; Chaitanya et al. 2017] have struggled to
handle extremely noisy regions as in high-frequency area thus led
to over-smoothed output with approximately correct colors. Our
primary focus is to reconstruct the visually convincing global illu-
mination as previous approaches while recovering high-frequency
details as much as possible.

Generative adversarial networks (GANs) [Goodfellow et al. 2014]
have recently demonstrated remarkable progress in various areas,
including image generation [Radford et al. 2015], image transla-
tion [Huang et al. 2018; Isola et al. 2017; Wang et al. 2018a] and
unsupervised domain adaptation [Zhu et al. 2017]. GANs exhibit a
strong ability to model specific data distribution and enable comput-
ers to sample novel realistic images from it. Likewise, we contend
that physically-based renderers share similar targets to image syn-
thesis, yet are generally subject to more restrictions, or in other
words, enjoy more favorable conditions. This is due to the fact that
renderers already have a complete description of the 3D scene ge-
ometry, the materials and textures, the camera, and the lighting
conditions. Each ray can be seen as a sample on the light trans-
port distribution in Monte Carlo rendering. Hence, from another
point of view, the auxiliary buffer guided image-space denoising
problem can be interpreted as a conditional generative problem by
model-learning on a large-scale training set.

Motivated by the above, we propose an adversarial approach to
evaluate the reconstruction by leveraging Wasserstein distance [Ar-
jovsky et al. 2017] to measure perceptual similarity, which can be
interpreted as the distance between the denoised and ground truth
distributions. Wasserstein distance generally performs better than
KL/JS divergence, as it provides smoother measurement. The pro-
posed method effectively learns the statistics of the ground truth
images rendered with a considerably high sample rate, based on
deep feature representation. We also propose a method to utilize bet-
ter the inexpensive rendering by-products, such as per-pixel normal,
albedo and depth [Zwicker et al. 2015], which have been proven
to contain rich information and effectively guide the image filter-
ing process. We demonstrate the advantage of our framework by
comprehensively comparing it with the state-of-the-arts on publicly
available datasets, and show the effectiveness of our design choices
via a thorough analysis.

Overall our work makes two major contributions: 1) the first
adversarial learning framework for Monte Carlo denoising that
outperforms the state-of-the-art methods, and 2) a novel conditioned
auxiliary feature modulation method that better utilizes feature
information at the pixel level.

2 RELATED WORK
A comprehensive review on Monte Carlo (MC) denoising and gen-
erative adversarial network (GAN) is beyond the scope of this paper,
with both topics having been extensively studied in the field. Hence,
we focus on the most relevant to our work. Regarding the former, we
discuss image-space auxiliary feature guided denoising approaches,
while for the latter, we focus on GANs for image reconstruction. We
also review network conditioning and scattering effects decomposi-
tion as they are germane to the design choices of our framework.

Image space Monte Carlo denoising. As explained in a recent sur-
vey [Zwicker et al. 2015], the key idea of Monte Carlo denoising is to
minimize the reconstruction error by selecting and tuning appropri-
ate filters that model the relationship between the noisy input and
denoised output. Different types of filters have been proposed such
as zero-order [Moon et al. 2014], first-order [Bitterli et al. 2016], and
even high-order ones [Moon et al. 2016]. Within this process, further
guidance can be provided by the inexpensive rendering by-products
to improve the results, such as edge-stopping functions including
albedo, normal, depth information [Dammertz et al. 2010; Kalantari
et al. 2015; Li et al. 2012; McCool 1999; Sen and Darabi 2012], and
shading-related information including virtual flash image [Moon
et al. 2013], visibility and an ambient occlusion map [Kalantari et al.
2015; Rousselle et al. 2013].

While traditional regression-based approaches have achieved im-
pressive results by adopting models in different forms, they are re-
stricted by the available neighborhood pixels relevant to the specific
form of the filter. Recent state-of-the-art approaches have lever-
aged supervised learning to outperform traditional ones based on
empirical rules. As a pioneer, Kalantari et al. [2015] used machine
learning to estimate the weights of the filter automatically. Bako et
al. [2017] used convolutional neural networks to infer not just the
filter weights but also the form of a more complex filter kernel itself.
Chaitanya et al. [2017] utilized a recurrent neural network to force
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the temporal coherence, enabling interactive denoising for real-time
applications. Vogels et al. [2018] extended the kernel prediction
strategy in the work [Bako et al. 2017] by also considering tem-
poral coherence at multiple scales. In concurrent works, Kettunen
et al. [2019] attempted reconstruction for gradient-domain render-
ing, whilst Gharbi et al. [2019] utilized raw Monte Carlo samples as
high-order statistics and a novel splatting approach to achieve better
results with larger computational cost and storage space though.

Scattering effects decomposition. Instead of denoising the final
noisy color image, there are works having obtained better perfor-
mance by considering different scattering effects during light trans-
port simulation. Zimmer et al. [2015] first proposed a general decom-
position framework to reduce artifacts caused by conflicting light
transport phenomena. Bako et al. [2017] built on this framework
to separate and denoise diffuse and specular components respec-
tively before reconstructing the final output image. This leads to
considerable improvements in MC denoising. In addition, Bauszat
et al. [2011] achieved better global illumination filtering by splitting
the integral in the render equation into direct and indirect parts due
to the different characteristics therein.

