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Fig. 1. Different applications of the proposed radiance field reconstruction algorithm: irradiance caching (left), guiding path for unbiased rendering (middle)
and filtering for fast preview (right). Details are further demonstrated in Fig. 12, 14 and 15.

Serious noise affects the rendering of global illumination using Monte

Carlo (MC) path tracing when insufficient samples are used. The two com-

mon solutions to this problem are filtering noisy inputs to generate smooth

but biased results and sampling the MC integrand with a carefully crafted

probability distribution function (PDF) to produce unbiased results. Both

solutions benefit from an efficient incident radiance field sampling and recon-

struction algorithm. This study proposes a method for training quality and

reconstruction networks (Q- and R-networks, respectively) with a massive

offline dataset for the adaptive sampling and reconstruction of first-bounce

incident radiance fields. The convolutional neural network (CNN)-based

R-network reconstructs the incident radiance field in a 4D space, whereas

the deep reinforcement learning (DRL)-based Q-network predicts and guides

the adaptive sampling process. The approach is verified by comparing it

with state-of-the-art unbiased path guiding methods and filtering methods.

Results demonstrate improvements for unbiased path guiding and competi-

tive performance in biased applications, including filtering and irradiance

caching.
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1 INTRODUCTION
The efficient rendering of realistic images is one of the main chal-

lenges in the field of graphics. Realistic rendering is time-consuming

because solving the integration of the well-known rendering equa-

tion [Kajiya 1986] requires many samples to achieve convergence.

Various approaches have been thoroughly studied to handle this

problem. In the context of interactive rendering, biased image-space

filtering (for a single image) and light-field filtering (for light-field

displays) are common solutions. However, biased rendering is not

suitable for design, physical simulations, training data generation

for deep learning, and high-quality rendering given that any mathe-

matical bias, inconsistency or temporal flicking is unacceptable. The

knowledge of the incident radiance field is beneficial for the ren-

dering of high-quality images. For example, unbiased path guiding

performs importance sampling for the following rendering equa-

tion [Kajiya 1986]:

Lo (x ,ω
′) =

∫
H
Li (x ,ω)fr (x ,ω,ω

′)c(x ,ω)dω, (1)

whereω ′ is the outgoing direction toward the camera from pixel x ,
Li (x ,ω) is the incoming radiance from directionω to x , Lo (x ,ω ′)
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Fig. 2. Gloom scene rendered in one hour for unbiased rendering guided by reconstructed incident radiance fields. There are complex occlusions that cause
spiky noises in the rendered images. Our method produces a more visually pleasing and numerically better result than other tested methods by utilizing the
information in the 4D radiance field. (g) Pseudo-colors are used to show the reconstructed radiance field at the green dot. Note that GMM and SD-tree do not
target synthesizing an unbiased radiance field but rather a PDF distribution related to the incident radiance. To compare various methods with the reference
radiance field fairly, we visualize their results as pseudo-color images by dividing the maximum value of each method. This allows us to compare the PDF
distributions. A similar visualization approach is also used by SD-tree [Müller et al. 2017]. A broader discussion of the compared methods is given in Section 7.

is the outgoing radiance from direction x to ω ′, fr (·) is the bidi-
rectional reflection distribution function (BRDF) of x , c(x ,ω) is the
clamped cosine term of the incoming directionω and the surface

normal at x , and H is the hemisphere of the shading point to be

integrated. In this scenario, the incident radiance Li (x ,ω) can be

estimated by a reconstructed radiance field to improve the efficiency

of the importance sampling.

In this study, we propose the adaptive sampling and reconstruc-

tion of the incident radiance field (radiance field) with deep rein-

forcement learning (DRL). In contrast to some online reinforcement

learning (RL) methods [Müller et al. 2017; Vorba et al. 2014], the

proposed approach is the first to facilitate the adaptive sampling by

training a massive quantity of data at offline. DRL has realized many

achievements, such as the well-known AlphaGo program [Silver

et al. 2016] but is still relatively newwith regard to rendering, except

for a few recent studies [Dahm and Keller 2017a,b,c]. DRL follows

the trial-and-error behavior of human beings to learn from an un-

supervised environment, and it has been proven to be a powerful

tool for solving difficult problems. Instead of fitting online data with

artificial models in the complex radiance field space, DRL can learn

from massive offline data to explore this high-dimensional space in

a purely data-driven manner.

Our approach combines aDRL-based quality network (Q-network)

and a new 4D convolutional neural network (CNN)-based recon-

struction network (R-network). DRL is used to train the Q-network,

which guides the adaptive partitioning and sampling of the radiance

field. The R-network filters and predicts the incident radiance field

while considering 4D features. We verify the proposed approach

using three applications: unbiased path guiding, filtering irradiance

caching, and filtering previews. The contributions of this study are

as follows.

• Addresses the light-field sampling and reconstruction problem

with deep learning techniques and offline datasets.

• Proposes a novel R-network that explores the image and di-

rection spaces of the radiance field to effectively filter and

reconstruct the incident radiance field.

• Presents a novel RL-based Q-network to guide the adaptive

rendering process.

2 RELATED WORK
In this section, we mainly discuss image and light-field space tech-

niques with adaptive sampling, after which we cover the recent

progress in the area of neural network.

Image-Space Methods. Image-space methods have recently at-

tracted considerable attentions. We recommend readers this sur-

vey [Zwicker et al. 2015] for more details. Some well-known tech-

niques are based on filtering [Bitterli et al. 2016; Moon et al. 2016;

Rousselle et al. 2012, 2013; Schied et al. 2017, 2018; Sen and Darabi

2012]. Inspired by the progress in the area of neural networks,

recent studies have led to significant improvements by predicting

the filtering bandwidths or kernels for alleviating noise [Bako et al.

2017; Chaitanya et al. 2017; Kalantari et al. 2015].

In general, image-space methods can be readily adapted to vari-

ous applications with moderate modifications on existing rendering

pipelines. Nonetheless, these methods fold the high-dimensional

space and do not guarantee mathematical unbiasedness. Accord-

ingly, they are not suitable for light-field rendering or high-precision

applications.

Light field Reconstruction Methods. These methods directly work

on the light-field space to explore image and direction space informa-

tion. A classic application reconstructs the integrand by exploring

the data coherence in the high-dimensional space [Egan et al. 2009;

Hachisuka et al. 2008]. Extra applications include motion blur [Egan

et al. 2009], soft shadows [Egan et al. 2011a], directional occlusion

[Egan et al. 2011b], and indirect illumination [Lehtinen et al. 2012],

among others. Lehtinen et al. [2011] considered visibility disconti-

nuity in reconstructing high-quality diffusion effects. Certain inter-

active methods sacrifice rendering details for performance [Mehta

et al. 2013, 2014; Yan et al. 2015]. Our method utilizes neural net-

works to predict the incident radiance field and achieves satisfactory

performance and quality for unbiased, high-quality rendering.
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Light field Adaptive Sampling Methods. Instead of directly recon-

structing the integrand, some prior methods adaptively sample and

represent the incident radiance field to synthesize a probability den-

sity function (PDF) for unbiased MC estimations. Jensen et al. [1995]

proposed guiding camera paths with traced photons and statistically

counting the number of photons in a spherical histogram. Following

their work, Budge et al. [2008] proposed a specific representation

to render caustic effects efficiently. Vorba et al. [2014] proposed an

online training method that uses a parametric Gaussian mixture

model (GMM) to iteratively estimate the PDF. This method was then

improved via adjoint-based Russian roulette and integration of bidi-

rectional scattering distribution function (BSDF) into importance

sampling [Herholz et al. 2016; Vorba and Křivánek 2016]. Hua et al.

[2015] used virtual point lights instead of estimating the radiance

from photons. Recently, Müller et al. [2017] proposed the represen-

tation of online data with a spatial-directional hybrid data structure

for importance sampling. Online regression was also used for direct

illumination sampling [Vévoda et al. 2018].

