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Abstract 

In this paper, we present a novel method for editing stylistic human motions. We represent styles as 
differences between stylistic motions and introduced neutral motions, including timing differences and 
spatial differences. Timing differences are defined as time alignment curves, while spatial differences 
are found by a machine learning technique: Independent Feature Subspaces Analysis, which is the 
combination of Multidimensional Independent Component Analysis and Invariant Feature Subspaces. 
This technique is used to decompose two motions into several subspaces. One of these subspaces can 
be defined as style subspace that describes the style aspects of the stylistic motion. In order to find the 
style subspace, we compare norms of the projections of two motions on each subspace. Once the time 
alignment curves and style subspaces of several motion clips are obtained, animators can tune, transfer 
and merge the style subspaces to synthesize new motion clips with various styles. Our method is easy 
to use since manual manipulations and large training data sets are not necessary. 
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Introduction 

Nowadays, motion capture is widely used in many communities, including film industry, game 
development and robotics. However, motion capture is an expensive technique and lack of flexibility. 
Therefore, reuse of motion capture data becomes a promising research area where many researchers 
have contributed. Our method in this paper can fall into this category, but it mainly focuses on how to 
synthesize new human motions with various styles from existing motion data. 

Style is an abstract concept and hard to express quantitatively. But generally, it can be regarded as 
subtle variations on the basic motions. Therefore, two assumptions are proposed in this paper. Firstly, 
the style can be defined as the differences between the stylistic motions and neutral motions, including 
spatial differences and timing differences [1, 2, 3, 4]. Secondly, the style and content of the motions 
are independent mutually and can be separated [16].  



According to our assumptions, the spatial differences are expressed as a subspace of the motion data 
in this paper. This subspace that contains the stylistic aspects of the motion data is called style 
subspace. In order to find the style subspace of a single stylistic motion clip, a neutral motion clip with 
no style must be employed. We use independent feature subspaces analysis to find the style subspace 
of the stylistic motion. Once the style subspaces of several motion clips are obtained, animators can 
not only change the degree of style of the original motion but also transfer and merge styles between 
two motions to generate new motions with various styles. Our method is easy to use for animators 
since manual manipulation and large data sets are not necessary.  

Figure 1 shows the overview of our method. At decomposition stage, several subspaces are obtained 
by using independent feature subspace analysis and one of them is defined as style subspace. At 
synthesis stage, new motions with various styles can be generated in real time by tuning, transferring 
and merging style subspaces. 

Related works 

The idea of defining the style of a stylistic motion as differences between the stylistic motion and a 
neutral motion is similar to that of our method. Amaya et al [1] think emotion of a motion lies in speed 
and spatial amplitude. Their method can extract emotion by comparing neutral and stylistic motions. 
Then the differences between two motions are added to another motion to generate new style. 
Kawasaki et al [2] extract the differences in angular velocity and torque of the joints between standard 
and stylistic motions and transfer the differences to the third motion. Terasaki et al [3] extract style 
features from differences between a base motion and a reference motion and apply the style features to 
other motions. The style features in this paper consist of postural and temporal differences between 
two motions and are defined in an abstract form. Hsu et al [4] learn Linear Time Invariant models by 
comparing the input and output motions to perform style translation. All the works above inspired us 
to extract style by comparing a neutral motion and a non-neutral motion. And we adopt a distinct 
technique to find the differences.  

Since a motion can be regarded as a time-varying signal, some researchers applied signal processing 
techniques to edit stylistic motion. Unuma et al [5] use Fourier techniques to change the style of 
human gaits in Fourier domain. Using their method, the Fourier characteristics that describe the style 
of human gaits can be extracted. Bruderlin and Williams [6] edit the stylistic motions by varying the 
frequency bands of the signal. Perlin [7] adds rhythmic and stochastic noise functions to joints to drive 
computer generated puppets with various personalities.  Our method is unrelated to signal processing, 
though we use band pass filter at pre-processing stage to reduce noise and facilitate estimation of 
independent feature subspaces. We do not assume that the style lies in high frequency, but think it can 
be found by analyzing the statistical characteristics of a single motion. 