Generative adversarial network for image reconstruction. Good-
fellow et al. [2014] introduced the generative adversarial network
(GAN) as a competitive game between a generator and a discrimi-
nator. While the goal of the generator is to fool the discriminator
by generating perceptually convincing images, the discriminator
is trying to distinguish the generated outputs from the real targets.
GANs are known for high-quality image generation in spite of the
gradient vanishing and mode collapse problem of the vanilla ver-
sion. There has been extensive work researching on the various
ways to stabilize the adversarial training [Arjovsky et al. 2017; Gul-
rajani et al. 2017; Radford et al. 2015]. GANs are also widely used
to help improve perceptual quality for image restoration problems
such as image super-resolution [Ledig et al. 2017], Gaussian denois-
ing [Divakar and Venkatesh Babu 2017; Galteri et al. 2017] or blind
denoising [Chen et al. 2018], deblurring [Kupyn et al. 2018], etc.

Network conditioning. Many works rely on prior information as
a condition to help address various ill-posed problems like image
generation and image restoration. Such priors include depths for
image dehazing [He et al. 2010] , semantic masks for image transla-
tion [Isola et al. 2017], edge features for image upsampling [Fattal
2007], etc. Our auxiliary feature guided MC denoising falls into the
same category. We are inspired by previous studies on conditional
network normalization. These techniques have shown effectiveness
on image style transfer [Dumoulin et al. 2017; Ghiasi et al. 2017;
Huang and Belongie 2017] and visual reasoning [Perez et al. 2017].
The key idea is applying a conditioned function to generate param-
eters for feature-wise affine transformation in batch normalization.
Perez et al. [2018] proved that the feature modulation layer does
not have to be applied after a normalization one. This technique has
been further extended to spatial feature modulation to condition net-
work on semantic information [Park et al. 2019; Wang et al. 2018b].
The ability to preserve spatial information is crucial for low-level
tasks, so as for MC denoising.

3 PROBLEM BACKGROUND
In classic Monte Carlo path tracing, the outgoing radiance c of a
pixel is approximated by the sum of the contributions from N path
samples in the path space Ω:

c =

∫
Ω
f (x)dx ≈

1
N

N∑
i=1

f (xi )

p(xi )
(1)

where f (xi ) and p(xi ) denote the radiance contribution and the
probability of the i-th sampled path on the pixel, respectively.

The above general Monte Carlo integration produces highly noisy
images at a small sample rate; and quadratically more samples are
needed to linearly reduce the variance even for trivial scenes, mak-
ing the rendering process rather costly [Bauszat et al. 2011]. This
inherently motivates MC denoising to achieve a plausible rendering
quality within a limited time budget. Previous joint-filtering based
algorithms indicated that auxiliary feature buffers can be obtained
directly as by-products of conventional rendering process and pro-
vide helpful guidance for post-processing image-space denosing.
The key is how to define the mathematical model of the filter and
how to optimize its parameters [Zwicker et al. 2015].
With the advances of convolutional neural networks, recent

works focus on how to learn a general relationship between the
noisy input and the denoised output with the help of the low-cost
feature buffers, breaking the limitations of conventional approaches
with a fixed form of the filtering model. Although such learning-
based approaches have gained better performance due to the gener-
ality of the CNN-based model, there are still two major issues to be
considered in practice:

i) The loss function should be able to better reflect the percep-
tual quality of the denoised image with respect to the ground
truth. Recent works empirically define loss function based on
typical image-space metrics such as L1 and L2, which tend to
produce blurry results. This motivates us to employ an effec-
tive adversarial mechanism with the general loss function to
enhance the denoising further(see Section 4.3).

ii) The auxiliary features should be efficiently exploited to re-
cover both the high-frequency and low-frequency shading
effects. Previous methods simply concatenate all the feature
channels with noisy color as input, providing only point-wise
biasing. We further incorporate a more advanced conditioned
auxiliary feature modulation strategy that allows features to
take effect at the pixel level, leading to fine-grained denoising
result (see Section 4.2).

4 ADVERSARIAL MONTE CARLO DENOISING
In this section, we elaborate on how to denoise Monte Carlo render-
ings in an adversarial manner with a denoising network as well as a
critic network. The former network allows expressing complex non-
linear relationship from input to output; and the latter ensures the
indistinguishable quality between the output and the ground truth.
Besides, the auxiliary feature conditioned modulation is incorpo-
rated in the former, providing more guidance potential for filtering
the noisy input through additive and multiplicative interactions.
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Fig. 2. (a) Overview of our adversarial framework; (b) Illustration of the residual block (ResBlock) for conditioned feature modulation; (c) EncoderNet;
(d) CriticNet. Interpretation of network layer annotations: e.g, k3n128s1 indicates that kernel size is 3, number of feature channels is 128 and stride is 1.