However, the aforementioned methods are based on the classic

online learning of predefined models, whereas our method trains

deep neural networks (DNNs) that facilitate the adaptive sampling

by training a massive quantity of data at offline. We demonstrate

the benefits of our work by comparing our method to the earlier

methods of Vorba et al. [2014] and Müller et al. [2017].

Filtering using DNN. In recent years, DNNs have been widely

used in a range of applications [Schmidhuber 2015]. Given a dataset,

DNNs learn mapping in an end-to-end manner from the input to the

outputs with multiple network layers. CNNs achieve impressive

improvements in image classification [He et al. 2016], view inter-

polation [Flynn et al. 2016], and image denoising [Xie et al. 2012;

Zhang et al. 2017].

DNNs are also applied to offline rendering. Kallweit et al. [2017]

used a deep radiance-predicting neural network to synthesize multi-

scattered illumination of clouds. Kalantari et al. [2015] trained a fully

connected neural network to predict the optimal bandwidths for

cross-bilateral and non-local mean filters. Bako et al. [2017] proposed

two types of CNNs to predict illumination or filtering kernels, which

were later improved by a modular convolutional architecture for

the effective assembly of different rendering engines [Vogels et al.

2018]. A recurrent neural network is also used for the denoising of

image sequences [Chaitanya et al. 2017]. Recently, neural-network-

based methods have been used in importance sampling [Müller et al.

2018; Zheng and Zwicker 2018]. These techniques belong to the

category of image-space filtering. Instead of directly filtering the

final rendered image, we focus on radiance field reconstruction for

unbiased and high-quality rendering.

DRL. One interesting problem is learning without the ground

truth (GT). Müller et al. [2017] described a practical online RL ap-

proach for path guiding. However, the approach only fits limited

online data with predefined models.

To learn from a massive amount of offline data, deep reinforce-

ment learning (DRL) trains a model and the respective policy for

performing a series of actions to achieve the maximum final re-

ward. The agent must learn the outcome of an action through a

trial-and-error process progressively to improve the model’s ability.

Description Type

i Index of pixel scalar

j Index of radiance field block scalar

Γ/T A set of pixels/Pixel tile set

θ A set of radiance field blocks set

B Radiance field block directional bin

B
j
x j-th radiance field block of pixel x directional bin

B
j
T j-th radiance field block of pixel x ∈ T directional bin

Table 1. Summary of the common notations in the paper.

Apart from online RL, studies on learning ATARI TV and GO

games by Google DeepMind have increased interest in end-to-end

RL or DRL [Mnih et al. 2015; Silver et al. 2016]. Combining the

newest progress in deep learning and the power of offline datasets,

DRL achieves attractive results in many domains. Mnih et al. [2015]

proposed deep Q-networks (i.e., networks that estimate the reward

of actions in given states) with multiple hidden convolutional layers

to playATARI games. One result of this researchwas thewell-known

Alpha GO program, which defeated the world champion in the game

Go [Silver et al. 2016]. Recently, double Q-learning was used to re-

duce the overestimation problem of classic Q-networks [Van Hasselt

et al. 2016].

Overall, few studies have utilized DRL to solve graphics problems

because most graphics problems can readily synthesize GT for su-

pervised learning [Bako et al. 2017; Chaitanya et al. 2017; Kalantari

et al. 2015; Kallweit et al. 2017]. With the goal of estimating Monte

Carlo (MC) integration, Dahm et al. [2017a; 2017b; 2017c] discov-

ered the similarity between RL and the MC integration process

and initially discussed the use of DRL in solving various practical

rendering problems. However, these works use online learning and

have not been properly compared with other state-of-the-art ap-

proaches. In this study, we find that DRL can learn from offline

datasets and guide the adaptive sampling and partitioning of the

high-dimensional radiance field spaces. The adaptive progress can

be regarded as the identification of a sequence of actions, whereas

achieving GT action sequences for supervised learning is impracti-

cal. To the best of our knowledge, we are the first to use DRL and

offline data to train a neural network for the adaptive sampling and

reconstruction of (first-bounce) incident radiance fields for unbiased

rendering. Another distinction of our method is that it only works

on first-bounce shading points given that the multi-bounce shading

points are spatially incoherent and difficult to embed into the image

space as inputs for common CNNs.

3 OVERVIEW
In this section, we introduce the key ideas of our approach, followed

by a pipeline overview.

Representation of Incident Radiance Field. We define the 4D inci-

dent radiance field as a combination of the image (i.e., the space of

a pixel or a shading point) and direction spaces (i.e., the space of an

incident hemisphere centered on the average normal of a group of

shading points).

We partition the image space (pixels) into tiles and the direction

space into bins referred to as radiance field blocks; note that GPUs
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Fig. 3. Runtime overview of our approach. (a) The image space is partitioned into tiles. (b) The direction space that is shared by pixels within each tile is
initialized with uniform blocks, and random samples are spread in each block. (c) We use the Q-network to evaluate the quality value of refining (partition the
block) or resampling (double the samples in the block) the direction space. (d) The direction space is refined into a hierarchy of the radiance field by taking the
best actions. The incident radiance field is reconstructed by using our R-network.

can efficiently perform network inference for batched and aligned

inputs with single instruction multiple data (SIMD) operations. In

the rest of the paper, a pixel tile can also contextually indicate a

single pixel without loss of generality. A radiance block B j is defined
by a bounded domain of the direction space and can be expressed

as:

B j ≜ {θ ,ϕ; 0 ≤ θ
j
0
≤ θ ≤ θ

j
1
<

π

2

, 0 ≤ ϕ
j
0
≤ ϕ ≤ ϕ

j
1
< 2π }, (2)

where [θ
j
0
,θ

j
1
] and [ϕ

j
0
,ϕ

j
1
] are the elevation and azimuth angle

bounds of B j , respectively. Note that while B j only defines the

bound of the direction space, B j can sometimes be used to briefly

represent B
j
x , which is the j-th partition in the direction space at the

particular pixel x , or B jT , which is the j-th partition in the direction

space shared by all pixels in the tile.

Guided by the Q-network, we adaptively partition the direction

space into a radiance field hierarchy with nodes of various sizes by

recursively partitioning the azimuth angle θ and the cosine weighted
zenith angle θ into half. Fig. 3 presents an example.

We reconstruct an incident radiance field per tile, instead of per

pixel, as the inputs of the networks. Therefore, the hierarchy is built

in the hemisphere of the local frame of a tile, which is defined from

the average normal of pixels in the tile. After the reconstruction of

the radiance field on the average local frame, we project the result

to the individual frames of the pixels. In this setting, a special case

in which the hemisphere of an individual pixel has certain incident

directions (i.e., uncovered domains) that are not covered by the

hemisphere of the average local frame exists. Reconstructing these

singular domains using the networks also leads to poor runtime

performance. To address this, we assign a uniform PDF to each

uncovered domain for unbiased sampling.

Radiance Field Reconstruction Using the R-network. For a CNN, N ,

the radiance field reconstruction of an incident radiance block B j is

L̂B
j

in (x) = N(X ,Ξ;w), (3)

where L̂B
j

in (x) is the output of the network (i.e., the average incident

radiance in B j at pixel x ), and X is the incident radiance sample in

the domain of B j ; Ξ indicates auxiliary features (e.g., the position,

normal and depth) andw is the trainable weight and bias term of

N . During training, the network is fed with offline training data to

optimize w , and thereby minimizes the error between the output

and the GT.

Filtering 4D Radiance Space (Section 4). Filtering in 4D space intro-

duces novel challenges. First, the number of samples per radiance

block is smaller than the number of samples per pixel because one

pixel has more than one block. Second, due to the curse of dimen-

sionality, performing convolutions in a 4D space requires higher

memory, training time, and data. To address these problems, we

investigate and compare four different reconstruction networks.

The results show that our image-direction R-network realizes the

best quality given an equal-time comparison.

