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Figure 1: We render a scene using multidimensional Lightcuts, Lightslice and our method. Three images are rendered using the same
sampling rate, i.e. the same average rays per pixel. The relative L1 errors are shown in error images. The error-time chart and error-
rays/pixels chart plot the performance of three methods. Results reveal that our matrix sampling-and-recovery approach heavily reduces the
required visibility sample rays between lights and surface points. As can be seen, under the same sampling rate, our method captures more
occlusions and illumination details, and produces high quality realistic image with much less artifacts comparing to previous methods.

Abstract

Instead of computing on a large number of virtual point lights
(VPLs), scalable many-lights rendering methods effectively sim-
ulate various illumination effects only using hundreds or thousands
of representative VPLs. However, gathering illuminations from
these representative VPLs, especially computing the visibility, is
still a tedious and time-consuming task. In this paper, we propose
a new matrix sampling-and-recovery scheme to efficiently gather
illuminations by only sampling a small number of visibilities be-
tween representative VPLs and surface points. Our approach is
based on the observation that the lighting matrix used in many-
lights rendering is of low-rank, so that it is possible to sparsely
sample a small number of entries, and then numerically complete
the entire matrix. We propose a three-step algorithm to explore this
observation. First, we design a new VPL clustering algorithm to
slice the rows and group the columns of the full lighting matrix
into a number of reduced matrices, which are sampled and recov-
ered individually. Second, we propose a novel prediction method
that predicts visibility of matrix entries from sparsely and randomly
sampled entries. Finally, we adapt the matrix separation technique
to recover the entire reduced matrix and compute final shadings.
Experimental results show that our method heavily reduces the re-
quired visibility sampling in the final gathering and achieves 3-7
times speedup compared with the state-of-the-art methods on test
scenes.
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1 Introduction

Realistic image rendering with global illumination involves a re-
cursive rendering equation to integrate multiple bounces of light
transports. To efficiently simulate these multi-bounce light trans-
ports, Keller [1997] introduced an intermediate representation, the
virtual point light (VPL), yielding a fast realistic rendering algo-
rithm. This work inspired a number of methods, which are called
as VPL-based rendering. VPL-based rendering first generates a set
of VPLs by tracing rays from the real light sources, and then ren-
ders the scene by accumulating the direct illuminations from these
VPLs.

While the number of VPLs increases to thousands or millions, the
efficiency of VPL-based rendering arises as a problem. To address
this problem, one kind of methods, known as scalable many-lights
rendering [Walter et al. 2005; Walter et al. 2006; Walter et al. 2012;
Hašan et al. 2007; Ou and Pellacini 2011], have been proposed.
They showed that a large number of VPLs can be clustered and



approximated by a small number of representative lights, but still
retains the perceptual quality of illumination effects in the result
image. Thus, the challenge of rendering many lights converts to
the computation and gathering of illuminations from representa-
tive lights. The matrix formation of VPL-based rendering [Hašan
et al. 2007; Ou and Pellacini 2011] provides an alternative inter-
pretation of many-lights rendering, and introduces matrix sampling
techniques to achieve scalable rendering. However, even with ag-
gressive approximations, these methods showed that hundreds or
thousands of representative lights per matrix slice are indispensable
to preserve local lighting details. Given these lights, the gathering
of illumination contributions, especially the computation of visibil-
ity, is still tedious and time-consuming.

In this paper, we propose a new matrix sampling-and-recovery
scheme to accelerate the gathering step. Our basic idea is to take
the advantage of the low-rank property of the lighting matrix [Wal-
ter et al. 2006; Huang and Ramamoorthi 2010] that only accurately
computes visibility of some entries and then numerically recovers
the entire matrix. To achieve this, we use one kind of recently de-
veloped methods, named as matrix separation techniques [Candès
et al. 2011], that a matrix can be separated from a dense but noisy
and corrupted matrix with a few of sampled entries. These tech-
niques have been successfully applied in many applications such as
image processing, vision and machine learning.

However, not an arbitrary matrix can be successfully recovered by
the matrix separation. The fundamental assumption to apply these
techniques is the low-rank of the matrix. Besides that, other criteria,
such as the distribution of values or the ratio and pattern of errors
spreading in matrix, also impact on the success of matrix recovery.
Therefore, to successfully implement our idea, we design prepro-
cess steps to construct smaller matrices from the large full lighting
matrix to satisfy the underlying assumptions of the matrix separa-
tion. In the preprocess, we first partition the full lighting matrix
into a number of reduced lighting matrices, and then we propose
a novel matrix prediction step to roughly recover these reduced
matrices from some sampled entries. After the preprocess, given
these predicted reduced matrices, we adapt one matrix separation
method [Shen et al. 2014] to recover matrices and render the final
image. Our approach is validated by testing on complex scenes and
compared with two state-of-the-art methods.

The main contributions of this work include:

• A novel matrix sampling-and-recovery scheme for efficient
many-lights rendering.

• A new light clustering algorithm using sparsely sampled visi-
bility information.

• The designation and usage of a set of predictors to predict vis-
ibility of matrix entries from sparsely and randomly sampled
entries.

• The introduction and adaption of the matrix separation tech-
nique in recovering lighting matrix, especially considering a
visibility constraint for separating the lighting matrix and ex-
tra error detection and correction for the recovery.

The low-rank assumption of lighting matrix enlightens our new
matrix sampling-and-recovery approach, but also brings one ma-
jor limitation that high-rank parts of the lighting matrix might not
be well captured. We believe the low-rank assumption is applicable
in many applications, since light transports usually exhibit locality
and coherence. Yet rendering highly glossy or specular light trans-
port with VPL is still challenging problem and out of the scope of
this paper.

2 Related Work and Background

VPL-based Rendering Keller [1997] introduced Instant Radiosity
(IR) method, which is the first realistic rendering algorithm using
virtual point lights (VPLs). It traces a number of VPLs from light
sources, and then computes the direct illumination from VPLs as
the indirect global illumination in the scene.