Rose et al [8] present multidimensional motion interpolation, a method to generate a style space by 
interpolating between sample motions using RBF. Our method differs in that we do not interpolate 
between two motions, but extract style subspaces of stylistic motions and edit the subspaces. 

Neff et al [9] present an approach and prototype system for generating stylistic character animation.  
Their system provides animator with a set of edit modes and bridges the gap between artistic and 
technical communities.  



In recent years, more and more researchers applied machine learning to character animation. 
Urtasun et al [10] use PCA to train large sets of locomotion data, and use PCA coefficients to 
synthesize new motions with different heights and speeds. Brand and Hertzmann [11] use Hidden 
Markov Models to capture the style of training motions. These styles can be reused to other motions. 
Torresani et al [12] introduce a motion blending based motion controller. The blending weights are 
learned from large sets of motions, whose styles are labelled by some specialists. Liu et al [13] 
construct a physical model and use optimization to generate new motions with learned physical 
parameters that contain the style aspects. We do not consider physical aspects in our algorithm, which 
is a limitation of our method. However, we use a balance filter to correct some poses that break the 
physical rules at post-processing stage. Elgammal and Lee [14] take the style of a human motion as a 
time-invariant parameter, and learn a decomposable generative model that explicitly decomposes the 
style from a walk motion video. Cao et al [15] use ICA to find the emotion aspects of facial motions 
automatically for the purpose of style editing. All the research works above can produce good results, 
but large sets of training motion data are required. Our method differs in that it works effectively if we 
want to extract the style from only a single stylistic motion with the aid of an introduced neutral 
motion. 

Shapiro et al [16] use ICA to decompose a single motion into many components. The animators 
have to select one of them as style component manually. Our method is the modification and extension 
of Shapiro’s. We can extract style automatically by introducing a neutral motion and using 
Independent Feature Subspaces Analysis. 

Data pre-processing 

Motion data representations 

All the motion capture data used in this paper come from CMU Motion Capture Database [17]. But we 
simplify the skeleton structure and remove some negligible joints and links as shown in Figure 2.  

Our method can work on either Euclidean coordinate of joints, Euler angles or quaternions of links. 
Euler angle is a poor choice due to Gimbal lock. Quaternion is not suitable for motion decomposition 
because we can not separate motions in quaternion space meaningfully [16]. Therefore, we adopt 
Euclidean coordinate representation of motion. Since all data in CMU Motion Capture Database are 
represented with Euler angles, we have to convert the motion capture data into global Euclidean 
coordinate point representation at first.  

It is worth mentioning that the global translation should be removed from the motion firstly because 
we assume that these values have no contribution to the style of a motion. Then the motion ( )m t  is 

represented by the trajectories of joints ( ),1ip t i K≤ ≤ , where K  is the number of its joints. In our 

method, 25K = . Our algorithm works on a matrix, whose rows represent different DOFs of the motion 
and whose columns represent all individual frames involved. 

Time alignment 

In order to find spatial differences between a neutral motion and a stylistic motion, we have to 
compare the two motions frame to frame. Therefore a time alignment process has to be taken.  



Let ( , )d p q  be the distance between motion 1 at frame p and motion 2 at frame q . To perform 

time alignment, we need to find a time path ( ) ( ( ), ( )), 1,2,...,n p n q n n Lλ = =  to make sum of 

distance between every corresponding frame pair along the time path minimum, where L  is the 
length of the time path, and ( )p n and ( )q n is the corresponding frame of motion 1 and motion 2 at n st 
point on the time path, which can be defined as: 
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where 1M and 2M represent the two motions aligned. The distance metric used originally by Kovar [18] 

is chosen for ( , )d p q .  

After computing the distances between every corresponding frame pair, we can draw a distance 
image where larger distance corresponds to whiter pixel and vice versa, as shown in Figure 3. 

We use Kovar’s method [19] to figure out the time path ( )nλ that is a curve on the distance image. 