4.1 ADVERSARIAL MC DENOISING FRAMEWORK
We illustrate our denoising framework in Fig. 2(a). Similar to KPCN [Bako
et al. 2017], we process diffuse and specular components via separate
paths with the same architecture but different parameters. This is
theoretically valid since the BRDF factor in integrals of render equa-
tion [Kajiya 1986] can be split into two parts according to different
scattering effects. The denoising network G is defined as (symbol c
below stands for either diffuse or specular color):

cout = G(cin ,bf eat ), (2)

where cout is the denoised output of the noisy input cin , and bf eat
denotes auxiliary feature buffers, including normal (3 channels),
depth (1 channel), albedo (3 channels) and others if applicable. We
optimize G’s parameters θG using generative adversarial training:

min
θG

max
θD

D(G(cin ,bf eat ), cдt ), (3)

where D is the critic network with parameters θD . G and D are
jointly trained to minimize the difference between the sampling
distribution of ground truth renderings cдt and the sampling distri-
bution of images generated by G.

4.2 AUXILIARY BUFFER CONDITIONED MODULATION
For denoising Monte Carlo rendering, traditional feature-guided
filtering approaches are generally based on joint filtering or cross
bilateral filtering [Bauszat et al. 2011]. The basic idea is to utilize

auxiliary geometry and texture information to guide the estimation
of the filtering weights, where strong assumptions are made on the
correlation between the low-cost auxiliary features and the noisy
input image [De Vries et al. 2017]. Due to the lack of samples in the
neighborhood (e.g., only the spatial-similar or intensity-similar pixel
samples), these approaches often result in visual artifacts [Bauszat
et al. 2011].
Recent learning-based approaches use deep features to gather

information from a larger neighborhood and to reduce the need of
handcrafted assumptions. However, most of the those limit the influ-
ence of auxiliary features to early layers by just concatenating them
with the noisy input image [Bako et al. 2017; Chaitanya et al. 2017].
Moreover, concatenation-based conditioning approach amounts to
conditional biasing, namely, by adding a bias to the hidden layers
based on conditioning representation (detailed explanation can be
found on [Dumoulin et al. 2018]).

Inspired by the success of the conditional normalization methods
in image style transfer literature [Dumoulin et al. 2017; Huang and
Belongie 2017], we propose to integrate auxiliary feature informa-
tion into our network by a conditioned feature modulation (CFM)
technique similar to [Park et al. 2019; Wang et al. 2018b]. Apart from
the conditional biasing mentioned above, it also involves conditional
scaling, namely, by scaling the hidden layers based on conditioning
representation. We define one operation of CFM as follows (see Fig.
2(b) for detailed illustration):

CFM(Lin ) = γ (b̂f eat ) ⊙ Lin ⊕ β(b̂f eat ). (4)
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In the above equation, CFM modulates the feature maps Lin at
multiple layers of G conditioning on b̂f eat , which denotes trans-
formed auxiliary features by the shared EncoderNet (see Fig. 2(c)).
⊙ and ⊕ denote element-wise multiplication and addition. γ and
β represent b̂f eat -dependent scaling and shifting operation matri-
ces: γ is composed of γ ic,y,x and β is composed of βic,y,x which are
the learned transformations. Letting Ci be the number of channels
in the i-th layer, H i andW i respectively be the height and width
of the feature maps in i-th layer, here we use symbols γ ic,y,x and
βic,y,x to denote the conversion operation from b̂f eat to the scaling
and biasing values at the site (c,y,x) in i-th hidden feature layer
(c ∈ Ci ,y ∈ H i ,x ∈W i ). The operation matrix (γ or β) is modeled
by a two-layer convolutional network (Fig. 2(b)). Besides, bf eat ,
the input of EncoderNet, is a concatenation of all auxiliary buffer
channels.

By combining multiplicative and additive interactions at multiple
layers, our framework allows stronger influence from auxiliary fea-
tures. As discussed in a recent breakthrough [Perez et al. 2018], such
modulation can be viewed as using one network to generate param-
eters of another network, making a new form of hypernetwork [Ha
et al. 2016]. This also coincides with the joint filtering reconstruc-
tion approach where the auxiliary features guide the image filtering
by modifying the weights of the filter [Bitterli et al. 2016].

4.3 DENOISING AND CRITICISING IN AN
ADVERSARIAL APPROACH

As stated before, learning-based denoising approaches fail to cope
with some complex situations like high-frequency noisy regions.
We have implemented and experimented on various general convo-
lutional denoising networks, for instance, the AutoEncoder network
architecture in [Chaitanya et al. 2017], and found that it is the loss
function rather than the network structure plays a more vital role
in reconstruction quality. One phenomenon is that increasing the
contribution of structural loss such as gradient loss [Chaitanya et al.
2017] effectively improves the results to a certain extent. This mo-
tivates us to automatically select loss function in order to wisely
drive the training process.

Existing works [Goodfellow 2016; Lotter et al. 2015] indicate that
using pixel-wise content loss like L1 or L2 loss tends to produce
blurry results, since denoising and most other image reconstruction
tasks are essentially ill-posed problems. There exist several possible
solutions, and the pixel-wise content loss will end up in the average
of these possible solutions [Ledig et al. 2017; Lotter et al. 2015].
Selecting L2 as loss function will maximize PSNR (peak signal-to-
noise ratio) value, but this is not enough to guarantee perceptual
quality [Wang et al. 2003]. And in general, pixel-level loss functions
do not ensure a mechanism conforming to human visual perception.
From this perspective, the ideal solution is to have a differentiable
metric which naturally reflects human visual system. It is not a
trivial task and inspires us to use generative adversarial networks,
as such implicit models can be used for efficient learning even there
is no direct definition or knowledge of the data distribution [Miyato
et al. 2018]. This is because training a discriminator in GAN is
equivalent to estimating the density ratio between the model and
target distribution [Mohamed and Lakshminarayanan 2016].