DRL-based Adaptive Sampling (Section 5). In addition to the recon-

struction network, sample distribution and radiance field resolution

greatly influence the results. Intuitively, a higher number of samples

provides richer information for even using well-trained denoising

CNNs [Kalantari et al. 2015]. Adaptively refining the radiance field is

a commonly used strategy to preserve lighting details with a limited

budget [Müller et al. 2017; Zwicker et al. 2015].

In the same vein, we propose the use of the DRL-based Q-network

to guide the sampling and refinement of the radiance field hierarchy.

DRL is used to train the network because attempting to cover all

the possible radiance field hierarchies and sampling distributions

to search for GT are impractical. Specifically, we treat our adaptive

sampling as a dynamic process that iteratively takes action to refine

radiance field blocks into smaller blocks or to increase the number of

samples. The trained Q-network evaluates the value of each action

at the runtime to guide the adaptive process.

Pipeline Overview. The entire pipeline includes two main steps: a

training process (Figure 4), and a runtime rendering process (Fig-

ure 3). The GT data is the average values of the incident radiance

field with a directional resolution of 256×256, which is used to train

the R- and Q-networks.

During the training process, we initially train the R-network,

after which we use the trained R-network to train the Q-network.

Rewards are evaluated according to the difference between the GTs

and the reconstruction outputs from the R-network to minimize the

loss of the Q-network.

When all network training is finished, the trained networks are

used for runtime rendering. We partition the image into tiles and

use the same radiance field hierarchy for all pixels in a tile. We only

use the Q-network iteratively to predict the value of the actions and
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Fig. 4. Overview of the training process. The R-network is initially trained
to converge. It then provides the reconstruction outputs, along with the GT
and features, to train the Q-network.

guide the refinement or sampling of the radiance field hierarchy until

a given stopping criterion is reached. Then we use the R-network

to reconstruct the leaf nodes of the incident radiance hierarchy (Fig.

3). If the application is filtering, we directly evaluate the product of

a BRDF and the reconstructed incident radiance field as a preview.

If the desired result is an unbiased image, then we compose the

incident radiance field with the BRDF to generate a PDF for the final

rendering (guided path tracing).

4 RADIANCE FIELD RECONSTRUCTION NETWORK
In this section, we present the R-network, which is used in the re-

construction of radiance fields. Technically, it has several challenges

and involves certain differences compared to image-space filtering.

First, samples are dispersed in many directions, and thus inputs are

sparse at individual radiance field blocks. Second, direct convolution

in the 4D light-field space requires high memory and computation.

To meet these challenges, we explore and compare four different

CNNs, namely, image, direction, image-direction, and direction-

image networks. As suggested by their names, the image network

uses image-space auxiliary features and performs image-space con-

volution, whereas the direction network works with features and

convolution in the direction space. Meanwhile, the image-direction,

and direction-image networks connect image- and direction-space

convolutions in different orders to perform 4D light field convolu-

tions. In conclusion, the image-direction network, which we use as

the final R-network, achieves the lowest error given a fixed time

budget (Section 4.3). We mainly discuss image-direction network

while leaving the details of other R-networks in the supplementary

document.

4.1 Image-Direction Network
Our chosen strategy for the reconstruction of radiance fields is

the image-direction network (Fig. 5). The idea is that we initially

convolve image-space auxiliary features with incident radiances

to learn directional feature maps, after which we rearrange these

feature maps into the direction space, finally convolving them to

explore coherence in the direction space.

The image-direction network can be partitioned into image and

direction parts. We use the notion X i
Γ to represent a feature map

associated with directional block i and pixel tile Γ. The image part

takes some image-space auxiliary feature maps GΓ and radiance

feature maps R jΓ (mean, variance and gradient of the radiance) as

inputs. The output is the direction-space feature map Fd
j
Γ (Fig. 5). Γ

indicates the entire pixel set in the image space, and the superscript

j refers to the j-th radiance field block B j . For example, Fd
1

Γ indicates

the feature map defined in the image space for the first radiance

field block B1
. Instead of relying on hand-designed features, the

direction part takes the learned directional feature map Fd
j
Γ from

the image part as input to simultaneously convolve the radiance

predictions of all radiance field blocks.

The initial input of the network includes the image-space auxil-

iary feature mapGΓ and the radiance feature map R jΓ . The image-

space auxiliary features are mostly geometrical features, i.e., surface

normals (three channels), positions (three channels), and depth (one

channel). The radiance features are from the sparse samples, i.e.,

the average incident radiance L̄B
j

in (x) of each radiance field block B j .
Similar to kernel-predicting convolutional networks (KPCN) [Bako

et al. 2017], we also feed each feature’s per pixel variance and image-

space gradients to facilitate training and highlight important details.

The geometrical features have a total of 26 channels as follows:

• three channels for the average normal, one channel for the aver-

age variance in the normals, and six channels for the gradients

of the average normal;

• three channels for the average position, one channel for the

average variance in the positions, and six channels for the

gradients of the average position;

• one channel for the average depth, one channel for the variance

in the depth, and two channels for the gradients of the average

depth;

• two channels for the gradients of the average radiance of all

blocks.

The radiance features have a total of four channels, which comprise:

• three channels for radiance;

• one channel for average variance in the radiance.

These features are all stacked as feature maps in the image space as

a tensor to be convolved. The radiance features for a radiance field

block are initialized with zeros if there are no samples in the block,

which is similar to the features in Bako et al. [2017]’s work.

The first part of the image-direction network contains six stan-

dard convolutional hidden layers with 100 kernels of size 5 × 5.

Compared to fully connected layers, using convolutional layers

allows a decrease in the number of parameters to speed up the

training and avoid overfitting. This structure has been proven to

be efficient in image-space filtering problems [Bako et al. 2017]. In
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Fig. 5. Illustration of the image-direction network, where subscripts i and Γ respectively represent pixel xi and the entire pixel set, superscripts j and Ψ
respectively represent the radiance field block B j and the entire set of the radiance field blocks, respectively. GΓ is a feature map of the image-space auxiliary
feature; R1

Γ , R
2

Γ , · · · , R
16

Γ are feature maps of the radiance features of B1 to B16, and Fd represents the direction feature map of the corresponding radiance
field block, and the final output is the predicted incident radiance. The first part of the network works on the image space, whereas the second part works on
the direction space for each separate pixel xi . The rearrangement operation reshapes the outputs of the first part as direction space inputs.

each layer, some trainable kernels are applied to the output of the

previous layer to generate linear convolution in nearby pixels. The

convolution output is added with a trainable bias and applied to

an elementwise nonlinear activation function as the output of the

current layer. In this study, a rectified linear unit (ReLU) activation

function is used for all networks. The six layers convolve the input

tensor to extract 4 × 4 direction-space feature maps Fd
j
Γ for each

radiance field block.

The second part of the network convolves these feature maps to

produce the final output. To perform convolution in the direction

space, we initially rearrange the output of the image part into the

direction space as a 4×4×12 input tensor representing 12 directional

features for 4 × 4 radiance field blocks; we test various numbers of

features and find that using 12 features allows us to balance accuracy

and runtime performance.

Note that the rearrangement operation simply rearranges the

features so that the entire network is fully differentiable to make

end-to-end training possible. The network then separately convolves

the input with three standard convolutional hidden layers using 50

kernels of 3×3 and the final output layer. The output of the network

is the predicted or filtered incident radiance L̂Ψin (xi ) of 16 radiance
field blocks at each pixel, where Ψ represents a set of radiance field

blocks and xi represents a pixel. Because each pixel has different

radiance field blocks, these radiance field blocks across different

pixels can be considered as a 4D radiance field. By treating this

output as a PDF for MC estimation, we perform the final unbiased

rendering (Section 6).

4.2 Alternative Networks
While the image-direction network works best, we initially test sim-

pler networks: an image network and a direction network. We also

test the direction-image network, which is the opposite approach

to the image-direction network. In the paper, we briefly introduce

these networks and present comparisons in Section 4.3. More details

about these networks are available in the supplementary document.