In order to obtain this curve correctly, three constraints must be taken into account: continuity, 
monotonicity and slope limit (it is set to 2). These constraints can be described as: 

( ) ( , ) ( 1) {( 1, ),( 1, 1),( , 1)}λ λ =    − ∈ − − − −if n p q then n p q p q p q   (2) 
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Our time alignment system allows animators to select the start and end of the curve interactively. 

Then the system solves Equation (1) for ( )nλ subject to constraints above using dynamic 

programming. In Fig.3, a neutral walk and a stagger are aligned by a red curve whose start and end is 
selected manually. 

After obtain ( )nλ , we can resample the two motions along the curve to produce synchronized 

versions of them with new timings. Suppose the index 
11,..., Tn n are chosen and 1T  is the number of 

frames in aligned motion 1 such that ( )ip n i= . Then the motion 1 will be replayed with its original 

timing, i.e. the motion 2 is aligned to motion 1. Considering the fact that independent feature 
subspaces analysis can only find the spatial differences between motions and that the timing of 
original motion which can also be regarded as a part of style (e.g. slow-in and slow-out) will be lost if 
we wrapped stylistic motions to neutral motions, we align neutral motions to stylistic motions so that 
the timing of stylistic motions can be preserved.  

Filtering and whitening 

Before we apply our algorithm the aligned motion data has to go through two phases: filtering and 
whitening.  



The reason why we have to use filtered motion data to train the independent feature subspace model 
is to obtain more mutually independent subspaces. It has been proven true that ICA model (and its 
extensions) is still valid after the data is filtered in time domain [20]. The filter we adopt for our 
method is a bandpass filter. We use Bruderlin’s method of multiresolution filtering [6] to perform 
bandpass filtering. After the Laplacian bandpass pyramid is constructed, the motion can be expressed 
as sum of DC value and all the bandpass bands. Then the motion is filtered by decreasing slightly the 
signal in highest frequency-band and signal in some lower frequency-bands. The purpose of 
decreasing a little high frequency signal is to reduce noise that makes human skeleton quivering 
rapidly and will deteriorate the final results. The purpose of eliminating some low frequency signal is 
to construct a high-pass filter to turn the original motion data into an approximate innovation process 
that is likely to lead to much better estimates of the mixing matrix [21].  

Whitening is a common pre-processing technique for ICA and its extensions [20]. Before whitening, 
the data should be centred. That is to shift the data towards its mean so that the resulting variables 
have zero mean. Whitening transforms the input data linearly so that we can obtain new data whose 
components are uncorrelated and whose variances equal unity. PCA can achieve decorrelation, so it is 
commonly used to perform this transformation. Whitening can also reduce the dimension of the 
motion data and accelerate convergence. 

Style subspaces 

According to our assumptions, we can extract style by finding the differences between neutral and 
non-neutral motions and apply extracted style to other motions. Moreover, we assume style of a 
motion has some invariant features, i.e. the style can keep invariant even though the motion changes 
partly. Considering this, we use independent feature subspace model [22], which is a modification of 
ICA and a combination of the technique of multidimensional independent component analysis and 
principle of invariant feature subspaces to extract styles. 

In this section, we introduce the concept of independent feature subspaces and the method on how 
to apply this technique to human motions to extract style subspaces that describe the style aspects of 
stylistic motions. 

Independent feature subspaces 

Multidimensional independent component analysis is a linear generative model. Compared with ICA, 

the components is are not supposed to be all mutually independent. Instead, it is assumed that the is can 

be divided into n-tuples, such that is in a given n-tuples can be dependent on each other, but 

dependencies among different n-tuples are prohibited. The principle of invariant feature subspaces is 
an approach to represent features with some invariances. An invariant feature can be considered as a 
linear subspace in a feature space. The value of the invariant, high-order feature is given by the square 
of the norm of the projection of the given data on the subspace. The value can be described as: 
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Independent feature subspace is a technique combined by the two techniques introduced above. In 
this model, the likelihood of observed data ( )x t can be described as: 
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where ib is the basis vector of subspaces, J is the number of independent feature subspaces and jS , 

1, ,j J= ⋅⋅⋅ represents the set of the indices of the is belonging to the subspace of index j . B is a matrix 

with ib as its columns. ( )p ⋅ gives the probability density inside the jth n-tuple of is . We can assume 

the norm of the projection of data on any subspace has a supergaussian distribution. 