In ourwork, we combine L1 content loss and adversarial loss given
by the diffuse/specular critic network. We use L1 instead of L2 to
reduce splotchy artifacts from reconstructed images as in [Bako et al.
2017; Chaitanya et al. 2017; Zhao et al. 2016]. While the existence of
the content loss ensures the quality of the low frequency part, the
adversarial loss (by trying to fool the critic) encourages our denoiser
to generate results residing on the manifold of the noise-free images
with high frequency details. The ablation study on the effectiveness
of the adversarial loss can be found in Section 6 (see Fig. 9).
Our critic is based on Wasserstein-GAN [Arjovsky et al. 2017]

with a gradient penalty, which enables stable training of a wide va-
riety of GAN architectures with almost no hyper-parameter tuning.
Furthermore, Wasserstein distance has less restriction on balancing
the training process of the generator and the critic, making it possi-
ble to pre-train the latter on large-scale datasets first, and then, fine
tuning it on one small render- or domain-specific dataset.

5 EVALUATION

5.1 TRAINING SETUP
Dataset. Large-scale datasets are necessary to avoid over-fitting

for deep neural networks. In order to train our denoising critic
network, we collected 1000 different indoor scene frames obtained
from our commercial renderer, including 900 for training and 100
for validation. These scene frames were selected from diverse room
designs with abundant illumination conditions as well as various
materials and geometries, which span different denoising circum-
stances (see example scenes in Fig. 3). The reference images for
training were rendered with 16k samples per pixel. Since state-of-
the-art methods [Bako et al. 2017; Bitterli et al. 2016] use public
scenes rendered by Tungsten [Bitterli et al. 2016] as testing or part
of training data, we also downloaded datasets released by KPCN
(noted by a Tungsten dataset) for evaluation. This dataset consists
of sampled frames from 8 simple scenes (see Fig. 4).
All dataset images are divided into patches of size 128x128, and

the auxiliary feature buffers are normalized to the same range of
[0.0, 1.0]. Similar to Bako et al. [2017] and Chaitanya et al. [2017],
the color values are stored as 16-bit half precision floating point
(FP16) values to maintain a high dynamic range (HDR) of illumina-
tion. The specular component is the remaining radiance with diffuse

Fig. 3. Example reference images rendered from 1000 indoor scenes by
our commercial renderer. The complete set can be found in supplemental
material.
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Fig. 4. Example reference images rendered by Tungsten. The whole set in-
cludes approximately 200 images with modified environment maps, camera
parameters, and/or materials from each of 8 scenes [Bitterli 2016]

component excluded as in Bako et al. [2017]. For demonstration
and comparison of the evaluation metrics, we apply gamma tone
mapping to convert it into a low dynamic range (LDR). Moreover,
we use the same input pre-processing strategies as in KPCN includ-
ing using an untextured diffuse color buffer and applying the log
transform on the specular one. We use only three auxiliary features
(depth, normal and albedo), far fewer than KPCN which calculates
the variance and gradient value for each buffer respectively. It can
be seen in Section 5.3 that our method outperforms KPCN in most
situations with fewer auxiliary buffers and this helps to save storage
and IO cost.

Implementation details. As both diffuse and specular branches
share the same network architecture design, we elaborate one branch
as an example for the sake of simplicity. In the following, noisy color
shall stand for either diffuse or specular color. We use PyTorch for
implementation and train the networks on NVIDIA GTX 2080Ti.
We use 16 Resblocks modified with our auxiliary buffer conditioned
modulation as shown in Fig. 2 for the denoiser network. Residual
blocks help to enhance training of deep networks [He et al. 2016].
Batch normalization layers from the original Resblock are removed
to save computational cost without affecting network performance
as in Wang et al. [2018c]. The auxiliary feature encoder network
contains five convolutional layers each followed by a Leaky ReLU
layer (parameter=0.1); and the network architecture design of the
critic network is similar to the widely used VGG [Simonyan and
Zisserman 2014], which takes an input size of 128*128 (network
details are shown in Fig. 2(d)).
Training GANs is still a challenging task and we use auxiliary

features and WGAN-GP to stabilize the training. In particular, the
Wasserstein metric replaces the JS divergence of vanilla GANs to
have a much smoother value space. This relaxes the requirement of
skill level for generator and discriminator. In addition to this method,
there are many other works dedicated to solving this problem [Roth
et al. 2017; Salimans et al. 2016]. Adversarial training here follows the
original WGAN [Arjovsky et al. 2017] for tuning hyperparameters
and involves adopting a gradient penalty to enforce the Lipschitz
constraint as in WGAN-GP [Gulrajani et al. 2017]. We train the
network using an Adam optimizer (0.9, 0.999 for two betas and 1e-8
for epsilon) with the initialization given by He et al. [2015]. The
learning rate is set to 1e-4 for the diffuse branch and a smaller value
of 1e-6 for the specular branch. Both branches halve the learning
rate at most four times after every 50k iterations. Lastly, the weight

ratio between L1 loss and adversarial loss is set to 200:1 to make
training more stable. The training takes about 2 days on a single
2080Ti GPU for each branch.