IR can be viewed as a specific bidirectional path tracing, where
the VPLs are the vertices of the light sub-paths, and the camera
sub-path has length one. By formulating light sub-path as VPL,
IR algorithm shares the light sub-path among all pixels to amortize
their cost and suppress the image noise. Such an idea inspired a
number of followups known as VPL-based rendering. A compre-
hensive introduction of VPL-based rendering and many-lights ren-
dering can be found in a state-of-the-art report [Dachsbacher et al.
2014]. Here, we briefly address some main work aiming to improve
the VPL-based rendering at different aspects.

To improve the generation of VPLs, Segovia et al. [2006] traced
paths from the camera and presented a bidirectional instant radios-
ity method. Then, Segovia et al. [2007] introduced Metropolis-
Hastings sampling to better distribute VPLs. To handle glossy ma-
terials that have high frequency of reflections, Hasan et al. [2009]
extended VPL to virtual spherical light (VSL) to avoid spiky ar-
tifacts. Davidovic et al. [2010] introduced local VPLs to com-
pensate the loss of clamping and offer better approximation for
sharp glossy reflections. To accelerate visibility tests, Ritschel et
al. [2008] showed that imperfect shadow maps can effectively ap-
proximate occlusions between lights and pixels. Georgiev et al.
[2012] cached probability of selecting VPL in the scene notably
considering visibility information.

Scalable Many-lights Rendering One interesting extension of
VPL-based rendering is to use a huge number of VPLs, in the order
of thousands, millions and even more, for high quality realistic ren-
dering. The solution to efficiently compute of illumination from
such a large number VPLs is recently known as scalable many-
lights rendering.

Walter et al. [2005] introduced the first scalable many-lights ren-
dering approach, lightcut, to reduce the pixel-light computation
cost from linear to sub-linear. The multidimensional lightcut
method [Walter et al. 2006] expanded lightcut to multidimensional
trees to handle high dimensional integrations while rendering vol-
ume scattering, depth of field or motion blur, etc. Recently, Walter
et al. [2012] extended such a scalable framework to capture light
transports in bidirectional paths, and Wang et al. [2013] extended
it to handle extremely large scenes with out-of-core geometry and
lights data.

Hašan et al. [2007] formulated the many-lights rendering as a light-
ing matrix and introduced a new matrix sampling method, the ma-
trix row-column sampling (MRCS), to generate a global set of rep-
resentative lights for the whole image. Such a global set of lights
greatly improve the performance but fail at capturing local lighting,
e.g. some locally important lights are not included in the global
set due to global balancing. To adapt to these lighting details, Ou
and Pellacini [2011] proposed a new method, named as lightslice.
It partitions the image into slices, and then refines the global set
of lights for each slice. Both of these two approaches, MRCS and
lightslice, share the same assumption that the lighting matrix of the
VPLs is low-rank. Therefore, a few rows and columns are able
to well approximate the matrix. Besides the many-lights render-
ing, the low-rank property of lighting matrix has also been explored
and analyzed in precomputation based rendering [Sloan et al. 2003;
Huang and Ramamoorthi 2010]. In this paper, we further explore
the low-rank property, and propose a new sample-and-recovery ap-



proach for efficient many-lights rendering.

Matrix recovery Matrix recovery from a small number of sam-
pled entries has become an important problem in many areas such
as image processing, graphics, vision and machine learning. The
basic idea is to utilize the correlations of data in the matrix, i.e.
the low-rank property. One type of recovery methods, the matrix
completion, pursues a low-rank matrix L from a partial observed
matrix D by minimizing the rank of the recovered matrix [Candès
and Recht 2009]. However, the direct minimization of rank is a
NP-hard problem [Candès and Recht 2009]. Thus, the rank of L is
numerically approximated by the nuclear norm, ‖L‖∗, defined as
the sum of its singular values.

Recently, another type of recovery methods, named as matrix sep-
aration, has been developed [Candès et al. 2011; Shen et al. 2014].
It separates the input matrix into two parts: D = L + Z, where
L is the latent low-rank part that we want to recover, and Z is the
sparse part that contains errors. The matrix separation problem can
be numerically solved using soft thresholding and Lagrange multi-
pliers [Lin et al. 2009; Shen et al. 2014]. As far as we know, our
work is the first method adapting matrix separation techniques in
rendering.

While solving the matrix separation, we use matrix factorization
to approximate the matrix we want to recover. There are several
rendering problems involving matrix factorization, e.g. separable
BRDF [Kautz and McCool 1999], environment mapping [McCool
et al. 2001], precomputed radiance transfer [Sloan et al. 2003], etc.
Compared with these methods using matrix factorization to com-
press the matrix data, our work targets on recovering matrix entries.

3 Overview

3.1 Mathematical Overview

Matrix Formulation of Many-lights Rendering. Many-lights
rendering can be formulated as a matrix computing problem [Hašan
et al. 2007; Ou and Pellacini 2011]. Let A be the lighting matrix,
where each column represents a VPL, and each row corresponds to
a surface point. One entry Aij represents the illumination contribu-
tion from light j to surface point i. The final rendering of surface
sample i is the sum of the contributions from all VPLs as:

I(i) =
∑
j

Aij =
∑
j

EijVij (1)

Eij = MijGijIj (2)

where Vij and Eij are the visibility and the illumination contribu-
tion of light j at point i. Eij is computed by the material term Mij ,
geometry term Gij and the intensity Ij of light j.

Since the number of VPLs is very large, naively computing all
the entries in matrix A is impractical. Similar to Ou and Pel-
lacini [2011], we first partition the lighting matrix A into smaller
slice matrices, and then construct the reduced lighting matrix for
each slice. Since these reduced lighting matrices of slices are com-
puted and processed independently, let us use L to denote one re-
duced lighting matrix, where columns of L are a set of represen-
tative lights, C, clustered from VPLs. Therefore, the rendering of
surface point i in the reduced matrix L is computed as:

I(i) =
∑
k∈C

Lik =
∑
k∈C

VikEik, Eik = MikGikIk (3)

where Ik is the representative light in cluster C and Eik is the illu-
mination contribution from the representative light to point i.