Image network. The image network, which was inspired by a re-

cent image-space filtering and denoising method [Bako et al. 2017],

is similar to the first part of our image-space network. Given that

this network works only in the image space, we must use the im-

age network to process each radiance field block separately, which

requires a high number of parameters and causes a long inference

time. In addition, the individual processing of each radiance field

using the image network also degrades the results, especially when

there are not enough samples, which is mainly because the image

network does not consider the information of nearby radiance field

blocks. We also test the filtering kernel prediction as in the KPCN

technique proposed by Bako et al. [2017] instead of directly pre-

dicting the radiance as the output but find that this approach is too

expensive when handling tens of radiance field blocks.

Direction network. The direction network only explores data co-

herence in the direction space. Its network structure is similar to

the second part of the image-direction network. Because it only

considers directional information, the loss of geometric features

leads to blurred geometric boundaries. In addition, the results are

not smooth in the image space.

Direction-image network. The direction-image network bears the

opposite idea of the image-direction network. In this approach, the

direction part first explores directional features and then rearranges

intermediate features into the image space, convolving with geo-

metric features to predict the final outputs. Although the direction-

image network shows improved quality over the image-direction

network given the sample information, it requires much more in-

ference time because it must convolve the image-space features for

each individual radiance field block.

4.3 Experiments on Reconstruction Networks
To evaluate these reconstruction networks, we train them using the

same training set and then compare them in an equal sample setting.

We use 64 samples per pixel, a 4 × 4 radiance field resolution, and

a 500 × 500 image resolution with the Staircase scene outside the
training set (Fig. 6). Section 6 contains an additional discussion on

the training and testing sets.

First, Fig. 6 shows the reconstruction results of one example of a

radiance field block and the means of all blocks. The individual block
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(a) Input

rMSE 0.002

(b) Direction

rMSE 0.0010

(c) Image

rMSE 0.0006

(d) Direction-image

rMSE 0.0008

(e) Image-direction (f) Reference

Fig. 6. Staircase scene rendered with 64 SPP at a radiance field resolution of 4 × 4 and image resolution of 500 × 500. Top row: reconstruction results of one
radiance field block, which can be used for path guiding. Bottom row: integration of all radiance field blocks, i.e., the mean of individual blocks, including
those shown in the first row, which can be used for ambient occlusion or preview. While the error of the image-direction network is slightly higher error
relative to that of the direction-image network, it is more than three times faster. As a result, the image-direction network achieves the best quality given the
same time budget (the graph on the right in Fig. 6)
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Fig. 7. Left: the rMSE of the reconstruction networks with various numbers of samples per pixel. Right: the rMSE of the reconstruction networks with various
times (seconds). The solid lines represent the reconstruction errors when integrating all radiance field blocks into the image space (the third row of Fig. 6), and
the dotted lines represent the average reconstruction errors of individual radiance field blocks (the first row of Fig. 6). The image-space errors are important
when evaluating the networks when used for filtering previews. The radiance field space errors can be used to evaluate the reconstruction quality of the
radiance field, which is critical for unbiased path guiding applications.

result is in the radiance field space and can be used to synthesize a

PDF for path guiding. The mean result is the image-space result that

can be used for radiance caching or previewing. As noted from the

results, the direction network and the image network produce arti-

facts or overly blurred details because they utilize the information

only in neither the image space nor the direction space. How-

ever, the image-direction and direction-image networks utilize both

spaces and show enhanced results. Nonetheless, the direction-image

results are smoother given the same samples per pixel (SPP) because

the direction-image network directly outputs results in the image

space, whereas the image-direction network outputs results of the

radiance field blocks.

Fig. 7 shows the relative mean square error (rMSE) of the final

rendering result as we generate more SPP. Here, the number of

samples per radiance field block (SPB) is SPP divided by 16 because of

the existence of 16 radiance field blocks per pixel. The advantage of

combining the image and direction spaces is more pronounced when

there are few samples. For the inference speed, the reconstruction

times of the direction, image, image-direction, and direction-image

networks are 0.75, 3.51, 0.62 and 2.14 s, respectively, at 64 SPP. These

results indicate that the direction and image-direction networks are

faster than the others. The corresponding rMSEs are 0.002, 0.001,

0.0008, and 0.0006, respectively. The image and direction-image

networks require additional time because they separately convolve

many image-space auxiliary features with each radiance field block.
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However, the image-direction network shows the fastest inference

time because it simultaneously convolves 16 radiance field blocks

in the image space.

In summary, the direction-image network achieves the best qual-

ity given the same inference time relative to the other networks, as

indicated in the figure on the right in Fig. 7. Despite the fact that the

direction-image network has good reconstruction quality given the

same SPP, it requires over three times the inference time. Therefore,

we choose the image-direction network as the final reconstruction

network. Below we explain the process of the proposed RL-based

adaptive samplingmethod, which progressively improves the overall

rendering quality given the chosen image-direction reconstruction

network.

5 ADAPTIVE LIGHT-FIELD SAMPLING VIA
REINFORCEMENT LEARNING

The R-network in the previous section takes the radiance field hi-

erarchy with a fixed number of nodes, i.e., 4 × 4 node, as input.

However, a strategy of adaptively refining the hierarchy can im-

prove adaption to different scenarios. In this section, we propose

the use of a DRL-based Q-network to adaptively guide the sampling

and refinement of the radiance field hierarchy.

Two factors are critical when building the hierarchy. The first is

the structure of the hierarchy, i.e., the method for discretizing the

radiance field (Fig. 3). This factor was noted in a previous adaptive

method [Müller et al. 2017]: a higher grid resolution can effectively

capture high-frequency lighting features, but it comes with an over-

head. The second factor is an adaptive sample distribution, in which

more samples (i.e., a greater sample density) are placed in those

noisy areas (blocks or nodes) to reduce reconstruction errors (Fig.

7).

In contrast to previous methods [Moon et al. 2016; Müller et al.

2017; Vorba et al. 2014], our approach uses a massive quantity of

offline data to train a DNN to guide the process. However, we find

that the adaptation of classic supervised learning is challenging

because calculating aGT hierarchy and sampling distribution are NP-

hard with regard to the solution space [Papadimitriou and Steiglitz

1998]. Thus, we choose to decompose the refining process into a

sequence of atomic actions and adapt an unsupervised learning

technique, DRL, to train a Q-network to guide the process and

minimize reconstruction errors.

5.1 Problem Formulation
Departing from supervised learning, we treat our adaptive sampling

and partition approach as a dynamic process and address our prob-

lem by DRL. Specifically, we adapt deep Q-learning [Mnih et al.

2015] to choose the next best sampling or partitioning action for a

radiance field block with a given state.

Q-learning usually includes an agent situated in a certain envi-

ronmental state s . Given s , the agent performs action a, which leads

to new state s ′ and reward r . In this framework, the neural network

learns from the reward and then predicts the long-term values of ac-

tions in different states. In our adaptive sampling scenario, we train

a neural network that receives the global radiance field information

(e.g., geometry information, radiance samples and radiance field

hierarchy) as input states and predicts the quality value (Q-value)

of possible actions as the output to determine the next action. First,

we define the action, quality value, state and network structure of

our approach, as shown below.

We use two different actions for a radiance field block at an epoch.

First, we resample the block by doubling its sample density per

block (the number of samples per block), and second, we refine the
radiance field block to 4× 4 new blocks by equally partitioning each

axis as shown in Fig. 3, while keeping the average number of samples

per block by adding some new samples. The goal of maintaining

the sample density per block is to prevent the degeneration of the

reconstruction quality due to the sparser samples. These two actions

impact the reconstruction result in different ways. Increasing the

number of samples can decrease the variance in the radiance feature,

which suppresses noise. Refining can increase the resolution of the

grid, which can capture high-frequency details.