5.2 EVALUATION METRICS AND STATE-OF-THE-ART
METHODS

To compare various MC denoising algorithms, we chose three dif-
ferent evaluation metrics, including relative MSE, SSIM and PSNR.
The RMSE and SSIM heat maps for all the results are provided in
the supplemental viewer. We only present subsets of metrics in
this paper for concise demonstration purposes and some parts of
the image are zoomed-in using bilinear interpolation to facilitate
detailed comparison.
Based on the discussions in Section 2, we have selected three

state-of-the-art MC denoising methods to compare the outcomes
with, including NFOR [Bitterli et al. 2016], KPCN [Bako et al. 2017],
and RAE [Chaitanya et al. 2017]. Denoiser by NFOR is shipped with
the public Tungsten renderer, whilst KPCN has codes and train-
ing weights available. RAE has not released training and inference
codes, so we ran the open executable file which only accepts LDR
images as input instead. It should be noted that RAE is trained on
its own large-scale dataset that is not in public. We trained and
validated our adversarial MC denoiser on our dataset (see Fig. 3). Its
representative coverage benefits our denoiser and critic network for
generalization ability. As different rendering systems can have in-
consistent sampling strategy and noise levels, to fairly compare with
the above baseline methods on Tungsten scenes, we also trained on
these scenes to adapt our denoiser to the Tungsten renderer.

5.3 RESULTS
To compare our work with state-of-the-art methods, we conduct
experiments on noisy input images with different sample per pixel
(spp). The complete testing results with 4, 16, 32, 64 and 128 spp can
be found in the supplemental. Fig. 5 shows some typical results and
closeups from four public Tungsten scenes, including Bathroom
with mirrors, PinkRoom with colorful glasses under reflection and
refraction situations, HorseRoom and WhiteRoom that are rela-
tively dim and make global illumination more difficult to denoise.
These demonstrate the ability of our network to preserve features
(e.g., object edges, shadows in both flat and complex regions, etc.)
and hence, the advantage of our work over previous approaches
especially in relation to high-frequency details (e.g., room corners,
ceilings, etc.) while adapting to different lighting setups. Full resolu-
tion images can be found in the supplemental interactive viewer1
for detailed inspection.
Overall our work performs consistently on a par or better than

the state-of-the-art methods in terms of both perceptual quality
and quantitative metrics. NFOR, one of the best traditional offline
filtering methods, suffers from splotchy-looking results and residual
noise due to limited filter kernel size and insufficient statistics from
only neighborhood pixels for filter weights estimation. Learning-
based methods (KPCN and RAE) generally obtain better results in
low-frequency areas, but may produce over-smoothed ones with
approximate colors for shading details. Our approach is satisfactory

1http://adversarial.mcdenoising.org
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Ours Noisy Input NFOR RAE KPCN Ours Reference
Ba

th
Ro

om

1-SSIM (0.498707) (0.023738) (0.036035) (0.019587) (0.015482)
RMSE (0.015005) (0.000601) (0.000909) (0.000411) (0.000254)
PSNR (23.433917) (38.139083) (36.114381) (39.167406) (41.241905)

H
or
se
Ro

om

1-SSIM (0.794728) (0.074805) (0.125990) (0.059955) (0.058085)
RMSE (0.161283) (0.006406) (0.025274) (0.003189) (0.003164)
PSNR (16.278891) (32.375395) (22.700146) (33.744695) (34.194759)

W
hi
te
Ro

om

1-SSIM (0.699543) (0.037186) (0.043571) (0.036390) (0.033788)
RMSE (0.031997) (0.002764) (0.007465) (0.002906) (0.001399)
PSNR (21.263119) (36.410523) (34.737302) (37.440158) (38.455508)

Pi
nk

Ro
om

1-SSIM (0.677217) (0.020893) (0.032644) (0.025499) (0.018550)
RMSE (0.014712) (0.001064) (0.000948) (0.000681) (0.000539)
PSNR (23.755376) (39.490156) (37.796942) (39.876092) (40.167535)

Fig. 5. We compare our results with baseline methods: NFOR [Bitterli et al. 2016], RAE [Chaitanya et al. 2017] and KPCN [Bako et al. 2017] on a test set
rendered by Tungsten. Scenes rendered in 32 spp are from Bitterli [2016] with publicly available lighting and camera settings. Full resolution images with SSIM
and RMSE heat maps can be found in the supplemental viewer.
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Ours Input (4 spp) RAE KPCN Ours Reference (32k spp)
Fig. 6. We apply the adversarial denoiser trained on 32 spp to denoise 4 spp noisy input to demonstrate its successful extrapolation to low sample rates.