Since Eik is easy to compute, the challenge to efficiently com-
pute the reduced matrix L is the computation of the visibility term,
where it incurs ray intersection tests in complex scenes. Even
the reduced matrix L only has hundreds or thousands of columns,
which is much smaller than the full lighting matrix A, the cost to
directly sample visibility of all entries is still very high.

We observe that without the visibility term, the illumination contri-
bution Eik is still a good clue to the real value, where we can treat it
as corrupted or noise data in the matrix. Therefore, the computation
of the reduced lighting matrix L can be formulated as a matrix sep-
aration problem that recovers a matrix from a corrupted matrix. In
our case, the corrupted matrix is filled by a small number of accu-
rate entries with sampled visibility and other corrupted entries with
estimated visibility. We denote such a corrupted matrix as D:

Dik =

{
VikEik, Vik is actual visibility.
VikEik, Vik is estimated visibility. (4)

Matrix Recovery by Matrix Separation. Matrix separation has
been recently developed [Candès et al. 2011; Shen et al. 2014].
Specifically in our scenario, the reduced lighting matrix L can be
separated from the corrupted matrix D with a sparse error matrix Z,
D = L + Z, by solving the following minimization:

min
L,Z

‖L‖∗ + λ‖Z‖1

s.t. PΩ(L + Z) = PΩ(D) (5)

where λ is weighting coefficient, ‖ ‖1 denotes the `1 norm by re-
garding the matrix as a vector, Ω is the index subset of entries with
accurate visibility, Ω ⊆ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, PΩ

is the projection of the matrix onto the subspace of matrix whose
entries are restricted to Ω. Such a minimization indicates that we
can only sample a subset of entries of a matrix, and use these sam-
pled entries with other unsampled or estimated entries to recover L.
Technically, to exactly and efficiently perform the recovery, Candes
et al. [2011] showed that L should have following assumptions:

1. L is low-rank;
2. The singular vectors of L are reasonably spread out;
3. Z is reasonably sparse with random sparsity patterns;

The first assumption requires the rank of L is low, which is usu-
ally true for the reduced lighting matrix. The second assumption
requires that no row or column of L dominates any basis. Given a
matrix, if there are many columns have similar features, we can say
that they share the same group of basis or the singular vectors of the
matrix are spread out in the matrix. The measurement of how well
singular vectors are spread out in the matrix is usually named as
matrix coherence [Candès et al. 2011]. The third assumption says
that the density of Z should not be dense in any regions, otherwise
the separating problem become more difficult because it’s unclear
whether these dense regions should be separated to L or to Z.

The matrix separation problem can be numerically solved using soft
thresholding and Lagrange multipliers [Lin et al. 2009]. Recently,
Shen et al.[2014] proposed an augmented Lagrangian alternating
direction method based on low-rank factorization. It first detects
the rank of L, and then factorizes L into two matrices, L = XY. In
this way, a new minimization derived from Eq. 5 is proposed as:

min
X,Y,Z

‖PΩ(Z)‖1

s.t. PΩ(XY + Z) = PΩ(D) (6)

Through numerical analysis, they showed that besides aforemen-
tioned three assumptions, one new assumption to successfully sep-
arate L using their approach is:
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Figure 2: Algorithm overview.

4. The low-rank matrix, L, is not dominated by the sparse ma-
trix, Z, in magnitude,

This assumption suggests that the error values in the error matrix
should not be very large comparing to the true values we want to
recover.

Compared with the original nuclear norm minimization Eq. 5,
the new minimization Eq. 6 has some drawbacks, e.g. the non-
convexity in the minimization may prevent the optimization from
getting a global solution, and the requirement of an initial rank es-
timation. But, the optimization of new minimization is faster and
more efficient. We find it works very well in our application.

3.2 Algorithm Overview

Our basic idea is to sample a small number of entries of the re-
duced matrix and apply the matrix separation technique to recover
the entire matrix. However, it is non-trivial to directly apply matrix
separation on the lighting matrix or on reduced lighting matrices
produced by previous work [Walter et al. 2006; Ou and Pellacini
2011]. This is because that the reduced matrix may not be in a good
shape for matrix separation, i.e. violating aforementioned assump-
tions, thereby resulting in poor matrix recovery (Fig. 3(a)(b)). To
better implement our idea, we design a three-step algorithm. The
algorithm overview is shown in Fig. 2. These steps are basically
designed to process the lighting matrix in a way that it could be
sampled and recovered by matrix separation. Two preprocess steps
are proposed to process the lighting matrix into reduced matrices
before we actually separate them. These two steps are based on the
observation that these four assumptions can be classified into the
requirements on the recovered matrix L (assumption 1, 2 and 4),
and on the sparse matrix Z (assumption 3 and 4). Therefore, we
separately process lighting matrix to satisfy the assumptions on L
and Z respectively.

More precisely, in the first step (Fig. 2(a)), we partition the full
lighting matrix into a small number of smaller matrices, the re-
duced lighting matrices. The rows of full lighting matrix are firstly
grouped into slices, and then, in each slice, lights are clustered into
columns, as representative VPLs. A new VPL clustering algorithm
is designed to bound the magnitude of each column. The detail of
this step is discussed in Sec. 4. The basic insight of this step is to
construct matrices that approximately satisfy assumption 1, 2 and
4.

To satisfy the assumption on the sparse matrix Z (assumption 3),
we design a novel lighting matrix prediction scheme in the second
step (Fig. 2(b)). That is, for each reduced matrix, we sparsely sam-
ple entries, and then train three predictors to predict the visibility of

unsampled entries (Sec. 5). The prediction procedure is taken itera-
tively with a sample-and-validate strategy. If the predicted visibility
does not pass the validation, we iterate back with new samples to
further train predictors. Otherwise we use the trained best predictor
to fill up unsampled entries by multiplying the shading values with
0 or 1 predicated visibility values. Since the lighting matrix is low-
rank and values in many regions of the matrix are usually smooth,
the matrix prediction step well predicts unsampled entries, and re-
sults in sparse errors. The basic insight is that these predictors can
be regarded as smooth and low-frequency approximations to real
visibilities. After the prediction, the smooth and low-frequency part
of visibility values in matrix are accurately predicted, and the errors
are probably sparse.