The quality value Q and reward of action r are defined in each

radiance field block. For radiance field block B j at a pixel (or a tile,
as explained in Section 6.2), the quality value of taking action a in

a state s j is defined by the following equation, also known as the

Bellman equation [Kirk 2012]:

Q j (s j ,a) = r (s j ,a) + γ max

a′
Q j (s ′j ,a′), (4)

where s j and s ′j correspond to the states before and after action

a is taken, a′ is a possible next action, r (s j ,a) denotes the reward
of the action, and γ is a decay parameter between 0 and 1, which

results in myopic and far-sighted thinking, respectively. Intuitively,

given a state s j represented by the given radiance field hierarchy

and sample distribution, the equation attempts to find the maximum

quality value of an action based not only on action a, but also with
additional steps by recursively considering the next possible action

a′. Evaluating this equation with many steps entails significant

overhead and poses difficulty in terms of learning the long-term

effects of actions. Therefore, in practice, we estimate the Q-value of

an action by considering two additional steps, limiting the number

of combinations of actions, and thus simplifying our estimation

problem. Equation (4) is then approximated as follows:

Q j (s j ,a) ≈ r (s j ,a) + γ max

a′
r (s ′j ,a′). (5)

We define the reward r (s j ,a) as follows:

r (s j ,a) = E j (s j ) − E j (s ′j ), (6)

where E j (s j ) is the reconstruction error of block B j , i.e., the integra-
tion of the absolute difference between the reconstructed radiance

and the ground-truth radiance in the domain of B j .
Additionally, we found that the scalar range of r (s j ,a) varies

with the integration domain (the area of the image space) of B j ,
called dom(j). As making the network irrelevant to the scalar range

improves its robustness [Bako et al. 2017], we train and infer a

normalized substitute reward, r ′(a) = 1

dom(j)r (s
j ,a), and replace

the Q-value with Q ′j (s j ,a) = 1

dom(j)Q
j (s j ,a). Using the action-

value function, we simply use the squared error between Q ′j (s j ,a)
and its predicted value, Q ′pre (s

j ,a), as the loss during the learning

process. At runtime, we recover Q j (s j ,a) for our adaptive sampling

process (Section 6.2).
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Fig. 8. Illustration of Q-network processing for each radiance field block, which receives various inputs containing image-space auxiliary features (GΓ ), the
radiance information of a radiance field block (R jΓ ) and its parent information (Rs (j )Γ ), and hierarchy features H j

Γ represented in the image space. Q-network
processing then provides the predicted Q-value of two actions.

Algorithm 1 Reinforcement Learning Algorithm

1: function Reinforcement Learning(B j )
2: Initialize replay memory D and state s
3:

4: while Stopping criterion not reached do
5: if Random() < ϵ then
6: a ← RandomAction()

7: else
8: a ← maxa′ Q(s

′,a′)
9: end if
10: r , s ′ ← Perform(a)
11: D.Store(< s,a, r , s ′ >)
12: < ŝ, â, r̂ , ŝ ′ >← D.DrawSample()

13: TrainNetwork(< ŝ, â, r̂ , ŝ ′ >)
14: s ← s ′

15: end while
16: end function

5.2 Reinforcement Learning Process
Given the definitions of the action, the quality value, and the state,

the entire learning algorithm is listed in Algorithm 1. The agent

performs an action (e.g., resampling or refining) and observes the

state and the reward of a radiance field block B j as the input to the

learning process. First, we initialize replay memory D and state s .
The replay memory is used to store a sequence of states, actions,

and rewards. On the basis of the replay memory, we can delay the

update of the Q-network to learn long-term rewards, instead of only

observing short-term effects.

Upon each learning iteration, the algorithm initially calculates

the Q-values of the two actions and performs the most valuable

action. In increasing the robustness of the algorithm and searching

for a wide range, the probability of ϵ = 0.01 exists that the algorithm

does not take the most valuable action but picks a random action

from the two actions. Once the action is taken, its reward r and the
new state s ′ are recorded in the replay memory D for the delayed

updates of the network. At the end of the iteration, a random pair of

< ŝ, â, r̂ , ŝ ′ > is selected from the memory to calculate the loss and

train the Q-network. With the reply memory, the learning phase

is separated from the process of gaining experience, thus helping

to decrease the dependency of sequential learning samples and to

increase convergence [Silver et al. 2016].

5.3 Q-network Structure
We adopt a widely used network structure in deep learning [Mnih

et al. 2015], i.e., we first convolve information and then predict

the reward with fully connected layers. As shown in Fig. 8, our

Q-network takes information around a pixel i and radiance field

block B j as inputs to predict the rewards of two actions that we can
perform on B j .
Compared with the image-direction R-network, the Q-network

only uses image-space convolutions and fewer hidden layers for

performance. However, we can use hierarchy information during the

adaptive partitioning process to access the information from nearby

radiance field blocks. Specifically, two hidden convolutional layers

with 50 kernels of 3× 3 convolve the features of radiance field block

B j in the image space first, after which the fully connected layers

are used to predict the final output. The input includes image-space

auxiliary feature mapGΓ , radiance feature map R jΓ of radiance field

block B j , newly introduced, hierarchy feature mapH j
Γ , and parental

radiance feature map Rs(j)Γ , which contains the radiance feature

of the parent radiance field block of B j to capture surrounding

direction-space information. These features are all aligned in the

image space. The meanings ofG and R are identical to those of the

R-network (Section 4).

The newly used hierarchy feature describes the current hierarchy

state within the range of B j , i.e., the number of samples and the

maximum hierarchy level in radiance field block B j . The hierarchy
level represents the granularity of a node; e.g., the root node has level

zero, and its corresponding children have level one. Themaximum
hierarchy level of B j is then defined as the maximum hierarchy level

of the current radiance field blocks within the domain of B j . This
feature indicates how nearby pixels refine B j given the center pixel

i . If the neighboring pixels have large maximum hierarchy levels

within B j , the central pixel should also look into a deep level of B j .
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5.4 Q-network Experiments
Whereas the R-network uses seven image-space convolutional layers

to eliminate noise efficiently, the Q-network uses fewer image-space

convolutional layers for two reasons. First, DRL requires more data

and time for training, and thus the number of parameters need to

be constrained to a reasonable size. Second, we need to consider

the performance because the Q-network is frequently evaluated

during the adaptive sampling process. We test the training losses

of various layers and chose three layers. Readers can refer to the

supplementary document for further information.

6 ADAPTIVE SAMPLING AND RENDERING
In this section, we discuss how to train and use our R- and Q-

networks in the rendering pipeline. As shown in Fig. 3, the adaptive

sampling and the rendering pipeline contain three steps given the

trained networks. First, we use the trained Q-network to guide the

process of adaptive sampling and refine the field blocks. This results

in a hierarchy of radiance field blocks. Second, we use the trained R-

network to reconstruct the incoming radiances from the hierarchy.

Finally, we apply the reconstruction result for the final rendering.

6.1 Training and Preparation
We first train our R-network given that the Q-network depends on

the R-network (Fig. 4). All variables of our networks are initialized

using the Xavier method [Glorot and Bengio 2010] and are updated

using the Adam optimizer [Kingma and Ba 2014] with a 0.0001 learn-

ing rate. The initializer and optimizer are available in TensorFlow

[Abadi et al. 2016]. Our dataset includes 20 scenes. To enrich the

training dataset, we randomly change the views, lighting, material,

and textures of these scenes to generate approximately three hun-

dred scenes. In addition, we randomly select five different values

of samples per block (SPB) and radiance field resolutions per scene

to adapt the R-network to various ranges. The SPB configurations

are selected from (1, 2, 4, 8, 16). The resolution of the radiance field

blocks is selected from (16
1, 16

2, 16
3, 16

4, 16
5).

Once the R-network converges, we use it to train the Q-network,

i.e., we calculate the quality value (Equation (4)) in the same train-

ing data set. Nine examples of the training data set are available

in the supplementary report. We train the Q-network through a

classic stochastic RL algorithm (Algorithm 1), which can simulate

practical data distributions and prevent data coherence through

replay memory. However, we find that the stochastic training pro-

cess has overhead. To accelerate deep reinforcement training, we

additionally use a deterministic step to pre-train the Q-network by

increasing either the resolution or the sample density with different

configurations and then using the stochastic algorithm (Algorithm

1) to fine-tune the pre-trained Q-network. Although the determinis-

tic step can encounter a data coherence problem, we do not observe

problems in practice, mainly because of our use of the stochastic

process.