4.2 Learning a style subspace 

In fact, independent feature subspace analysis is a technique not only for feature extraction, but also 
for signal decomposition. Therefore, a subspace expresses the style while it is a part of the original 
data. For animators, it is an intuitive model for motion editing. 

After concatenating pre-processed stylistic motion ( )Sm t and neutral motion ( )Nm t  end to end, we 

obtain a new motion ( )m t . We replace ( )x t in Equation (4) and (5) with ( )m t and estimate independent 

feature subspaces by maximizing the Equation (5) using a stochastic gradient ascent algorithm. In 
Equation (5), we use the following probability distribution that is supergaussian: 

1/2log ( )p u uα β= − +                     (6) 

In order to find the style subspace, a metric is defined to describe the dissimilarity between 
corresponding subspaces of stylistic and neutral motions.  It is described as: 
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where ( )S
jF t and ( )N

jF t represent the value of feature of the stylistic motion and neutral motion 

respectively and T  is number of frames of aligned motions. We define the style subspace as one of 

these subspaces that makes jd  maximum, which is described as: 

arg max , {1, }s
jj d j J= ∈ ⋅⋅⋅                (8) 

In Figure 4, an example of decomposition of two motions is illustrated. We concatenate a neutral 

walk motion and a stride motion to construct ( )m t . ( )SF t is represented by blue curves and ( )NF t is 

represented by red curves. It is obvious that the dissimilarity between ( )SF t  and ( )NF t  of the third 



subspace is the largest.  Therefore this subspace is specified as style subspace. It is amazing that for 
the most cyclic motions we can always obtain a subspace where the dissimilarity between features of 
two motions is clearly different from others. This is why we choose this technique to decompose 
motions. 

Edit of stylistic human motions 

Due to orthonormality of the basis vectors of all subspaces, the motion can be expressed as: 

( ) { ( )} ( )= + %m t E m t PAs t                 (9) 

where {}E ⋅ represents the means of input data, and P is the PCA matrix related to whitening. A%  is the 

mixing matrix defining the mapping from subspaces to the whitened data space. It is the inverse 

matrix of B in Equation (5) which is estimated by independent feature subspace analysis. ( )s t is 

projection of whitened original data on all basis vectors at given time t . Recall previous section, 

matrix P and A%  is estimated using filtered motion. But in Equation (9), ( )s t is the projection of 

whitened original motion data but not projection of whitened filtered data on the subspaces. At 
decomposition stage, our method uses filtered data to estimate the independent feature subspaces 
model in order to obtain much better estimation. At synthesis stage, our method uses projection of 
original data on each subspace to reconstruct the motion ( )m t . Therefore, our method is essentially 
unrelated to signal processing. We do not model style in high frequency signal, but extract style by 
decomposing motion statistically. 

Based on Equation (9), we proposed three editing modes similar to those in [15] that originally 
worked on facial animation: style tuning, style transfer and style merging. 

Style tuning 

Once the style subspace of a stylistic motion is obtained, the style is parameterized by the norm of 
style subspaces. Therefore, we can scale projection of data on the style subspace to change the value 
of style. This editing mode can be mathematically expressed as: 

1
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k
j jT T
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i
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=
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whereα is the coefficient to control the degree of style sj
ie is the unit basis corresponding to the basis 

vector of the style subspace. We can obtain new motions with different degrees of style by tuning only 
one parameter. Essentially, this editing mode is an interpolation between the stylistic motion and the 
neutral motion. However, this kind of interpolation is done in the low-dimensional style subspace.  