In the third step Fig. 2(c), we separate the predicted reduced matrix
into a low-rank matrix and an error matrix (Sec. 6). In some cases,
the reduced matrix L is not always low-rank. To handle high-rank
parts in the matrix, we detect them in the error matrix and directly
sample the values instead of using recovered ones. These high-rank
parts are combined with the recovered low-rank matrix to produce
the final image.

4 Reduced Lighting Matrix Construction

The basic motivation of this step is to generate reduced lighting
matrix with spread singular vectors (assumption 2) and make sure
the reduced matrix not be dominated by the sparse error matrix (as-
sumption 4). To achieve it, first, we slice the full lighting matrix by
grouping rows, and then propose a new light clustering method to
group lights into columns, thereby forming reduced lighting matri-
ces.

4.1 Matrix Slicing

We adapt the method [Ou and Pellacini 2011] to group rows of the
full lighting matrix. Specifically, surface points are represented in a
6D space consisting of position and normal: (x, y, z, nx, ny, nz).
The normal components nx, ny, nz are weighed by the scene size
so as to normalize the contributions of position and normal. Then,
we build a KD-tree by iteratively splitting the nodes along their
longest axis. The splitting stops when the associated surface points
is less than a prescribed number, which is empirically set as 1024 in
our implementation. After clustering the points, the lighting matrix
is partitioned into slices accordingly, each of which corresponds to
a cluster.



(a) (b) (c) (d)
Figure 3: A Cornell Box scene is used to test different light clustering approaches. The upper-right image in each sub-figure shows the matrix
coherence of reduced lighting matrices. The bottom-right shows a zoomed detail image. (a) light clustering proposed in [Ou and Pellacini
2011], (b) light clustering proposed in [Walter et al. 2006], (c) our light clustering without using sparse visibility samples. (d) our light
clustering using sparse visibility samples.

4.2 Per Slice Light Clustering

Overall, the goal of our per slice light clustering is to produce a re-
duced lighting matrix with reduced columns, decreased matrix co-
herence and bounded magnitudes of matrix entries. However, the
cost to quantitatively compute the matrix coherence is high, where
QR or SVD decompositions are usually required [Mohri and Tal-
walkar 2011]. Instead, we set a specific hard-threshold on the mag-
nitude of illumination from clustered VPL to avoid the domination
of some columns, thereby reduce the matrix coherence. To im-
plement our sparse sampling-and-recovery idea, we also randomly
sample visibility between clustered light and some surface points
to better estimate the contribution from the light to all points in the
slice. Our per slice light clustering algorithm takes two steps: first,
initialize a coarse lightcut, then split the cut nodes adaptively by
estimating the maximum magnitudes.

4.2.1 Initial Clustering

We adapt the multidimensional lightcut method [Walter et al. 2006]
to fast compute the initial cut nodes. All surface points in one slice
is regarded as a gathering tree. Using this gathering tree, starting
from the root node of VPL tree, we keep splitting the light node
with the highest error bound, until the number of cut nodes reaches
a prescribed number. No visibility test is performed during the split-
ting procedure. The prescribed number of light clusters is set to 200
in our implementation.

4.2.2 Light Node Splitting

Once having the initial cut nodes, we iteratively split them using a
magnitude threshold. Instead of accurately computing the contribu-
tions from light to all surface points in the slice, we only estimate
a maximum contribution, and split node when its maximum contri-
bution is greater than a splitting threshold. After all nodes on the
cut are iteratively split, the final light nodes are used as columns
to construct the reduced lighting matrix. The actual sampling ra-
tio is given by a prescribed parameter ρ, which is set as 1% in our
implementation, and works well in practice. Next, we give more
details.

Maximum Contribution Estimation. A naive way to estimate the
maximum contribution of light to surface points in slice is to use Eq.
3. However, only considering one light node in the tree is likely
insufficient to give reliable result. We improve the reliability by
borrowing geometry terms from nearby cut nodes, and using a small
number of actually sampled visibility. Specifically, the maximum
contribution of node j is estimated as follows:

Γj = max
k∈N (j),i

{MikGik} × max
k∈N (j),(i,k)∈Ω

{Vik} × Ij (7)

where N (j) is a set of nearby light nodes in the cut, i is surface

points in the slice, Ω is the set of entry indices at which the matrix
is sampled. Light nodes in N (j) are collected by a range search in
the light tree, where the nearby light nodes are collected by a bound
of light intensity. Please refer to the supplementary document for
more details of this range search.

Splitting Threshold We decide the splitting threshold, Γ, accord-
ing to the sum of all maximum contributions of columns as follow:

Γ = α
∑
j∈C

Γj (8)

where C is the set of current cut nodes, α is a prescribed scalar
parameter. α is empirically found such that reasonable number of
columns split. α = 0.02 gives satisfactory rendering results in our
experiments. More analysis on the threshold α can be found in the
supplementary document.

If the maximum contribution of one light node is larger than the
splitting threshold, Γ, we split this light node, and add its children
into the cut. After estimating the maximum contributions of two
children, we use them to update the splitting threshold and trigger
another splitting when necessary.

In Alg. 1, we show the pseudo-code of the entire process of node
splitting. We maintain a list, currentCut, which is initialized by
light cut nodes. Then we split the node whose maximum contribu-
tion is larger than a given threshold, and replace it with its two chil-
dren in currentCut. After processing this node, we check nearby
nodes and split them if necessary.