6.2 Adaptive Sampling Algorithm
We apply the trained Q-network to guide our adaptive sampling

process; the pseudocode is shown in Algorithm 2.

Algorithm 2 Adaptive Sampling Algorithm

1: function Adaptive Sampling Tile(tile T )
2: Initialize an incident radiance field hierarchy HT for T

3: for each B
j
T in HT do

4: Q
j
T ← EvaluateQValue(B

j
T )

5: end for
6:

7: while stopping criterion not reached do
8: B

j
T ,a

j
T ← SearchMostValueableAction

9: if ajT is refinement then

10: B
sub(j)
T ← Partition(B

j
T )

11: Q
sub(j)
T ← EvaluateQValue(B

sub(j)
T )

12: Update(HT )
13: else
14: Resample(B

j
T )

15: Q
j
T ← EvaluateQValue(B

j
T )

16: end if
17: end while
18: end function

We partition the image space into 25 × 25 tiles, each of which is

processed in a parallel manner. Note that the Q-network convolves

the features of nearby pixels, and thus it is relatively efficient if the

input is batched. We combine all pixels of tile T together using the

average Q-values of pixels to determine the next action. Therefore,

pixels in the same tile share the same hierarchy HT and can be

convolved simultaneously. Note that although pixels in the same

tile share the same hierarchy HT , i.e., the same partitioning on

the radiance field, each pixel has different reconstructed incident

radiance field values over other pixels in providing a customized

reconstruction of each pixel in the tile. In the pseudocode, we use

the subscript T to indicate that the blocks or actions are shared by

the pixels of tile T .

The quality value for tileQ
j
T is simply the sum of all pixels’ quality

values: Q
j
T =

∑
i ∈T Q

j
i . , we initialize the hierarchy by uniformly

partitioning the radiance field to depth 1 (4 × 4 = 16 radiance field

blocks) and uniformly sample in each block with one sample. We

then use the Q-network to predict the quality values of the refining

or resampling blocks in HT .
We undertake iterations of our adaptive sampling process as

follows. We use a heap associated with actions and their Q-values

to select the top (i.e., the most valuable) action a
j
T and perform the

action on tile T . If the refining action is chosen, new blocks B
sub(j)
T

are used to replace B j with new quality values. If resampling is

chosen, only the quality value of B j is updated after taking the

action.

To constrain the training data in a practical range, which is bene-

ficial for bounding the memory and the computation cost, we set a

few rules. First, the maximum number of iterations per tile is set to

100 and the maximum depth of the hierarchy is 5, i.e., the smallest

block is
1

(4×4)5
= 1

2
20

of the radiance field. Second, the maximum

sample density (the samples per block) is 16. Third, when the quality
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value of a new action for xi is less than ϵ = 0.02% of the estimated

irradiance, we do not distribute any new samples for xi because the
expected effect would be small.

6.3 Reconstruction and Final Rendering
We use the image-direction R-network to reconstruct the radiance

field blocks of the hierarchy HT . To generate a fast preview, we

simply use the reconstructed incident radiance field to evaluate and

integrate the product of the incident radiance and the BRDF. To

render the unbiased image, we treat the reconstructed radiance field

and the BRDF as two PDFs to generate the sampling directions. We

then combine those two samplers via multiple importance sampling

(MIS) [Veach 1998].

Specifically, MIS draws samples from both the BRDF and the

reconstructed radiance field as two independent estimators, after

which the results of these two estimators are weighted and summed

as the final rendering result, which considers BRDF and incident

radiance. The BRDF samples can be analytically drawn from a cu-

mulative distribution function. The reconstructed radiance field

samples are generated by initially selecting a radiance field block

from a discrete PDF and then proportionally sampling a point from

the block according to the cosine weighting term. Currently, we

focus on reconstructing high-quality incident radiance fields at first-

bounce shading points.

As multi-bounce vertices are sparse, they are not compatible with

the input format of our networks. For multi-bounce vertices, we

can either switch to standard multiple importance sampling, or

adapt to other photon guided methods if the lighting is complex.

For example, we simply spread one million photons to guide the

sample directions [Jensen 1995]. Specifically, the unit square of

the hemisphere is partitioned into distinct regions and the photon

contributions in each region are accumulated to guide path.

7 RESULTS
We implement our algorithm based on Mitsuba [Jakob 2010], Ten-

sorFlow [Abadi et al. 2016], Intel Math Kernel Library and NVidia

CUDA.We also compare our method with state-of-the-art path guid-

ing methods, including an online learning method using a Gaussian

mixture model (GMM) [Vorba et al. 2014] and an adaptive spatial-

directional radiance field hierarchy (SD-tree) [Müller et al. 2017].

The source codes of these methods were implemented and made

available by their authors. In addition, we compare path tracing (PT)

[Kajiya 1986] and manifold exploration metropolis light transport

(MEMLT) [Jakob and Marschner 2012].

GMM uses 30 pre-training passes by default and SD-tree auto-

matically balances the learning and rendering budgets. Our method

adaptively refines the incident radiance field, as described in Sec-

tion 6. First, we compare path tracing guided by our method, the

GMM and SD-tree without next event estimation (NEE) techniques,

after which we compare our method against all other methods in

complex scenes with NEE. The testing hardware includes an Intel

Core i7-6700 CPU with 4 cores, 56 GB of memory, and a TITAN V

GPU.

7.1 Incident Radiance Field Distribution Reconstruction
In this section, we evaluate different methods in terms of recon-

structing the incident radiance field.

Comparison in terms of guiding distributions.We compare the radi-

ance field reconstruction quality in the Box scene (Fig. 9) first. The

overall equal-time performance comparison with NEE is presented

in the next section. As the sampling strategies of these path guiding

methods differ, we exclude the online training factor in this test.

Only the final radiance field reconstruction quality is compared,

given an equal number of rendering samples per pixel (the rays

guided by the reconstructed radiance field to render the final image).

Thus, we allow all methods to thoroughly learn the light field and

then guide the unbiased path tracing (PT) method with 256 samples

per pixel to generate the final images. Specifically, the numbers of

reconstruction samples per pixel (the rays used to reconstruct the

radiance field) are 508 and 300 for SD-tree and our method, respec-

tively. GMM uses a different sampling strategy that only spreads

photons from light sources. The total number of photons is nine

million (36 SPP) by default, but it requires more than twice the

time for training and fitting relative to the other methods. Another

interference factor, NEE, is also turned off for all methods.

To evaluate the improvement of the Q-network, we also render the

result only with the R-network, i.e., using a fixed incident radiance

field resolution and uniform samples, henceforth referred to as Ours

(using only R-net).

Although rendering without NEE presents a disadvantage to our

first-bounce reconstruction, our adaptive strategy still shows at least

a 30% numerical improvement and has fewer visual artifacts com-

pared with the prior methods (Fig. 9). As demonstrated in Section

7.2, our method realizes a more significant improvement with NEE

turned on. To visualize the incident radiance fields of GMM and SD-

tree, we uniformly spread 16M samples per pixel to query incident

radiances from these methods. Similar to Fig. 2, we visualize the

PDF distributions of the green dots for all of these methods.

Box has complex light spots, shadows, and occlusions. Without

the help of NEE, all methods show noise. GMM has serious noise

but no significant artifacts. SD-tree produces artifacts in the shadow

of the airplane wing. In terms of the incident radiance field, SD-tree

is good at capturing high-frequency features but is too sensitive to

spikes because it directly stores the radiance without filtering.

GMM does not trace samples from the camera, but it filters the

radiance with the Gaussian model to smoothen out noises. In this

scene, sparse eye paths cannot capture the true radiance field. Com-

paratively, the result of our adaptive method has little noise and

no noticeable artifacts. Its reconstructed incident radiance field is

also smooth. Overall, our adaptive method using the R- and Q-

networks shows the lowest numerical error. As expected, our fixed

method using only the R-network is worse than the adaptive method.