Style transfer 

Other than editing on the original motion, we can also transfer style from the original motion to other 
motions. It is notable that motion 1 and 2 must be aligned before editing. Considering timing is also a 



part of style of motion data, we need align motion 1 to motion 2 in order to preserve the timing of 
motion 2. This editing mode can be expressed as: 

1 2 1
1
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m t E m t PA s t s t s t e e
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Equation (11) shows how to transfer style of motion 2 to motion 1 mathematically. If motion 1 and 2 
are regarded as neutral motion and stylistic motion respectively, the style of motion 2 can be 
transferred to motion 1 directly using Equation (11). But if motion 1 is a third motion, it has to be 
projected on the style subspace of motion 2 at first. The projection can be expressed as: 

1 2 1 1( ) ( ) ( ( ) { ( )})+= −%s t PA m t E m t         (12) 

where +  represents pseudo-inverse of a matrix.  

Style merging 

Another interesting editing mode is to merge styles of multiple motions. It can be expressed as: 
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Equation (13) shows how to merge styles of two motions with weightα . Obviously, this editing mode 
preserves the style of motion 1 while style transfer replaces the style of motion 1 with that of motion 2. 
When the coefficient α is changed, the degrees of two styles vary with it. When 1α = , the synthesized 
motion is motion 1 itself. When 0α = , the style of motion 1 is removed clearly and the style of motion 
2 is added entirely. Style merging is a kind of space-time interpolation between two aligned motion 
described by Torresani et al [12], but the interpolation is implemented only in two low-dimensional 
style subspaces.  As for timing, we can either align motion 1 to motion 2 or vice versa, which 
depends on which motion’s timing we wish to preserve. Moreover, we find that style merging is very 
effective when we merge two styles, but when we merge three or more styles, some unnatural and 
undesirable motion clips may be produced.  

Post-processing 

After editing, the motion data has to be post-processed. Firstly, the global translation removed at the 
pre-processing stage must be added again.  

Secondly, since our method that works on global joint positions can not guarantee that the limb 
lengths of the character keep unchangeable, the limb lengths have to be restored. In order to do that, 
we represent each limb as a vector in global coordinate, and convert these vectors into quaternions.  
Then the pose at each frame can be reconstructed according to lengths of all limbs. Subsequently, the 
motion data is expressed by quaternions, so that the limb lengths are corrected but the joint angles are 
preserved.  

Finally, some artifacts must be removed. It is obvious that our method does not guarantee physical 
and kinematical correction, which is a common weakness of most statistical methods. Therefore we 
use an IK solver to clean foot sliding on the ground. In addition, we develop a motion balance filter 
using existing technique to correct the poses that break the basic physical rules [23]. The filter 



examines the ZMP for each frame and corrects the faulty poses when the corresponding ZMP goes 
outside the support area of foot. 

Results and discussions 

There are 25 joints in the skeleton model used in this paper, thus the dimension of motion data is 75. 
After whitening, the dimension is reduced to 10, but over 99% of variation of original data is 
preserved. We employ independent feature subspace analysis to obtain five 2-D subspaces, one of 
which is the style subspace. 

In Figure 5, a sneak walking motion is edited by tuning the scalarα . It is obvious that when the 
norm of projection of motion data on the style subspace is adjusted, the degree of sneaking changes. 

In Figure 6, the style of a stride motion is transferred to a jogging motion. The newly synthesized 
motion is a run at a stride motion where the timing of stride is preserved. We can find that it is striding 
more than jogging because part of the jogging style is replaced by striding style. 

In Figure 7, the style of a brisk walk motion and the style of a soldier march motion are merged. 
The newly synthesized motion is a brisk soldier march motion. Both brisk walk style and soldier 
march style are preserved. When the coefficient α  is tuned, the ratio of each style in the synthesized 
motion varies. In this case, the timing of brisk walk is preserved because it is crucial to express the 
style of brisk. 

In [16], Obviously, more precise differences between the neutral motion and non-neutral motion can 
be found by using IFSA than by using ICA. The reason why IFSA can find the differences more 
precisely is that this technique considers some high-order invariant features that describe the style 
more precisely. IFSA takes advantage of the residual dependences between independent components 
in ICA model (In fact, decomposing a vector into entirely independent components is impossible). 
Recall Equation (5), where the feature value is the norm of projection of motion data on each subspace, 
so each subspace is spherically symmetric. IFSA does not discriminate projections of input data on the 
different basis vectors of a subspace, but considers only the norm of projection, i.e. the components of 
a subspace are not all independent mutually. This characteristic enables the features to keep invariant 
even though some parts of input data change. Therefore, we can obtain more independent stylistic 
aspects which are influenced less by the content of motion data. Although the detailed meaning of 
invariance in this model is not specified clearly, we can expect it is more suitable for style extraction, 
transfer and merging than ICA, which has been proven reasonable by the results. 