In Fig. 3, we show a comparison of results using different light
clustering approaches. Fig. 3(a) shows a result of the standard
clustering used in [Ou and Pellacini 2011]. Fig. 3(b) shows a re-
sult using the lighting clustering proposed in [Walter et al. 2006],
which is also used to create our initial light cut. Fig. 3(c) shows
a result using our light clustering algorithm but without the sparse
visibility sampling step. Fig. 3(d) is generated by our light cluster-
ing method. Besides the final results, we also give the accurately
computed matrix coherence, where the lower coherence is the bet-
ter for matrix separation. As can been seen, the standard clustering
produces highest matrix coherence values per slice, which fails to
capture shadow boundaries, yielding many visual artifacts. More-
over, the consideration of some visibility samples help us to better
refine the cut nodes.

5 Matrix Prediction

Once having a reduced lighting matrix, before we recover it, we
need entry values of the matrix are dense but their errors are sparse,
i.e. L is dense but Z is sparse (assumption 4). According to the
definition of our corrupted matrix D, the error is introduced by the
visibility. Observing that visibility from VPLs to surface points



Algorithm 1 Light Node Splitting
1: function LIGHNODESPLITTING(initialCut)
2: currentCut← initialCut
3: for each node in currentCut do
4: SPLIT(node)
5: end for
6: end function
7:
8: function SPLIT(currentNode)
9: // Search nearby cut nodes in currentCut

10: neighbor ← GETNEARBY(currentNode)
11: maxContribution← CALMAXIMUM(neighbor)
12: if maxContribution > splittingThreshold then
13: left, right← GETCHILDREN(node)
14: replace currentNode by left, right in currentCut
15: update splittingThreshold
16: SPLIT(left)
17: SPLIT(right)
18: // nearby cut nodes might split given new left, right
19: for each node in currentNode do
20: if left, right ∈ GETNEARBY(node) then
21: SPLIT(node)
22: end if
23: end for
24: end if
25: end function

has locality, we explore this locality by training some visibility pre-
dictors to predict unsampled entries from a small set of sampled
entries. We name it matrix prediction.

5.1 Predictors

We design three types of predictors for visibility: kNN predictor,
Linear predictor, and Naı̈ve Bayes predictor. Each predictor is used
to predict the visibility from one VPL to all surface points in the
reduced lighting matrix, i.e. entries of one column, which bear the
locality property of the visibility function.

kNN Predictor predicts the visibility using k nearest neighbors’
visibility. It works on each column. To predict Vij at column j,
it first finds k nearest neighboring surface points that have been
sampled in column j. Then it randomly picks a surface point from
these sampled neighbor surface points, and uses its visibility as the
prediction for Vij . We use 3 nearest neighbors.

To predict with the kNN predictor is very fast, but to find the near-
est neighbors is not. Instead of using a spatial acceleration data
structure, in this work, we adopt a spatial curve based kNN search-
ing method [Liao et al. 2001]. It is an approximate kNN method
based on a number (dimension +1) of shifted Hilbert Spatial Curve.
Though it is an approximate method, it is very fast.

More precisely, we project all the surface points onto a 2D tangent
plane defined by the average normal of the slice. Then we con-
struct 3 Hilbert curves to sort the surface points. To search for k
nearest neighbors, we travel along the Hilbert curves and examine
k predecessors and k successor points.

Linear Predictor uses a plane to divide the space of shading points
into two half spaces. One is shadowed (visibility is 0) and the other
is not (visibility is 1). Therefore, the linear predictor is suitable for
columns where there is a straight shadow boundary.

Let’s consider a column j. The separating plane can be represented
by a 4D vector W = (a b c d)T . Let X be a matrix whose
row vectors are the homogenous coordinate of the sampled surface

Figure 4: Prediction error ratio of (Left) kNN predictor , (Middle)
Linear predictor, (Right) Naive Bayes predictor. A view of the scene
can be found in Fig. 5 (Left).

Figure 5: Optimized predictor. (Left) rendered image, (Middle)
prediction error ratio and (Right) the optimal selection of predic-
tors per slice, where the percentages of columns predicted by three
different predictors are rendered in RGB channels, red for kNN pre-
dictor, green for Bayes predictor, and blue for linear predictor.

points, Y be column vector related to the sampled visibility values.
It is 1 for visible, and -1 for invisible. Then we have equations:
XW = Y , for the separating plane W . Solve the above equation in
least squares, the separating plane can be computed as follow:

W = (XT X)−1Y, (9)

Now, for any surface point q, we can predict its visibility Vq by the
following possibilities:

P (Vq = 0) = max {0, 0.5− f(q)}
P (Vq = 1) = max {0, 0.5 + f(q)} (10)

where f(q) = q̄TW , and q̄ is the homogeneous coordinates of q. It
is easy to validate that P (Vq = 0) + P (Vq = 1) = 1.

Naive Bayes Predictor. Both kNN predictor and linear predictor
work inside a single column, i.e. the samples in a column are used
to predict the unknown entries in the same column. But Bayes pre-
dictor predicts values from nearby columns to take advantage of
the spatial coherence among lights. We use a naive Bayes predic-
tor. More precisely, we define the feature vector as the (i, j) index
of the entry, the concept function is the visibility. For each column
j, the feature vector space consist of the entry indices in 5 nearby
columns around j, marked as Nj . Specifically, the ratio of predict-
ing (i, j) is P (v|i, j) =

P (i|v)P (Nj |v)P (v)

P (i)P (Nj)
, v = 0, 1.

Fig. 4 shows a false-color drawing of the prediction error ratio
(averaged per slice for better visualization). Prediction error ratio is
the percentage of wrong prediction of all prediction samples. It is
obvious that there may not exist a best predictor for all slices. Bayes
predictor is very efficient and reliable in smooth region. Linear
predictor works well in strait shadow boundary and kNN can fit
arbitrary occlusion. Randomness is introduced to predict visibility,
thus produces some sparse and indeterminant errors.



