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In this document, we provide implementation details of the GPU-
based out-of-core many-lights rendering method. First, we intro-
duce the organization of out-of-core data and the graph data. Then,
we introduce algorithms used in data preparation step. Finally, we
give the details of the out-of-core shading step.

1 Out-of-core Data Layout

1.1 Data Layout of Chunks/Blocks

In our algorithm, data are organized in chunks and blocks. Chunks
are used in data preparation and blocks are used in shading. Each
chunk or block has a 64-bit descriptor, of which 56 bits are used for
address, 2 bits indicate the CPU and GPU write locks, 1 bit marks
the I/O lock, 1 bit records whether the data is in device or not and 4
bits are reserved for computation in different procedures. For each
out-of-core data, we maintain an out-of-core chunk or block array,
which stores all source data. In each chunk or block, customized
headers are stored for further processing the data. During the com-
putation, when a chunk or block is loaded in the device, the header
is first extracted and then the data is processed.

1.2 Data Layout of Hierarchies

For VPL hierarchies, we adapted the storage of the light tree
in [Walter et al. 2006] to the GPU. We store energy, position and
normal (36 bytes) for each leaf node, and energy, normal direction
cone, bounding box, children index and leaf count (64 bytes) for
each internal node. Also, an extra 8 bytes per node are used to store
the indices of nodes in the hierarchy. These data are organized in a
structure-of-arrays (SoA) for better GPU memory access.

For mesh hierarchies, we directly used the data layout in [Stich et al.
2009] and [Pantaleoni and Luebke 2010] to store low-level SBVHs
and high-level HLBVHs with triangles.

1.3 Data Layout of the Graph

Fig. 1 illustrates the storage layout of the graph. Graph vertices are
stored in two data arrays with two index arrays: a submatrix data
array stores graph vertices in the order of submatrix indices and and
a mesh data array stores the vertices in the order mesh block indices.
Index arrays are used to record the start addresses of each submatrix
or mesh block in data arrays. Each graph node is recorded by a 32-
bit integer, where 0-12 bits are reserved for mesh blocks and 13-31
bits are for submatrices.

... ...

... ...u12 u13 u23u21 u22

... ...

... ...u21 u12 u23u22 u13uij uik ulj ukj

B1 B2 Q1 Q2 Q3

Sub-matrix array Mesh chunk array

Bi Qj

Sub-matrix index array Mesh chunk index array

Figure 1: An illustration of one submatrix-geometry graph storage.

Algorithm 1 The out-of-core data preparation algorithm

1: procedure OUTOFCOREDATAPREPARATION( )
2: OUTOFCORESORTTRIANGLES()
3: while READCHUNK() != EOF
4: CONSTRUCTSBVH()
5: CREATEANDSTREAMOUTCHUNK()
6: //root is the root node of the established SBVH
7: mesh representive list← root
8: end while
9: CONSTRUCTHIGHLEVELHLBVH(mesh representive list)

10:
11: OUTOFCORESORTVPL()
12: while READCHUNK() != EOF
13: CONSTRUCTKDTREE()
14: CREATEANDSTREAMOUTCHUNK()
15: //root is the root node of the established KD
16: V PL chunk list← root
17: end while
18: CONSTRUCTHIGHLEVELKDTREE(V PL chunk list)
19:
20: CLUSTERSURFACESSAMPLES()
21:
22: PARTITIONMATRIX()
23:
24: PACKCHUNKINTOBLOCK()
25: end procedure

2 Out-of-core Data Preparation

Pseudocode is given in Algorithm 1. The construction of these
two-level hierarchies takes three steps. First, elements of these
two kinds of data, lights or triangles, are sorted according to their
spatial Morton code [Pantaleoni and Luebke 2010]. Next, we
partition these sorted elements into chunks with similar size in
the READCHUNK function. For these chunks, SBVH hierarchies
are built for geometry chunks and KD-trees are constructed for
lights chunks. Then we pack each chunk with its hierarchy and
stream it to device again in the CREATEANDSTREAMOUTCHUNK
function. The low-level hierarchies are stored and loaded in-
core or out-of-core with their chunk data. Only the bounding
boxes of chunks are recorded in a list and used to construct the
high-level hierarchy in the CONSTRUCTHIGHLEVELHLBVH and
CONSTRUCTHIGHLEVELKDTREE functions. After lights and geom-
etry hierarchies are constructed, we cluster surface samples into a
hierarchy by function CLUSTERSURFACESSAMPLES().