Table 1. Aggregate numerical performance of all methods over the entire
Tungsten testset. Avg. denotes the average of specific metrics and B.P. de-
notes the percentage of the very method to be the best one among all.
Perceptually and quantitatively, our method outperforms the state-of-the-
arts especially for very noisy inputs with low spp. When spp increases and
input becomes less challenging, the advantage over others slightly decrease
in metrics but the perceptual quality is still comparable or even better. The
discussion of convergence behavior can be seen in Section 6.5.

spp Denoiser 1-SSIM ↓ PSNR ↑ RMSE ↓

AVG. B.P. AVG. B.P. AVG. B.P.

4

NFOR 0.1614 0.00% 28.3028 0.00% 0.0374 0.00%
RAE 0.0751 37.93% 29.5359 0.00% 0.0080 6.90%
KPCN 0.0891 13.79% 32.1290 0.00% 0.0059 3.45%
Ours 0.0773 48.28% 34.3188 100.00% 0.0038 89.66%

16

NFOR 0.0707 10.34% 32.6832 10.34% 0.0180 3.45%
RAE 0.0549 3.45% 34.3337 0.00% 0.0033 3.45%
KPCN 0.0531 20.69% 36.4538 0.00% 0.0024 6.90%
Ours 0.0463 65.52% 37.8608 89.66% 0.0019 86.21%

32

NFOR 0.0493 10.34% 34.8495 6.90% 0.0118 3.45%
RAE 0.0482 0.00% 36.0105 0.00% 0.0028 0.00%
KPCN 0.0426 20.69% 38.4051 3.45% 0.0017 10.34%
Ours 0.0366 68.97% 39.6197 89.66% 0.0013 86.21%

64

NFOR 0.0389 6.90% 37.3478 6.90% 0.0067 3.45%
RAE 0.0395 0.00% 38.0982 0.00% 0.0016 0.00%
KPCN 0.0349 20.69% 40.2623 27.59% 0.0012 34.48%
Ours 0.0296 72.41% 40.9673 65.52% 0.0009 62.07%

128

NFOR 0.0305 10.34% 39.5127 6.90% 0.0036 3.45%
RAE 0.0338 0.00% 39.8093 0.00% 0.0011 0.00%
KPCN 0.0288 27.59% 42.0056 48.28% 0.0008 62.07%
Ours 0.0248 62.07% 42.0803 44.83% 0.0007 34.48%

in both low-frequency and high-frequency areas due to a smoother
global illumination effect and better detail preservation, thus re-
sulting in more visually pleasing and perceptually natural denoised
output. Table 1 shows aggregate numerical performance over the
entire test set comparing to the state-of-the-arts. More comparisons
and details of each result can be found in the supplemental viewer.
We also employed the adversarial denoiser trained at 32 spp to de-
noise 4 spp noisy images to demonstrate the good generality for
low sample counts relative to other approaches (see Fig. 6).

Since we separate diffuse and specular buffers, we also provide de-
noised results of each buffer to compare with KPCN that relies on the
same strategy. As shown in Fig. 7 and Fig. 8, our work consistently
leads to better results for both diffuse and specular components.

5.4 RECONSTRUCTION PERFORMANCE
Our approach also strikes a good balance between denoising quality
and computational cost. Inference (denoising) takes an average of
1.1s (550ms for diffuse or specular, respectively) on a single 2080Ti
GPU for a 1280x720 image, while KPCN takes 3.9s in the same set-
tings as the kernel filtering process requires more time. And our
approach takes far less pre-processing time and memory due to

Ours KPCN Ours Reference
Fig. 7. Denoised diffuse components on 16 spp (the first row) and 64 spp
(the second row) scenes: KPCN vs. ours.

Ours KPCN Ours Reference
Fig. 8. Denoised specular component on 16 spp scenes: KPCN vs. ours.

fewer feature buffers used. NFOR only provides CPU implemen-
tation which takes more than 10 seconds on a 3.4GHz Intel Xeon
processor. Besides this, the number of our inference network param-
eters is 2M compared to 3M of RAE which is with highly interactive
rates, leading to competitive running speed.

6 ANALYSIS
In order to study the effects of various design choices in ourwork, we
modified the different components of our framework and compared
the performance with the full model.

6.1 EFFECTIVENESS OF THE ADVERSARIAL LOSS AND
CRITIC NETWORK

By adjusting the loss function, we show that the critic network help
guide the training of the denoiser network and produce perceptually
more pleasing results than using handcrafted loss (L1 in our experi-
ment; other objectives like L2 and SSIM losses have been proven to
perform worse than the L1 loss [Bako et al. 2017]).
For example, the edges of green leaves and reflected textures in

Fig. 9 are better preserved in our result with the adversarial loss than

ACM Trans. Graph., Vol. 38, No. 6, Article 224. Publication date: November 2019.
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L1 Loss L1 and Adversarial Loss

Fig. 9. Comparisons of high frequency details without (left) and with (right)
adversarial loss. Scenes credit to Bitterli [2016]

using only L1 loss, thus conforming with the hypothesis that percep-
tual similarity is difficult to be captured by handcrafted objectives.
The classic per-pixel metrics such as the L1 and L2 losses assume
no inter-connection between the pixels. In contrast, the adversarial
loss can capture visual patterns that are both high-dimensional and
structurally correlated [Zhang et al. 2018]. See the supplemental
viewer for the full display of the superior results of our method.