Algorithm 2 Matrix Prediction and Validation
1: function PREDICTMATRIX(reducedMatrix)
2: put all columns in reducedMatrix into activeColumns
3: for i = 1→ maxIteration do
4: for each column in activeColumns do
5: if PREDICTCOLUMN(column) then
6: remove column from activeColumns
7: end if
8: end for
9: end for

10: end function
11:
12: function PREDICTCOLUMN(column)
13: newSamples← SPARSELYSAMPLE(column)
14: evaluate the accurate values of newSamples
15: for each predictori do
16: use predictori to predict the values of newSamples
17: errorRatioi ← error ratio of predicted values
18: end for
19: if min(errorRatioi) < predictionErrorRatio then
20: use predictori with minimum errorRatioi to predict
21: all unknown entries in column
22: return true
23: else
24: add newSamples to column
25: improve all predictori with newSamples
26: return false
27: end if
28: end function

5.2 Prediction and Validation

Given these three predictors, we use them to predict visibility of
matrix entries column by column from a small number of accu-
rately sampled visibilites. However, the prediction may not be cor-
rect for all entries, especially when the number of samples is small.
To improve the prediction, we take another validation pass. The
validation is started by randomly selecting another set of entries to
accurately sample visibilities. Then, these newly sampled entries
are used to test on predictors. The predictor that best predicts these
samples, i.e. producing the least error ratio, is selected as the best
predictor. If this least error ratio is less than a predefined predic-
tion error ratio, ep, we regard the prediction of this column suc-
cess, and will not take any further sampling and prediction on this
column. Otherwise, these new samples are used to further refine
predictors. Such prediction, sampling and validation on columns
are iteratively executed until the prediction on matrix is successful
or a fixed number of iterations is reached. In our method, we set
the maximum iteration number as 20. Once the prediction of all
columns are successful, we use these column-wise best predictors
to predict columns of the final predicted matrix, D. The pseudo-
code of prediction and validation algorithm can be found in Alg. 2.
Since the Bayes predictor shares samples from other columns, the
order of predicting different columns can effect the performance.
Therefore, we split the prediction process intomaxIteration loop.
In each iteration, we only process columns in the active list. For
each column, we sparsely sample, predict and validate it using ρ
percentage of new samples.

In Fig. 5, we visualize the choice of different predictors in the sim-
ple scene. Fig. 5(b) shows the prediction error ratio optimized by
three predictors. Fig. 5(c) visualize the optimal selection of pre-
dictors. The percentages of columns predicted by three different
predictors are rendered in RGB channels. As can be seen, the lin-
ear predictor is the best for area with straight shadow boundary.
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Figure 6: Convergence with iterations. (Left vertical axis) We show
a histogram of converged matrices at different iterations. Only af-
ter 4 iterations, 95% reduced matrices are successfully separated.
After 10 iterations, most of separation of matrices are converged.
(Right vertical axis) The averaged separation error is shown as a
red curve.

KNN predictor is suitable for complex geometry and shadow envi-
ronment, such as the curve of the monkey and the hybrid shadow
area. Naive Bayes predictor is the optimal selection for low-rank
region because it can borrow information from nearby columns and
its computation cost is very low.

6 Matrix Separation

In this section, we present the process to finally recover the reduced
lighting matrix from the corrupted matrix D by separating it into
two parts: D = L + Z, where L is the low-rank approximation of
the true reduced lighting matrix, and Z is the error part. We use
the augmented Lagrangian alternating direction separation method
[Shen et al. 2014] to perform the separation.

6.1 Separation Algorithm

The separation algorithm requires an approximate estimation of
matrix rank. We use a partially SVD factorization [Halko et al.
2011] to estimate the rank. Once having the rank k, we can ap-
proximate the latent reduced lighting matrix as the product of two
rank-k matrices: L = XY, where X ∈ Rm×k and Y ∈ Rk×n,
and reorder the separation equation as D = XY− Z. Additionally,
we observe that ideally, the error value at entry (i, j) between real
value and the corrupted value is computed as Zij = (Vij−Vij)Eij .
Since the visibility is 0 or 1, the ideal error value should be 0 or Eij

accordingly. Thus, such an ideal error distribution provides us an
extra constraint to better solve the latent reduced lighting matrix.

We optimize the minimization of Eq. 6 to recover L as:

min
X,Y,Z

‖PΩ(Z)‖1

s.t. PΩ(XY + Z) = PΩ(D) (11)

H = 2Q ◦ Z− 1, ‖H‖2F = c. (12)

where Eq. 12 is the newly introduced constraint. The matrix Q
is defined as Qij = 1/Eij , ◦ denotes element-wise matrix mul-
tiplication, and matrix 1 is the matrix with all 1 entries. By indi-
vidually normalizing the illumination contribution, the error matrix
Z is scale to normalized error matrix H. The ideal normalized er-
ror matrix H should have -1 or 1 values. Instead of constraining
element-wise values of H to -1 or 1, we relax on the entire matrix,
i.e. constrain the Frobenius norm of matrix H to the number of en-
tries, c. As can been seen, for an ideal H, i.e. all entries are -1 or 1,
it satisfies the equation ‖H‖2F = c. To better understand this con-
straint, it can be regarded as a relaxation of H from the vertices of a



sanmiguel carnival room sponza
triangles 9.2M 6.2M 735K 290K

scene resolution 1920×1080, 4SPP 1920×1080, 4SPP 1600×1200, 4SPP 1600×1200, 4SPP
VPLs 1M 1M 1M 1M

surface points 8.5M 4.1M 7.7M 7.7M
avg. rays/pixel 46 96 41 28

avg. sampling rate 4.4% 5.2% 5.8% 4%
maximum columns 2000 4000 2000 2000

Our method
matrix generation time(s) 70 92 45 38
matrix separation time(s) 15 33 10 7
total rendering time (s) 85 125 55 45

avg. relative error 6.40% 4.50% 4.20% 4.20%
avg. rays/pixel 1250 981 831 635

Multidim. lightcut max cut size 2000 4000 2000 2000
(equal quality) total rendering time (s) 1583 941 795 821

avg. relative error 6.30% 4.20% 4.70% 4.30%
avg. rays/pixel 46 94 40 41

Multidim. lightcut max cut size 60 200 50 80
(equal rays/pixel) total rendering time (s) 75 121 58 50

avg. relative error 47.89% 19.00% 47% 33%
Lightslice slice number 3147 1492 2742 2655

initial clustering clustering time (s) 71 39 61 57
avg. rays/pixel 1145 1953 1088 1164

Lightslice gathering columns 300 500 300 300
(equal quality) rendering time (s) 542 401 420 372

avg. relative error 6.20% 9.70% 5.60% 4.30%
avg. rays/pixel 47 98 43 31

Lightslice gathering columns 50 100 45 35
(equal rays/pixel) rendering time (s) 35 40 24 21

avg. relative error 40.36% 16% 39% 42%

Table 1: Summary of the testing scenes and the rendering results, compared with the multidimensional lightcut and lightslice methods.
Timings are measured in seconds.

c dimensional super-cube into the cube’s externally tangent super-
sphere [Boyd and Vandenberghe 2004].