Next, the light transport matrix is partitioned into submatrices in the
PARTITIONMATRIX function so that each submatrix can be loaded



into the device memory all at once. The algorithm is shown in
Algorithm 2. The SIMULTANEOUSTRAVERSAL procedure is car-
ried out in a top-down scheme. We start with a lower level of
nodes for both hierarchies. Initial pairs of nodes are put into the
active list. In each batch, nodes pairs in active list are pro-
cessed in function SPLITNODES in parallel. To make sure that the
active list does not grow too quickly, each time, we only pro-
cess nmax pairs. In SPLITNODES, given one parent light node,
lj and one parent sample node, si, in light and surface sam-
ple hierarchies, we split each parent node into two child nodes,
pi0 , pi1 and lj0 , lj1 respectively. Then, we compute the bound-
ing shafts between sample children nodes, pi0 , pi1 , and light par-
ent node li, and light children nodes, lj0 , lj1 , and sample parent
node pi, respectively. Using these four shafts, sik and sjk , where
k = 0, 1, we compute all potentially intersected mesh chunks
using function COMPUTEPOTENTIALMESHCHUNK. The intersection
statuses are stored in bit arrays, bik and bjk , where k = 0, 1. If one
mesh chunk is potentially intersected, the corresponding bit is set
to 1, otherwise 0. We compare the bit difference between one split
by a bit operation, exclusive or (⊕), on two bit arrays in function
BITCOUNT. The split that producesa larger difference of potentially
intersected mesh chunks is chosen as the next traversal direction.
New children nodes with the parent node that is not split this time
are appended in active list for further splits. Once the numbers of
potentially intersected mesh chunks of both of the two splits are the
same, we stop the split on this pair and output these two nodes to
form a submatrix.

After partitioning the matrix, all submatrices are packed into blocks
in the PACKCHUNKINTOBLOCK function. Each block is one I/O unit
in the shading step and is used to construct the graph. From our si-
multaneous traversal, lights in one submatrix are from a subtree of
one light hierarchy. Thus, we pack each light subtree into one block
and further use the light subtree to compute lightcuts in shading.
For mesh data, we reuse these bit arrays that indicate the intersec-
tion status between submatrices and mesh chunks in the above ma-
trix partition process. For every two mesh chunks, we compare the
intersection status with submatrices. If the status of several mesh
chunks is exactly the same and the total size of these mesh chunks
is able to be loaded into device memory all at once, we combine
these mesh chunks into one mesh block. By reorganizing light and
mesh data into a more compact data layout, blocks, we are able to
control the graph size and reduce data I/O at the shading step.

3 Out-of-core Shading

Pseudocode of main out-of-core shading steps is given in Algo-
rithm 3. First, we build up the submatrix-geometry graph in the
BUILDGRAPH function, where submatrices are paired with their po-
tentially intersected mesh blocks to composite a vertex. Then, we
employ various strategies to find an optimal route, path list, in
SEARCHTRAVELPATH to traverse all vertices. (More details of graph
traversal strategies are given in Section 3.1.) Given the optimal
path, path list, the out-of-core shading is iteratively executed to
load blocks, compute the lightcuts, test visibilities and cacluate the
shading integrations.

In one iteration of the out-of-core shading, a vertex, u visit, is re-
turned by the NEXTVISIT function from the path list. If the re-
turn is NULL, the whole shading process is terminated. Otherwise,
computations of this vertex are performed. We first check if both
blocks of u visit have been loaded in-core by the CHECKBLOCKS
function. If not, the computation is blocked and waits. If all data
are ready, we compute the lightcuts in SAMPLELIGHTCUTS, test the
visibilites in VISIBILITYTEST and take the shading integrations in
INTEGRATE. To reduce the latency of waiting for data and over-
lap some transfers with computations, we use asynchronous data

Algorithm 2 The simultaneous traversal algorithm

1: procedure SPLITNODES(pi,lj)
2: //pi is a parent node of sample tree
3: //lj is a parent node of light tree
4: pi0 ← pi.LeftChild; pi1 ← pi.RightChild;
5: lj0 ← li.LeftChild; lj1 ← lj .RightChild;
6: //sik and sik are bounding shafts
7: //mesh chunks and bounding shaft
8: for k=0:1
9: sik ← COMPUTEBOUNDINGSHAFT(pik , lj)