Despite the L2 distance between pre-trained VGG features being
a popular choice to balance the adversarial loss, [Chen and Koltun
2017; Gatys et al. 2016; Ledig et al. 2017], our experiments observed
no significant improvement from it. This is largely due to the use
of auxiliary features, which act as a smooth context constraint that
regularizes GANs.

6.2 EFFECTIVENESS OF AUXILIARY FEATURE BUFFER
In order to demonstrate the denoising enhancement due to auxiliary
feature buffers, we conduct an ablation study on activating only
subsets of buffers. In Fig. 10, we plot the convergence curve of
SSIM metric on the validation set. We drew a similar experimental
conclusion as Chaitanya et al. [2017]. With the 7 control groups, it
is easy to tell that albedo is the most significant influence factor,
normal is less influential while depth, shown by the experiment, has
almost no effect (see the bottom two curves in Fig. 10). That is to say,
when the feature providesmore texture and contour information, the
network gets more guidance to restore edges. Additionally, all these

0.6

0.65

0.7

0.75

0.8

0.85

0.9

50000 100000 150000 200000 250000 300000 350000 400000

SS
IM

Training Step

albedo+depth+normal albedo+normal
albedo+depth albedo
normal depth
no feature

Fig. 10. Convergence graph of SSIM on the validation set for different
combination of the auxiliary feature buffers.

(a) (b) (c) (d)

Fig. 11. Comparisons of different feature utilizing methods. From left to
right: (a) Training with no auxiliary features; (b) Concatenate the auxil-
iary features and noisy color as fused input; (c) Full model of CFM with a
combination of shifting and scaling; (d) Reference.

features are geometry-relevant and research on shading related
features remains as future work.

6.3 EFFECTIVENESS OF FEATURE CONDITIONED
MODULATION

As presented in Section 4.2, we adopt conditioned modulation to
apply additive and multiplicative interactions. This helps to auto-
matically model the relationship between the auxiliary features
and the noisy input image. To demonstrate the effectiveness, we
compare with simply concatenating them as a fused input into the
modified network as in previous works [Bako et al. 2017; Chaitanya
et al. 2017] (see Fig. 11). In our implementation, we intentionally
increased the number of layers, as well as the channels per layer, for
the feature concatenation approach. Hence the compared networks
had a similar number of parameters to ensure fairness.

Conventional input-concatenation approaches limit the effective-
ness of auxiliary features to early layers. In contrast, the proposed
conditioned modulation layers perform scaling and shifting at differ-
ent scales: point-wise shifting modulates the feature activation; scal-
ing selectively suppresses or highlights feature activation. Whilst all
"a posterior" MC denoising methods inherently leave an unexplored
gap between 2D image space and the high-dimensional path space,
the combination of scaling and shifting is still more powerful than
feature concatenation, which is equivalent to biasing. It should be
noted that our point-wise multiplicative interaction also resembles
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Fig. 12. Ablation study on the variants of the full model to evaluate our
conditioned feature modulation (CFM) method. Average performance of
PSNR and SSIM over test scenes on the diffuse branch. From left to right: (i)
Training with no auxiliary features; (ii) Concatenate the auxiliary features
and noisy color as fused input; (iii) Variant of CFM using only a shifting
operation; (iv) Variant of CFM using only a scaling operation; (v) Full model
of CFM with a combination of shifting and scaling.

the attention mechanism which has been widely used in machine
learning applications.

Also, to test the influence ofγ mapping (for multiplicative interac-
tion) and β mapping (for additive operation), we trained two model
variants by taking out multiplication or addition respectively. One is
to deactivate the γ operation by setting all elements of γ (b̂f eat ) to
1.0; the other is to deactivate the β operation by setting all elements
of β(b̂f eat ) to 0.0 (see details in Fig. 2(b) and Section 4.2). We show
the performance on different evaluation metrics of these variants in
Fig. 12, where we take the diffuse component as an experimental
example. The results show that the conditioned modulation is more
effective than the commonly used concatenation with the input.
Besides this, modulation block can learn to condition the auxiliary
feature buffers through either additive or multiplicative interaction
alone. However, neither of them performs as well as the combina-
tion of the two. It also suggests that the multiplicative interaction
plays a slightly more important role than the additive one.
Another design choice is whether different auxiliary features

should be fused into the input of EncoderNet (Fig. 2(c)). We ex-
perimented on one variant by consecutively chaining the buffer-
specific modulation layers. Specifically, in each CFM Resblock (see
Fig. 2(b) and Equation 4), the CFM function becomes auxiliary
buffer-specific (CFM_normal, CFM_depth and CFM_albedo are
applied to modulate network layers sequentially instead of being
one CFM conditioned on fused auxiliary features). The results do
not show much difference, indicating that the auxiliary features do
not need multiplicative operations among themselves.

6.4 DIFFUSE AND SPECULAR DECOMPOSITION
To verify the necessity of such strategy, we conducted training and
denoising without decomposition. This led to unsatisfactory results
as shown in Fig. 13, where the illumination on the floor is disturbing.