Surprisingly, although the reconstructed incident radiance field is

coarse, it is comparable to those of GMM and SD-tree visually and

numerically because: a) a coarse resolution eliminates variance; and

b) our method can directly sample the cosine weighted incident

radiance from the local frame of an individual pixel to effectively

approximate the rendering equation, whereas SD-tree and GMM
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(a) GMM

rMSE 0.0101

(b) SD-tree

rMSE 0.0056

(c) Ours (only R-net)

rMSE 0.0062

(d) Our Adaptive

rMSE 0.0041

(e) Reference (32k SPP)

Fig. 9. Box scene rendered with 256 guided rays per pixel. For this test, NEE is turned off for all methods to emphasize the differences in the guiding
distributions, while the other tests use NEE, considerably improving our first-bounce reconstruction method. The resolution is 500 × 500. Whereas (d) is the
result when our adaptive approach using R- and Q-networks, (c) is the result of using only the R-network to reconstruct the incident radiance field with
uniform samples. The bottom right figure of each method shows the reconstructed PDF distribution of the reconstructed radiance field at the green point in
pseudocolors.

methods need to share models among nearby pixels to reduce the

learning cost.

Evaluation of adaptive partitioning. To evaluate the influence of

the radiance field resolution and our Q-network based adaptive

partitioning strategy further, we use different radiance field parti-

tioning strategies to quantify the radiance field and spread samples,

after which we use the R-network to reconstruct the radiance field.

The results and mathematical errors are illustrated in Fig. 10. In the

(a) 4 × 4

rMSE 0.0247

(b) 16 × 16

rMSE 0.0156

(c) 64 × 64

rMSE 0.0153

(d) Greedy

rMSE 0.0305

(e) Our Adaptive

rMSE 0.00986

(f) Reference

Fig. 10. Comparison of the radiance field reconstruction errors of the
green point of the Box scene. All figures are reconstructed by the R-network
with 768 SPP, but they are computed with different radiance field parti-
tioning strategies. (a), (b) and (c) are uniformly partitioned into different
resolutions. (d) uses a simple partitioning strategy that greedily partitions
the blocks with the highest intensity. (e) uses our Q-network based adaptive
partition strategy with 631 blocks.

figure, (a), (b) and (c) are computed under the same uniform parti-

tioning and sampling strategy with different resolutions. Note that

the number of samples is less than the resolution of 64 × 64 blocks

in the case of (c), which results in considerable variance. Fig. 10 (d)

uses a greedy strategy similar to that of SD-tree, i.e., partitioning the

blocks with the highest intensity. As expected, the greedy strategy

may be driven by noisy samples and generate suboptimal partitions.

In summary, our adaptive strategy achieves at least a 50% numerical

improvement compared with the other strategies. Although (c) has

a much higher resolution and more overhead, the result is still not

compatible with that of Ours, which uses 631 partitions.

7.2 Unbiased Rendering Application
The primary application of the proposed method is path guiding

for unbiased rendering. We perform one-hour equal-time compar-

isons with the PT, GMM, SD-tree and MEMLT methods in various

scenes. PT uses 1400 samples per pixel. The adaptive sampling and

reconstruction time for our method, the learning time for SD-tree,

and the pre-training time for GMM are included. The resolution of

these images is 1000 × 1000.

GMM and SD-tree automatically balance sampling and rendering

samples. GMM uses multiple passes (e.g., 30 passes) and distributes

300 K photons and importons within each pass. In the rendering

pass, it fits GMM models with reconstruction samples, thus intro-

ducing considerable overhead, to guide rendering and acquire final

images with 384 rendering samples per pixel (i.e., samples used dur-

ing the final rendering stage). SD-tree distributes a small number

of samples initially and then doubles the number of samples at the

next pass with the previous samples used as a guide. In total, there

are 508 and 768 reconstruction and rendering samples per pixel,

respectively, for SD-tree. In contrast to the multiple pass strategy of

GMM and SD-tree, we adopt the relative error estimation strategy

(e.g., [Huo et al. 2015]) to control the sampling of samples. The

average reconstruction and final rendering SPP are 300 and 1024,

respectively. The initial radiance field sampling and reconstruction
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(a) PT

rMSE 0.0064

(b) MEMLT

rMSE 0.0046

(c) GMM

rMSE 0.027

(d) SD-tree

rMSE 0.0041

(e) Ours

rMSE 0.0022

(f) Reference

GMM

Ours

SD.

Ref.

(g) Distribution

Fig. 11. Classroom scene rendered in one hour. The pseudocolor figure visualizes the reconstructed PDF distribution of the radiance field at the green dot.

(a) PT

rMSE 0.0011

(b) MEMLT

rMSE 0.0015

(c) GMM

rMSE 0.00072

(d) SD-tree

rMSE 0.020

(e) Ours

rMSE 0.00035

(f) Reference

GMM

Ours

SD.

Ref.

(g) Distribution

Fig. 12. Red scene rendered in one hour. The pseudocolor figure visualizes the reconstructed PDF distribution of the radiance field at the green dot.

time is approximately 15 minutes, whereas the neural network in-

ference time is within three minutes. In general, the neural network

overhead is significantly smaller than the total computation time of

one hour.

The size of each pixel tile is set to 25 × 25 to balance memory

consumption and parallelism between threads. As we can train the

R-network for arbitrary tile sizes, this parameter does not influence

the reconstruction quality. However, it is the primary parameter

that determines the memory consumption of the entire algorithm,

because each pixel has its own information of the incident radiance

field, while pixels in the tile share the same hierarchy, i.e., the same

adaptive partitioning on the field. Overall, each tile takes 1.5 GB of

memory.

Classroom (Fig. 11) is an open scene with complex occlusions.

Most of the scene is illuminated by indirect illumination. Some

parts of the scene, such as the desk drawer, have narrow incident

light paths that cause artifacts in most methods. Although there

are no obvious artifacts, the result of PT has a higher noise level

than most of the others, especially in the ceiling. MEMLT generates

smooth results in most areas but it has some artifacts and biases. The

other two tested methods produce considerable noise and lose the

details of the drawer. Compared with the results of these methods,

ours preserves more details and has fewer noises. As seen from the

radiance figure, SD-tree and GMM are corrupted by spiky noise,

whereas our Q- and R-networks accurately predict the true radiance

from noise.

Gloom (Fig. 2) is a highly occluded indoor scene. We seal two

windows to increase the complexity of light transport, as adopted

by GMM [Vorba et al. 2014]. As a result, this scene is filled with spiky

noise for most methods. PT generates considerable noise. Although

MEMLT is relatively smooth in the open area, its main problem

is spiky artifacts on the boundary of the geometry. GMM and SD-

tree methods have similar artifact patterns. The most significant

artifact area is under the desk. Although they work well in the

open area, they both fail to guide paths within highly occluded

and complex geometry because they share the incident radiance

field model across nearby pixels that may encounter a resolution

problem if the occlusion is complex. By contrast, we use the Q-

network to partition the radiance field block adaptively then use

the R-network to predict the incident radiance for each pixel. As the

neural network considers the visibility information, i.e., incident

radiance feature maps R1

Γ , R
2

Γ , · · · , R
16

Γ shown in Fig. 5, the result is

visually satisfactory and contains many occlusions details.

Red (Fig. 12) has a simpler lighting setting but with many subtle

geometric features. These details also cause light spots for MEMLT.