10: sjk ← COMPUTEBOUNDINGSHAFT(pi, ljk )
11: end for
12: //bk are bits indicating intersection status between
13: //mesh chunks and bounding shaft
14: for k=0:1
15: bik ← COMPUTEPOTENTIALMESHCHUNK(sik )
16: bjk ← COMPUTEPOTENTIALMESHCHUNK(sjk )
17: end for
18: //Compute the difference of bits
19: c0 ← BITCOUNT(bi0 ⊕ bi1 )
20: c1 ← BITCOUNT(bj0 ⊕ bj1 )
21: //Split the parent node with larger difference
22: if c0 == c1 then
23: OUTPUT(pi,li)
24: else if c0 > c1 then
25: active list.APPEND(pi0 ,li)
26: active list.APPEND(pi1 ,li)
27: else
28: active list.APPEND(pi, lj0 )
29: active list.APPEND(pi, lj1 )
30: end if
31: end procedure
32:
33: procedure SIMULTANEOUSTRAVERSAL(pi,li)
34: active list← INTIALNODES();
35: while active list!=NULL
36: for each ( pi,lj) of nmax pairs in active list
37: SPLITNODES(pi,lj)
38: end for
39: end while
40: end procedure

transfer, with a concurrent copy and execute scheme [NVIDIA
Corporation 2012]. Specifically, two streams are created and
used. All kernels in the SAMPLELIGHTCUTS, VISIBILITYTEST and
INTEGRATE functions are launched in one stream, named the com-
putation stream, and data transfer are performed in the other stream,
the I/O stream. When the current vertex, u visit, is being pro-
cessed, we use the NEXTIO(path list) function to find next ver-
tex, u load, that requires loading data. If there is enough buffer
space, these data of u load are loaded in the I/O stream by the
ASYNCHRONOUSLYLOADBLOCK function. Note that since this I/O
runs in a different stream from the one used for computations,
the I/O operates asynchronously and does not block the CPU and
the GPU. In this way, the I/O cost of loading data for u load is
hidden or partially hidden in computing u visit. After loading
the data in in-core memory, blocks used by u load are locked in
the LOCKBLOCK function in order to prevent them being removed
before being used by u load. If there are no available in-core
buffers, the asynchronous I/O data transfers are halted by function
HASENOUGHBUFFER until some buffers are released by some com-
putation kernels.

To efficiently utilize the in-core memory buffer, we maintain a Least
Recently Used (LRU) list of all in-core blocks. When some new



Algorithm 3 The out-of-core shading algorithm

1: procedure OUTOFCORESHADING
2: BUILDGRAPH()
3: path list← SEARCHTRAVELPATH()
4: //u visit is a vertex being visited.
5: //u load is a vertex after u visit with I/O.
6: u visit← NEXTVISIT(path list)
7: SYNCHRONOUSLYLOADBLOCK(u visit)
8: LOCKBLOCK(u visit)
9: while u visit != NULL

10: CHECKBLOCK(u visit)
11: SAMPLELIGHTCUTS(u visit)
12: VISIBILITYTEST(u visit)
13: INTEGRATE(u visit)
14: u load← NEXTIO(path list)
15: while u load != NULL
16: if HASENOUGHBUFFER(u load) == FALSE then
17: break
18: end if
19: ASYNCHRONOUSLYLOADBLOCK(u load)
20: LOCKBLOCK(u load)
21: u load← NEXTIO(path list)
22: end while
23: UNLOCKBLOCK(u visit)
24: u visit← NEXTVISIT(path list)
25: end while
26: end procedure

submatrix or mesh blocks are scheduled to be loaded into the buffer,
we first try to find free spaces in the in-core buffer. If sufficient
space is not available, obsolete blocks that are unlocked and least
recently used are removed to make the space for new blocks.