The texture appears to be erroneously enhanced and the reflected
illumination is weakened. Adding the adversarial loss is helpful to
a certain extent but cannot fundamentally eliminate this problem.
The explanation would be that the diffuse and specular components
have different noise patterns with different characteristics. Thus

Fig. 13. Left: Reflection is not reconstructed well without separating dif-
fuse and specular components. Right: Reflection is well reconstructed by
separating diffuse and specular components.

Ours NFOR KPCN Ours Reference

Fig. 14. Zoomed-in failure cases due to limitations.

they may require different convolutional kernels or utilize auxil-
iary features in different ways. Decoupling the two buffers leads to
better reconstruction results, which coincides with the approach of
KPCN [Bako et al. 2017]. Additionally, as in render equation [Ka-
jiya 1986], we need to separate the diffuse and specular integrals
theoretically if we want to calculate an untextured color as we do
in our implementation, so too for KPCN. Yet RAE [Chaitanya et al.
2017] uses untextured color without separating these paths, which
tends to produce similar artifacts as in Fig. 13.
To understand better the mutual relation between the two com-

ponents, we tried either sharing the feature pre-processing layers
in the EncoderNet module (Fig. 2(c)) between diffuse and specular
branches, or jointly training them to obtain a single adversarial loss
on the final reconstructed image. However, both variants by sharing
the encoder net or critic net parameters result in worse performance.
Thus we choose to decompose these two buffers as KPCN does. How
to combine the two components efficiently to achieve a compact
end-to-end architecture remains as future work .

6.5 DISCUSSION and LIMITATIONS
Limitations. While our method demonstrates an overall better

perceptual quality than the state-of-the-arts, it also has various
limitations. First, some failure cases are difficult to interpret due to
the black-box nature of deep neural networks. For instance, some
low contrast features were magnified with respect to the reference
(the blue-circled skirting line on the wall; top row in Fig. 14). These
behaviors could be potentially improved by enlarging the training
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Fig. 15. Convergence of RMSE for both noisy input and denoised im-
ages with increasing spp. The vertical axis is the average RMSE of
the test scenes. The horizontal axis is spp. The original spps are
[4,16,32,64,128,256,1024,2048,4096,8192,16384,24576]. We can see that at
some point two curves intersect. The reference is rendered with 32k spp.

dataset. Inconsistent training and test data distributions also lead
to failure cases, the specific effects of which are not covered by the
training set, such as fog or smoke.
Moreover, our method may perform poorly in cases where the

input feature buffers do not capture the details. For example, the
denoiser cannot restore fine details of hair due to lack of depth in-
formation (third row in Fig. 14). Another case is the blurry specular
texture of the floor (second row in Fig. 14), as Tungsten dataset
does not include scenes with special specular albedo thus no dis-
tinction between albedo buffers used by the diffuse/specular branch
is ensured. Simply adding specular albedo buffer and increasing the
diversity of the training scenes will resolve this problem.
Rendering reference images of training data is computationally

intensive as it demands large sample counts. Limited samples (e.g.,
8k, 32k) inevitably cause remaining noise for some complex effects
and hence the learnt networks have the risk of over-fit noise. Some
residual noise can be seen when the images are zoomed in on a very
large scale (bottom row in Fig. 14).

Convergence Discussion. Monte Carlo path tracing is known to
be inherently unbiased but converges with a high computational
cost. The "a posterior" denoising methods including ours effectively
accelerate the convergence by deriving a posterior from the statistics
of a set of samples. Smaller errors can be obtained by increasing
the samples but converging to zero is unreachable by our approach.
This is also the general case for all learning-based methods, and the
reason lies in the gap between training data and testing data. The
trained model is not exactly restricted by the empirical variance of
rendered pixel means, thus error vanishing with increasing sample
counts of specific rendering image is not guaranteed (see Fig. 15).

7 CONCLUSION AND FURTHER WORK
We have presented the first adversarial learning framework for the
Monte Carlo denoising problem and have achieved state-of-the-art
results with improved perceptual quality. Moreover, our framework
sheds light on exploring the relationship between auxiliary features
and noisy images by neural networks. Comprehensive evaluations
have demonstrated the effectiveness and efficiency of our framework
over previous works.

Future work. Our work can be extended in several ways in the
future. First, the current network architecture is far from optimal.
Network designs can be fine-tuned to simplify the model, and vari-
ous strategies including custom-precision and model pruning can
be explored to accelerate the inference process. We would also like
to study how to encode temporal coherence into our framework for
interactive applications. Second, in addition to additive and multi-
plicative operations, more complex relationships based on Attention
mechanism [Xu et al. 2015] or hypernetworks [Ha et al. 2016] can
be exploited for better feature guidance. Variant network structures
other than GANs (e.g., variational autoencoder) can be investigated
to further improve the quality of denoised images in terms of human
perception. Third, it would be beneficial to extend our approach
to handle a greater range of rendering effects, like depth of field
and motion blur. More data from different domains are needed here
to test its potential. Finally, how to achieve comparable quality for
MC denoising with ‘light-weight’ learning is worth exploring, as
generating noise-free ground truth on a large scale is rather expen-
sive [Lehtinen et al. 2018].
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