Iterative Solver We adapt the alternating direction augmented La-
grangian method [Shen et al. 2014] to solve the minimization. More
details can be found in the supplementary document. The iteration
stops when the ‖XY+Z−D‖F converges, or a maximum iteration
number is reached. We set the maximum iteration number as 20 in
our implementation. Fig. 6 shows the convergence of slices with
iterations. From the histogram of converged matrices at different
iterations, it can be seen that only after 4 iterations, 95% reduced
matrices are successfully separated.

6.2 Error Detection and Correction

Using the matrix factorization, the recovered matrix L is restricted
to rank-k. To compensate the high-rank part missed by the matrix
separation, we employ a error detection and correction step after-
ward. Since the errors are all in the error matrix Z and should be
sparse, if the high-rank part has significant impact to the final im-
ages, it is unlikely to be sparse (likely to be dense). In another
word, we can examine the matrix Z, and find the high-rank part by
identifying the dense area in Z.

Therefore, we first convert Z to a binary image (nonzero entries
are set to 1) and perform a Gaussian filtering with a 7 × 7 ker-
nel, to obtain a density map. Then we identify the dense area with
prescribed density threshold θd. For each entry index (i, j) of the
dense area, the corresponding entry Lij is accurately evaluated by
directly computing it. In our practice, only very small part, less
than 1% of entries, are resampled.

7 Results

We implement our algorithms in Microsoft Visual Studio 10, and
use Intel MKL as the linear algebra library. All experiments tested
in the paper is conducted on a PC with 2 Intel Xeon E5620 CPU
and 32GB memory.

7.1 Parameter setting

In our method, several parameters are used at different stages. The
main parameters used in these experiments are shown below:

The prescribed parameters in our implementation
Sampling ratio ρ = 1%

Column splitting parameter α = 0.02
Prediction error ratio ep = 10%

Density threshold for high rank θd = 0.2
ρ is the parameter used to control the sample ratio of each column
at each prediction iteration. Since we use prediction and validation
iterations to adaptively distribute samples, ρ is not decisive to the
overall sample ratio and image quality. α is a parameter used
to control the maximum entry values. In Fig. 9(d), we compare
different settings and discuss them in Sec. 8.3. More discussion
on this parameter can be found in the supplementary document.
The ep is the error threshold used in matrix prediction. The larger
it is, the less samples are generated to sample the visibility. In
Fig. 9(a)-(c), we show results using different number of visibility
samples. Corresponding discussions also can be found in Sec.
8.3. θd determines the strength of error detection and correction.
While θd is lower, more entries will be regarded error entries and
resampled. The above table lists a group of suggested values work
well for all our complex test scenes.
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Figure 7: An example of sampled and recovered matrices. Left: one final rendered image; Top/Bottom right: the light matrices for the slices
framed in red/blue in the left image and a curve drawing the Eigen values, where (a) corrupted matrix D, (b) sparse sampled entries, (c)
separated latent matrix L, (d) error matrix Z, (e) density map computed from error matrix, (f) final recovered matrix L, (g) errors comparing
to the reference matrix, (h) the reference matrix by accurately computed all entries, (i) eigenvalues of reference matrix.

7.2 Test Scenes

We compare our method with the multidimensional lightcut
method [Walter et al. 2006] and the lightslice method [Ou and Pel-
lacini 2011] on 4 test scenes. Statistics of testing scenes are shown
in Tab. 1. The implementation of multidimensional lightcut and
the lightslice methods are obtained online through the source code
provided by the authors of lightslice method. All methods are ac-
celerated by 16 threads. We separately add up the time used in com-
puting initial clustering and the final lights gathering of lightslice,
because the initial clustering is relatively independent to the final
gathering. But, the final rendering time of lightslice is summed by
the initial clustering time and the gathering time. In test scenes, we
use omni, directional and diffuse oriented VPL [Walter et al. 2005].
For different scenes, we first set the direct light sources and then use
these direct light sources to generate multi-bounce VPLs. The car-
nival scene contains several hundreds of direct point light sources,
serval direct area light source, and one environmental light. The
room scene has a large direct area light source from outside, and
with many tiny objects and glossy surfaces. The sponza scene ex-
hibits concave area lit by inter-reflections from the sky dome. For
these test scenes, the maximum memory consumptions of VPLs and
VPL tree are 48 MB and 128MB, respectively. The separation of
one reduced light matrix requires approximately 20MB. Since re-
duced matrices are processed independently, the total memory used
by matrix prediction and separation is determined by the number of
matrices being processed in parallel.

All images are rendered with 2 × 2 super samples. In our method,
super sampling only affects matrix slicing and visibility sampling.
After matrix slicing, if super samples are clustered to different
slices (mostly due to silhouette or bumpy detail), they are treated
as individual surface point in each slice. At sampling visibility, e.g.
sample entry Dij , we randomly pick one super sample in pixel i to
compute the actual visibility.

For each scene, we fully sample all VPLs to generate the reference
image. The differences between the reference image and the im-
ages generated by different methods are measured by the relative
L1 absolute error, i.e. e = ||Lo−L||1

Lo
, where Lo is the intensity in

the reference image and L is that generated by different methods.