Another point worth noticing is that the results produced by style transfer and style merging are 
similar sometimes though they are expressed by different formulas. For example, transfer style of 
stride to jogging and merging styles of stride and jogging can give similar results that are both jogging 
at a stride. However, the former looks more like triple jump than jogging. This is caused by the fact 
that only a part of style of jogging remains after the data of motion 1 is projected on the style subspace 
of motion 2. 

Although some good results can be obtained by using our method, there are still several limitations.  
Our method is more suitable for cyclic motions (e.g. locomotion such as walking and jogging) than 

acyclic motions. There are two reasons. Firstly, our method depends highly on the statistical 
characteristics of given motions that cyclic motions provide more than acyclic motions. Secondly, it is 
difficult to align an acyclic motion with a neutral motion. However, if we choose a proper neutral 



motion for certain acyclic motions, we can also obtain satisfactory results. As shown in Figure 8, we 
can generate an old man playing the violin motion by merging an old man waiting motion and a 
playing the violin motion that is an acyclic motion. An idle standing motion is chosen as the neutral 
motion in this case. 

Compared with some previous works [1, 2, 4, 10], our method can not synthesize motions at 
different speeds due to time alignment at pre-processing stage. ISFA on a stylistic motion and a 
neutral motion can only find the spatial differences between them. However, we can preserve timing 
of a stylistic motion that is also regarded as a part of style by aligning neutral motions to stylistic 
motions.  

Another limitation is that the speed of estimation of subspaces for our method is lower than that of 
ICA. Our method estimates the subspaces by using stochastic gradient algorithm while ICA method 
uses fast fixed-point algorithm which has faster convergence speed. Moreover, our method has to 
estimate more orthogonal vectors spanning the subspaces. For the motion data used in this paper 
(about 200 frames), it takes us about 30 seconds to obtain 5 subspaces spanned by 2 vectors running 
on the machine with 2.4GHz CPU and 1GB memory. Therefore our method is not suitable for 
real-time interactive editing as described in [16], but synthesizing new motions with various styles 
when style subspaces have been obtained can be implemented in real time. 

Conclusion 

In this paper, a novel method to edit stylistic human motions is presented. Instead of learning a 
statistical or linear model from large motion data sets, our method decomposes a single stylistic 
motion into several subspaces to find the style aspects. By using Independent Feature Subspace 
Analysis, we can get the correlations between DOFs of a motion that express some essential features 
of this motion. After comparing the values of features between a stylistic motion and a neutral motion, 
our method finds the style subspace automatically. Based on the proposed decomposition method, a 
set of editing modes that can not only change the style of the original motion but also transfer and 
merge styles between two motions are given.  

Although we consider the kinematics and dynamic aspect of a motion and remove the artifacts at 
post-processing stage, the statistics-based method is not a perfect approach to edit stylistic motions. 
How to combine statistics, kinematics and dynamics naturally to synthesize more realistic stylistic 
motion is our future work. 
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Figure 1 : Overview of our method 
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Figure 2 : Skeleton model and its hierarchical structure



 

 

Figure 3 : An example of time alignment 



(a) (b) (c) (d)

(e) 

Figure 4 :  The norm of projection of joined motion data on five subspaces.  



 

(a) original motion   

 

(b) 0.15α =  

Figure 5 : Style tuning for sneak 



  

(a) jogging and stride                           (b) run at a stride 

Figure 6 : Style transfer 



       

a. brisk walk  and soldier march 

 

b. brisk soldier march ( 0.3α = ) 

 

c. brisk soldier march ( 0.7α = ) 

Figure 7 : Style merging 



       

Figure 8 : Generating an old man playing the violin (right) by merging playing the violin (left) and old 
man waiting (middle) ( 0.5α = ) 