GMM works better than SD-tree with the help of the Gaussian

model. However, both of them have trouble with subtle occlusions

deteriorating their estimation quality. In this scene, PT has a decent

visual and numerical result, because most parts of this scene are

lit by direct light sources, thus, directly sampling the light source

with NEE is efficient. In contrast, the SD-tree and GMM methods

synthesize incorrect PDFs around occlusions, resulting in serious
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(a) Reference

rMSE 0.013

rMSE 0.017

(b) PT

rMSE 0.0071

rMSE 0.020

(c) REC

rMSE 0.0025

rMSE 0.0014

(d) KPCN

rMSE 0.0034

rMSE 0.0012

(e) Ours

Fig. 13. Biased preview (top row) and irradiance caching (bottom row) tests on Staircase scene (30 seconds, 16 SPP and 800 × 600).

local artifacts. For general scenarios, i.e., those in which light sources

are occluded, and NEE is less efficient, GMM and SD-tree work better

than PT [Müller et al. 2017; Vorba et al. 2014].

In conclusion, the SD-tree and GMM methods work well in an

open area but have problems with subtle occlusions. Our DRL-based

path guiding approach shows an advantage in the test scenes, espe-

cially under complex environments. Our method can identify the

elusive coherence, thus showing strong robustness in most cases.

7.3 Biased Rendering Application
While our approach is mainly designed for unbiased rendering, we

also discuss how it behaves for a biased rendering application com-

pared with other techniques. There are many possible applications,

such as filtering noise for fast previews, irradiance caching, ambi-

ent occlusion, light field rendering and radiance caching. Among

all these methods, we test fast previews and irradiance caching to

compare the results with state-of-the-art light-field space and image-

space methods. However, we should note that the light-field space

and image-space methods behave quite differently. Accordingly, this

comparison should be considered conditionally.

Filtering for fast preview. Directly filtering the incident radiance

field with the BRDF to generate a smooth fast preview is one appli-

cation of our method. Although many methods reconstruct radiance

fields for various reasons, including SD-tree and GMM, few of them

can produce smooth, detailed and low-error reconstruction results

in the image space. Meanwhile, our method produces a high-quality

preview before providing unbiased rendering.

The high-quality reconstruction of incident radiance field indi-

cates the feasibility of integrating the reconstructed radiance field

with the BRDF to generate a fast preview. The first row of Fig.

13 shows the preview result, which is rendered with 16 SPP and

800 × 600 in 30 seconds. As a comparison, we also test a previ-

ous light field reconstruction work, REC, targeting filtering light

fields and synthesizing image results [Lehtinen et al. 2012], and an

image-space CNN-based filtering method, KPCN [Bako et al. 2017],

in an equal amount of time. REC reconstructs only indirect illumi-

nation, and thus we use another pass to render direct illumination.

The timing for rendering direct illumination is not counted. The

KPCN network is based on the code released by its author, but it

is trained by a dataset synthesized by Mitsuba and our scenes to

prevent numerical inconsistency.

As shown in the upper row of Fig. 13, our preview faithfully

reflects the geometry, texture and lighting details relative to the

previous light field methods. Although our approach achieves better

results than REC, the state-of-the-art image-space filtering method,

KPCN, achieves better numerical results compared with our radi-

ance field method given the setting of 16 SPP because our radiance

field partitioning and reconstruction approaches focus on incident

radiance recovery and not considering the BRDF term, which re-

quires an additional criterion on partitioning and reconstruction

to adapt to various materials, especially glossy materials. In future

works, we will improve the radiance field filtering performance by

considering the BRDF.

Filtering for irradiance caching. Another possible biased rendering
application generates irradiance caching, in which the BRDF does

not need to be considered. We also test REC, KPCN, and our method

to calculate the irradiance on every pixel. These results are shown

in the bottom row of Fig. 13. Similar to the fast preview results,

our method visually and numerically outperforms the previous

light-field method, REC, which produces fairly smooth results but

contains bias. However, compared with KPCN, our method achieves

a slightly better rMSE because the irradiance calculation does not

consider the first-bounce BRDF term.

Overall, while it is not primarily designed for biased rendering

applications, our method offers a reasonably high quality even for
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this application comparedwith state-of-the-art image-space filtering

techniques.

7.4 Comparison between Biased and Unbiased Rendering
Biased and unbiased rendering methods usually have different ap-

plications. Whereas biased rendering methods, e.g., image-space

filtering, can generate very smooth images in a few minutes or even

seconds at the expense of accuracy and detail, unbiased rendering

methods, e.g., path guiding, mathematically guarantee convergence

to the GT result without any bias, and thus can be applied for dataset

generation, physical simulations, as well as designs and high-quality

rendering tasks.

Fig. 14 shows the result of an equal-time comparison between

KPCN and the proposed path guiding method to illustrate the dif-

ference between biased and unbiased approaches. The rendering

times allocated for the three rows from top to bottom are 1, 2, 8,

30, 60 and 120 minutes. The resolution is 500 × 500. The SPP val-

ues are 32, 128, 700, 2900, 5900, and 11900 for Ours, 40, 140, 800,

3000, 6000 and 12000 for KPCN. As expected, the biased-filtering

approach can generate noiseless results within only a few minutes,

while the result of the unbiased approach is still heavily corrupted.

With approximately half an hour, the numerical errors between the

two approaches become similar. The biased result appears to be

smoother but contains visual artifacts and loses some geometrical

details. By contrast, the unbiased approach gradually suppresses the

noise without introducing bias, which results in better geometry re-

sults. With more time, the unbiased approach continues to decrease

the numerical error, which implies that it gradually approaches the

GT. However, the numerical error of the biased approach shows no

significant decline and visual artifacts remain in the chess pieces,

demonstrating the common features of biased techniques.

7.5 Failure Case
One limitation of the proposed method is that the BRDF term is

not considered. On the one hand, focusing on the reconstruction

of incident radiance makes the proposed method easily compatible

with various applications, e.g., MIS and light field rendering. On the

other hand, not considering BRDFs as part of the reconstruction

target negatively affects the application of biased filtering for fast

previews, especially for glossy materials. Although BRDFs can be

integrated into the final image after radiance field reconstruction, a

radiance field resolution introduces a frequency limitation on the

glossy lobe. As shown in Fig. 15, compared with the unbiased path

guiding result, the biased fast preview result fails to capture the

highly glossy edges and has a bias when the grazing angle is viewed.

Another limitation is that our method focuses on first-bounce

radiance field reconstruction. This idea can be extended to multi-

bounce shading points, but it requires a new clustering approach

to represent multiple-bounce vertices as a grid for the network in-

put. Rendering transparent or specular objects causes performance

problems because they require multi-bounce shading points. Our

method performs radiance reconstruction on only one point, e.g.,

the first nonspecular surface point observed from a mirror. The

other points are simply sampled by their own BRDFs. In addition,

its performance is limited by the training dataset and it cannot

rMSE 0.0027

rMSE 0.0017

rMSE 0.00079

rMSE 0.00066

rMSE 0.00061

rMSE 0.00056

(a) Biased

rMSE 0.023

rMSE 0.013

rMSE 0.0013

rMSE 0.00068

rMSE 0.00042

rMSE 0.00017

(b) Unbiased

(c) Reference

Fig. 14. Equal-time comparisons between biased filtering (KPCN) and unbi-
ased path guiding (Ours) within 1, 2, 8, 30, 60 and 120 minutes from top to
bottom.

generate smooth results with a small number of SPP, unlike other

image-space filtering methods.
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(a) Reference (b) Preview (c) Path Guiding

Fig. 15. Failure case illustration for the Bathroom scene (800 × 600). The
preview result fails to capture highlight details. The rMSE values are 0.082
(16 SPP) and 0.0015 (1024 SPP) for the fast preview and unbiased path
guiding, respectively.

8 CONCLUSION
In this study, we proposed two novel deep-learning networks, the

R-network and the Q-network, for the adaptive sampling and re-

construction of incident radiance fields. We also applied these ap-

proaches to various rendering applications and demonstrated their

benefits against state-of-the-art techniques. Our method demon-

strated excellent capability for reconstructing the first-bounce inci-

dent radiance field.

For our future studies, wewill explore deep learning by addressing

a significant challenge caused by sparse and irregular points. Finally,

we are interested in exploring even higher dimensions, including

temporal problems and participating media.
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