3.1 Graph Traversal Strategies

3.1.1 Deterministic Strategies

In Algorithm 4, we give the details of the naive strategy 1, the naive
strategy 2 and the MST-based strategy. Because these strategies
all assume that the weights of graph edges are deterministic, we
name them deterministic strategies. These three static strategies
share similar procedures. Initially, we fetch an unvisited vertex u ij
in the graph through the function RANDOM of unvisited list, and
use this vertex as the start of the traversal process. In the traversal
step, we append u ij to path list, a path list recording the vertices
being traversed. Then we remove u ij from unvisited list. Next,
three approaches are used to search for the next vertex to be visited.
In the naive strategy 1, we try to search for the nearest edge among
the vertices sharing the same submatrix block Bi. We do this in
function SHORTESTEDGE(u ij, all {v ix} in unvisited list). If the
return is non-empty, we replace u ij with the new vertex. If the re-
turn is NULL, we turn to searching for the nearest neighbor of u ij
sharing same mesh block Qj , in function SHORTESTEDGE(u ij, all
{v xj} in unvisited list). The searching process continues until
all vertices are visited. In the naive strategy 2, the procedure is sim-
ilar, except that it inverses the searching order such that we first try
to find nearest neighbor sharing the same mesh block Qj , then turn
to visit vertices having the same submatrix Bi. In the MST-based
strategy, we abandon the constraint on searching order, and attempt
to traverse to the nearest neighbor of {u ij}, no matter what sub-
matrix or mesh block it shares.

Algorithm 4 Static strategy

1: //u indicates vertice in the graph
2: //u ij is the one contains submatrix block i and mesh block j
3: //path list is the record of the sequence of visiting vertices
4:
5: procedure NAIVEONE( )
6: u ij← unvisited list.RANDOM()
7: while u ij != NULL
8: path list.APPEND(u ij)
9: unvisited list.REMOVE(u ij)

10: while u in← SHORTESTEDGE(u ij, all {u ix} in
11: unvisited list) && u in != NULL
12: path list.APPEND(u in)
13: unvisited list.REMOVE(u in)
14: end while
15: u ij← SHORTESTEDGE(u ij,
16: all {u xj} in unvisited list)
17: end while
18: return path list
19: end procedure
20:
21: procedure NAIVETWO( )
22: u ij← unvisited list.RANDOM()
23: while u ij != NULL
24: path list.APPEND(u ij)
25: unvisited list.REMOVE(u ij)
26: while unj ← SHORTESTEDGE(u ij, all {u xj} in
27: unvisited list) && u nj != NULL
28: path list.APPEND(u nj)
29: unvisited list.REMOVE(u nj)
30: end while
31: u ij← SHORTESTEDGE(u ij,
32: all {u ix} in unvisited list)
33: end while
34: return path list
35: end procedure
36:
37: procedure MST ( )
38: u ij← unvisited list.RANDOM()
39: while u ij != NULL
40: path list.APPEND(u ij)
41: unvisited list.REMOVE(u ij)
42: u ij← SHORTESTEDGE(u ij, unvisited list)
43: end while
44: return path list
45: end procedure

3.1.2 Non-deterministic Strategies

The local search strategy and the ant colony strategy update the
weights of edges online, thus, we regards them as non-deterministic
strategies. The details of local search are given in Algorithm 5.
The process of the local search strategy is similar to that of MST-
based one. We fetch an unvisited vertex u current from the
unvisited list in RANDOM function and append it to path list.
However, different from the MST-based strategy, we find the next
vertex not only with information of u current, but try to utilize all
in-core vertices in the buffer. To be specific, we evaluate a cost for
each unvisited vertex in unvisited list by summing its distances to
all in-core vertices in the DISTANCE function. The vertex with mini-
mum cost for all in-core vertices is selected as the next u current,
and we repeat this process until unvisited list is empty. We use
a buffer simulator to make use of the dynamic information at run
time. The buffer simulator acts similarly as the true buffer except it



Algorithm 5 Local search strategy

1: procedure LOCALSEARCH ( )
2: u current← unvisited list.RANDOM()
3: path list.APPEND(u current)
4: unvisited list.REMOVE(u current)
5: while unvisited list != EMPTY
6: //Swap previous vertices into the buffer simulator.
7: u incore list← SWAPIN(u current)
8: costmin← FLT MAX
9: for each u ij in unvisited list

10: costij ← 0
11: for each u nm in u incore list
12: costij += DISTANCE(u nm, u ij)
13: end for
14: if costij < costmin then
15: u current← u ij
16: costmin← costij
17: end if
18: end for
19: path list.APPEND(u current)
20: unvisited list.REMOVE(u current)
21: end while
22: return path list
23: end procedure

does not actually handle memory but emulates a successive virtual
space. As showed in the function, we swap the new u current into
the buffer simulator in function SWAPIN, and get back the in-core
vertices for the subsequent computation.

