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Fig. 1. Illustration of the image network. w and h are image space axises.
Subscript i and Γ represent pixel xi and its nearby pixel set, respectively;
superscript j represents the radiance field block B j out of its set Φ. GΓ is
image space auxiliary feature map; R jΓ is radiance feature map of B j ; the
final output is the predicted incident radiance. The CNNworks on the image
space for each radiance field block B j .

1 ALTERNATIVE RECONSTRUCTION NETWORK

1.1 Image Network
Our image network is inspired by an existing image space filtering
and denoising method, DPCN [Bako et al. 2017]. This image network
receives the image space auxiliary feature maps, e.g., positions, and
then convolves them with radiance feature maps in the image space
for each separate radiance field block. As illustrated in Fig. 1, the
input is image space auxiliary features GΓ and radiance features
R jΓ of one radiance field block B j , and the output is the predicted
radiance of the radiance field block of all pixels. We use nine hidden
layers with 100 kernels of 5×5 per layer and one output layer without
activation functions. Compared to the image-direction network, the
image network processes each radiance field block individually, and
thus takes much longer inference time. In addition, without the
information of nearby radiance field blocks, the results are worse
when there are not enough samples. More comparisons in the main
paper.
Besides directly predicting the radiance as output, we also tried

predicting the filtering kernel, named KPCN, as proposed by Bako et
al. [2017].We found that KPCN has a faster convergence speed in the
image space, but has a larger output, e.g., 21× 21 channels per pixel,
which results in more inferencing time and memory consumption.

2020. XXXX-XXXX/2020/2-ART0329 $15.00
https://doi.org/0000001.0000001_2

The overhead is negligible in the image space, but becomes signifi-
cant for handling hundreds of radiance field blocks. As a result, we
did not adopt the filtering kernel approaches.

1.2 Direction-image Network
In addition to the image space, features in the direction space (i.e.,
the space of incident radiance field parameterized by the spherical
coordinates) can help reconstruct the incident radiance field. The
direction-image network is based on the opposite idea of the image-
direction network. It contains two parts of direction and image
sub-networks. The direction part first explores directional features
in the direction space. The second part (i.e., image part) takes the
learned feature maps from the direction part, and then convolves
them with geometry feature maps to predict the final output.

The input of the first part is the direction space features D j
Γ . We

arrange radiance field blocks in the direction space according to
their directional coordinates and then convolve these blocks to
explore data coherence within nearby radiance field blocks. The
basic directional features include the average incident radiance
(3 channel) and second hits’ average distance (1 channel). Similar
to the image-direction network, we also calculate their variances.
However, only the samples of one pixel itself is too sparse at most
cases. To include more valid information, we treble input features
by gathering them in all of 1 × 1, 3 × 3 and 5 × 5 pixel windows, i.e.,
putting all samples into the window to the centered pixel’s radiance
field blocks. The idea is similar to reusing nearby pixels’ directional
samples to reconstruct the radiance field [Lehtinen et al. 2012]. This
part contains 3 hidden convolutional hidden layers with with 50
kernels of 3× 3. The output is 4× 4× 6 image feature maps FiΦi (i.e.,
one 1 × 1 × 6 slice for one radiance field block) each pixel.
The second part first rearranges the feature FiΦi into the image

space featuremaps. However, we found that geometry information is
still very helpful for the image part. Therefore we append the image
space auxiliary feature mapGΓ to the output of the first part. The
second part of convolution is in the image space for each radiance
field block. The sub-network contains 6 standard convolutional
hidden layers with 100 kernels of 5×5 and one output layer without
the activation function.

1.3 Direction Network
The direction network purely explores data coherence in the di-
rection space. As showed in Fig. 3, it takes as input the directional
features D j

Γ
of a pixel and outputs the radiance field block for the

pixel. Because it only takes directional information into consid-
eration, the lost of geometry features leads to blurred geometry
boundary. In addition, the results are not very smooth in the image
space. Please refer to the main paper for more comparisons.

The direction network has 8 standard convolutional hidden layers
(i.e., with convolutional kernel, bias and activation function) and one

, Vol. 1, No. 1, Article 0329. Publication date: February 2020.
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Fig. 2. Illustration of the direction-image network. w and h are image space axes; ϕ and θ are direction space axes. Subscript i and Γ represent pixel xi and
its pixel set, respectively; superscript j and Φ represent radiance field block B j and its radiance field block set, respectively; D are direction features; F i
represents the image space feature map extracted by the network; GΓ is image space auxiliary feature map of Γ; the final output is the predicted incident
radiance. The first CNNs work on the direction space for each separate pixel xi , and the second CNNs work on the image space for each separate radiance
field block B j . The rearrange operation breaks down the output of first part and then arranges them in the image space.
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Fig. 3. Illustration of the direction network. ϕ and θ are axes of the direction.
Subscript i and Γ represent pixel xi and pixel set, respectively; superscript
j and Φ represent radiance field block B j and radiance field block set,
respectively; DΦ

i are direction features; the final output is the predicted
incident radiance. The CNN works on the direction space for each pixel,
separately.

output layer without the activation function. Each layer contains
50 kernels of 3 × 3.

1.4 Convergence
Fig. 4 shows the convergence statistics of four R-networks. Even
though the direction-image network performs consistently better
than others, the image-direction is chosen as our solution for its
inference efficiency.

Unlike the R-network, the Q-network is supposed to be involved
multiple times. Therefore, we want to keep its layers as less as
possible to decrease the overhead. Fig. 5 plots the loss of Q-network
with different layers. We choose 3-layers since it has a similar loss
to 4- and 5-layers, but has a less computation overhead.
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Fig. 4. Convergence of the R-networks. The direction-image shows the best
quality with equal spp, but the image-direction has better quality with the
equal computational time.
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Fig. 6. Nine scenes from the training set.
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