The comparison includes equal samples and equal quality. Fig. 10
shows the visual comparison of rendering results generated by dif-
ferent methods using equal samples. Note that in multidimensional

lightcut and the lightslice, the sample number is the cut size, but in
our method, the sample number is the number of accurately com-
puted entries of visibility. As can be seen, with equal samples, these
previous methods produce results with many artifacts and the rela-
tive error is very high. In contrast, our method produces high qual-
ity results with much less errors. We generate equal quality im-
ages by setting parameters to generate images with similar average
relative error. Visual comparison can be found in the supplemen-
tary document. Compared with the multidimensional lightcut, our
method is more than 7-20 times faster in equal quality. Compared
with the lightslice method, our method also has 3 to 7 times speedup
in equal quality.

8 Discussion and Limitation

8.1 Sampled and Recovered Matrices

In Fig. 7, we show an example of sampled and recovered matrices.
Intermediate matrices of two slices are visualized in red and blue
boxes. These two slices are with different illumination and visi-
bility. The one marked in red is without much occlusions, thereby
has low-rank; but the one in blue crosses the shadow region with
more complex visibility, which has relatively higher rank. In dashed
boxes, we give the accurately sample true lighting matrix as refer-
ence, and its distribution of eigenvalues. As can be seen, the pre-
diction matrix gives a relatively good approximation of true matrix.
After the matrix separation, even for the matrix with complex vis-
ibility, errors in the error matrix is sparsely distributed. Error den-
sity map is computed from the error matrix, where detected dense
error regions (entries in red) are probably high-rank, and are actu-
ally sampled. For the slice with simple occlusions, approximately
no entry needs further samples, but for the slice with complex oc-
clusion, about 10% entries are re-sampled. In our test senses, the
average re-sampling rate over all slices is approximately 1%− 2%.
Comparing the difference between the reference and the final re-
covered matrix, it can be seen that our sample-and-recovery method
well captures the main illumination of these two slices.

Currently, the separation step is limited to low-rank lighting matrix.
Even though there is a high-rank error correction technique to de-
tect the dense high-rank part from the error matrix Z, some sparse
high-rank parts (if any) will be missed. This limitation may bring
problems for rendering highly specular or highly glossy objects.



(a) Without prediction (b) Without separation (c) Without error correction (d) Prediction + Separation

Figure 8: Results generated by partial steps of our algorithm for comparison.

(a) Average 10 rays/pixel (b) Average 25 rays/pixel (c) Average 46 rays/pixel (a) 50% columns, 46 rays/pixel

Figure 9: Results generated by different numbers of samples.

8.2 Steps in Matrix Prediction and Separation

In Fig. 8, we compare intermediate results generated by partial
steps of our entire matrix recover algorithm. Fig. 8(a) shows a
result directly recovered from a matrix only with some sparse vis-
ibility samples but without any predictions. As can be seen, many
occlusions are missed and incorrectly recovered. This demonstrates
that our matrix prediction well explores the locality of visibility
and effectively approximates the distribution of the visibility. Fig.
8(b) shows a result directly generated after the matrix prediction.
Without the matrix separation step, the failures of predictions di-
rectly reflect on the final image, e.g. the blocky artifacts at shadow
boundaries and the reds regions in the error image. Fig. 8(c) shows
a result after matrix separation but without applying the error detec-
tion and correction. It can be seen that the separation successfully
separates some errors produced by prediction and reduce the over-
all errors. However, there are still some errors from high-rank parts
remaining in the error matrix. Finally, by employing all steps in ma-
trix prediction and separation (Fig. 8(d)), these high-rank parts in
error matrix is resampled to further improve the final result. More
results of this comparison on other test scenes can be found in the
supplementary document. Results show that these steps are all nec-
essary for producing high quality results.

8.3 Sampling Rate

The quality of our matrix recovery heavily depends on how many
samples are used to actually compute the visibility. In three dif-
ferent steps of our algorithm, each generates a portion of samples
to actually compute visibility. In constructing reduced lighting ma-

trix, for each light, approximately 1% entries of each column are
sampled. In matrix prediction, several iterations of prediction and
validation are carried out until the prediction error ratio is less than
the prediction error ratio, ep. In each iteration, ρ (1%) entries of
each column are sampled. In the final step, only a very small part,
less than 1% of entries, are actually resampled in our practice. In
Fig. 9, we compare several results generated by different sampling
by tweaking the splitting threshold α in constructing lighting ma-
trix, and the prediction error ratio, ep, in matrix prediction. As can
been seen in Fig. 9(a) with less samples, our method fails to capture
shadows as well as produces blocky artifacts between slices. While
increasing the sample rate, more and more shadows are better pre-
served, Fig. 9(b). Only some heavily occluded regions can not be
finely recovered. Once samples are generated enough to capture the
occlusions, in Fig. 9(c), our matrix recovery produces less errors.
In Fig. 9(d), we show a result using a large α, only 50% columns
comparing that in Fig. 9(c) are split to construct the lighting matrix.
Currently, the number of columns or the samples used in prediction
depend on some predefined parameters. Although these predefined
values work well in our test scenes, they may not be applicable in
some scenes. This is one limitation of our method.

9 Conclusion and Future Work

We have presented a matrix sampling-and-recovery scheme to effi-
ciently compute the lighting matrix in scalable many-lights render-
ing. It outperforms the previous methods in terms of efficiency. The
proposed method can be further improved by designing better algo-
rithm for finding the similar VPLs, better predictors for the lighting



matrix, and robust separation solver for handling larger matrix.

One interesting future direction is to extend our solution to some
high-rank lighting matrix, e.g. scenes with highly specular or
glossy materials. Another future work is to extend our sparse
sampling-and-recovery idea to deal with other sub-paths, e.g. by
sampling and recovering the contributions of camera rays. Addi-
tionally, one future work is to investigate its behavior in dealing
with temporal coherent image sequences. Finally, it is very inter-
esting to explore the connection between our method and the Monte
Carlo rendering techniques.
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Figure 10: Comparison of different methods with equal samples.