Algorithm 6 illustrates our implementation of the ant colony strat-
egy. The core-process of the ant colony strategy involves local
search. We use a buffer emulator to imitate dynamic situations,
and take the distances to all in-core vertices into account. We uti-
lize the parallelism of the GPU to increase the breadth and depth
of our search of solutions in the framework of the ant colony algo-
rithm. Initially, we divide the whole graph into several subgraphs
to restrict the maximum vertices for each ant, and handle each sub-
graph in sequence. We launch NUM ANT threads to search for
the optimization solution, and repeat MAX ITERATIONS times.
Each ant-thread initializes its path list, unvisited list, traver-
sal cost, and buffer state at the beginning, and then enters the it-
eration of APPEND, REMOVE and finding the next u current un-
til the whole unvisited list is empty. When we try to find the
next u current, we calculate every unvisited vertex’s possibility
to be selected according to its distance and phenomenon informa-
tion. After gathering all pij , we normalize them by the sum of
pij , and select one based on a random float between 0 to 1 in the
RANDOMSELECT function. This selected vertex is the input of the
next iteration until the entire subgraph is traversed. Additionally,
the cost of each ant is recorded in path list, which can be fetched
in function COST. The cost is a criteria to update the phenomenon
of the graph edge. Ants with a low cost would havea high amount
of phenomenon to be distributed in its paths. The phenomenon rep-
resents a public information to control the subsequent searching ac-
tions, and to drive the ants toward better searching region. Finally,
path list with lowest cost for each subgraph, path listmin, is ap-
pended to intact path list. We reconstruct the buffer states with
intact path list as the beginning of each ant, so we can connect
subgraphs as we actually do in the shading process.

3.2 Neighbor Searching in Graph

These graph traversal solutions are designed with different heuris-
tics, but all require an efficient neighbor search. Based on the stor-

Algorithm 6 Ant colony strategy

1: procedure ANTCOLONY ( )
2: subgraph list← DIVIDEINTOSUBGRAPH()
3: for each subgraph in subgraph list
4: costmin← FLT MAX
5: for 1 to MAX ITERATIONS
6: for 1 to NUM ANT
7: //Initialize.
8: unvisited list← all vertices in sub graph
9: path list← EMPTY

10: cost← 0
11: //Continue traversal from previous subgraph.
12: buffer.INITIALIZE(intact path list)
13:
14: u current← unvisited list.RANDOM()
15: path list.APPEND
16: unvisited list.REMOVE(u current)
17: while unvisited list != EMPTY
18: u incore list← SWAPIN(u current)
19: for each u ij in unvisited list
20: pij ← 0
21: for each u nm in u incore list
22: dist← DISTANCE(u nm, u ij)
23: ph← PHEROMONE(u nm, u ij)
24: //α, β and θ are used to control
25: //relative importance of distance and
26: //phenomenon; γ is a small number
27: //to prevent dividing by 0.
28: pij += ( θ

dist+γ
)α + phβ

29:
30: end for
31: end for
32: //Select a vertice according to possibilities.
33: u current← RANDOMSELECT({pij})
34: path list.APPEND(u current)
35: unvisited list.REMOVE(u current)
36: end while
37: //Add pheromone to edges from active vertices
38: //to the one swapped-in at each step.
39: UPDATEPHEROMONE(path list)
40: if COST(path list) < costmin then
41: u current← u ij
42: costmin← COST(path list)
43: path listmin← path list
44: end if
45: end for
46: end for
47: intact path list.APPEND(path listmin)
48: end for
49: return intact path list
50: end procedure

age formation of our matrix-mesh graph, for a vertex uij , we first
extract the submatrix ID, Bi, and the mesh block ID, Gj , from the
node uij . Bi and Gj are then used to collect all unvisited neigh-
bors, {ulm}, from the submatrix array and mesh block array, re-
spectively. Based on the storage format of the matrix-mesh graph,
these {ulm} share one element with uij , Bi or Gj , thus the I/O
costs to swap uij to them are less than that of any other node. After
extractingJ all neighbors of vertices in the active list, we sort these
neighbors by the weights and use them in graph traversal.
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