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Abstract
This paper presents an application framework that provides a complete process to design anoptimized self-supporting structure,
ready to be fabricated via additive manufacturing without the usage of additional support structures. Such supports in general
have to be created during the fabricating process so that the primary object can bemanufactured layer by layerwithout collapse;
this process is very time-consuming and waste of material. The main approach resolves this issue by formulating the self-
supporting requirements as an explicit quadratic continuous constraint in a topology optimization problem, or specifically,
requiring the number of unsupported elements (in terms of the sum of squares of their densities) to be zero. Under the
formulation, the required sensitivity of the self-supporting constraint with respect to the design density can be derived
straightforward and is only linearly dependent on the density of the element itself. In addition, a novel discrete convolution
operator is particularly designed to detect the unsupported elements. The approach works for cases of general overhang
angles, and the produced optimized structures have close target compliance to those of the reference structures obtained
without considering the self-supporting constraint, as demonstrated by various 2D and 3D benchmark examples.

Keywords Self-supporting · Topology optimization · Explicit quadratic constraints · Additive manufacturing · Discrete
convolution

1 Introduction

Topology optimization aims to generate an optimal material
distribution within a design domain under certain geomet-
ric or physical constraints. Since its introduction in late
1980s [1], this problem has attracted wide industrial and
academic interest due to its large potentiality in engineering
applications and its intrinsicmathematical challenges. Topol-
ogy optimization has developed in many different forms,
such as: homogenization [1], density (SIMP) [2], evolu-
tionary approaches (BESO) [3,4], level set [5,6], or more
recently IGA (iso-geometric analysis) [7,8], to name a few.
See also [9] for a recent and comprehensive review on this
topic.

The complex geometric designs produced by topology
optimization show the approach’s superiority in balancing the
geometric distribution and the target physical performance.
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Such designs are, however, very difficult to be manufactured
directly via traditional subtractive or formative manufac-
turing techniques [10–12]. On the other hand, the rapidly
developing additive manufacturing technologies have the
promise to overcome the barrier between the potentiality that
the topology optimization approaches can provide and the
limitations that the traditional manufacturing technologies
can fabricate. In reality, additive manufacturing is a natural
counterpart to topology optimization in that they have very
versatile capability to quickly generate and realize new com-
ponents not existing before [13,14].

Despite the enhanced geometric freedom associated with
additive manufacturing, specific design rules must still be
satisfied in order to ensure manufacturability. The fabrica-
tion overhang angle is such a rule of paramount importance
so that the part will not collapse when being fabricating layer
by layer. A structure satisfying such an overhang angle con-
straint is called self-supporting. For example, Thomas [15]
identified 45◦ as the typical maximum overhang angle with
a large number of experiments. For a non self-supporting
structure, its geometry has to be modified or additional sup-
port structures need to be generated.Modifying the geometry
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will ultimately reduce the structure’s physical performance.
Additional support raises the issue of automatic and min-
imum volume support design [16–18], and post-processing
to remove the unwanted supports. In the case that the support
is made of the same material as the main component, such
as the selective laser melting (SLM) process using metals, it
is difficult and time-consuming to remove the support struc-
ture. Particularly, when the generated supports are embedded
within a closed volume of the model, it is impossible to
remove them.

The best strategy to resolve the issue is perhaps to design
a completely self-supporting structure that can be fabricated
directly without the usage of support materials. Brackett
et al. first suggested including the overhang angle con-
straints into the topology optimization process [19], but no
self-supporting structure was produced. The first 2D self-
supporting structure built from topology optimization is
due to the work of Gaynor and Guest in 2014 [20] (and
a very recent journal version [21]), achieved via introduc-
ing a wedge-shaped filter during the optimization process.
Later on, Langelaar [13,14] conducted an intensive study
on the topic both in 2D and 3D cases, where 3D self-
supporting structures were also generated [14]. Recently,
an impressive work was conducted by Qian [22], where
the self-supporting constraint is formulated using a novel
density gradient-based integral approach. Various impres-
sive 2D and 3D self-supporting structures were produced.
Effect of the approach [22] is not explicitly dependent on the
elemental grayness but suffers from boundary oscillations
and requires relatively large filters. The topic recently has
attracted wide research interest, and various other types of
constraints were proposed, for example via an edge detection
algorithm [23] or as a layer-by-layer mechanical constraint
in a purely geometric manner [24]. A concept of ’sup-
port structure topological sensitivity’ was also introduced
by Mirzendehdel [25] to reduce support structures. Further-
more, designing support-free interior material layout was
also studied by various researchers. For example, Lee et
al [26] proposed a technique of support-free elliptic hol-
lowing, Wang et al. [27] proposed a layer-based hollowing
operator, and Xie and Chen recently generated support-free
interior carving [28]. In addition, Wu et al. also proposed a
novel type of rhombic infill structures and optimized them
to generate self-supporting structures [29]. Performance of
the approach was recently improved based on a multiresolu-
tion optimization approach [30]. We also notice that a novel
support-free fabrication approach by multiaxis motion was
designed by Dai et al. [31].

In this paper, a novel application framework of self-
supporting topology optimization is proposed to generate a
structure of optimized physical performance. Based on our
definition of the unsupported elements, the self-supporting
constraint here is formulated as an explicit quadratic func-

tion with respect to the design density. It requires the number
of unsupported elements (in terms of the sum of their den-
sities) to be zero. The main purpose of the framework is
to generate a 0–1 self-supporting structure with close com-
pliance with the original structure. In order to gain a close
compliance, several strategies are proposed, in particular,
choosing print directions and volume reduction. The sen-
sitivity of self-supporting constraint for each element can
be derived straightforwardly and is only linearly dependent
on density of the element itself due to the novel quadratic
formulation. In addition, a novel and efficient discrete con-
volution operator in detecting the unsupported elements is
created. The framework works for cases of general overhang
angles, and the final optimized structures have close target
compliances with the referred one without obtaining the self-
supporting constraint, as demonstrated by various 2D and 3D
benchmark examples.

The remainder of the paper is organized as follows. The
novel formulation of self-supporting topology optimization
and the framework overview are presented in Sect. 2. Numer-
ical techniques behind the approach are detailed in Sect. 3.
Extensive 2D and 3D examples are demonstrated in Sect. 4.
Finally, the paper is concluded in Sect. 5.

2 Problem statement and framework
overview

In the section, the self-supporting constraint is formulated
as a quadratic continuous function in terms of the element
density in a classical SIMP method [2]. Considering the
self-supporting constraint, the compliance of the optimized
structure has to be as close as possible with the original struc-
ture(without self-supporting constraint). Following on from
this, the proposed framework to resolve the problem is out-
lined, and some particular considerations behind the issue
are particularly detailed.

2.1 Supported and unsupported elements

The supported elements generally stand for the structural ele-
ments that can be fabricated via an additive manufacturing
technology without collapse with respect to the fabrication
process. They are defined here using the concepts of a max-
imum printable supporting angle, or overhang angle, which
is first assumed to be 45◦ following the previous study [19].
Extensions of the approach to general overhang angles are
also explained later. We also assume that the print direction
is following the positive y-axis direction in both 2D and 3D
for ease of explanation.

First, consider a 2D discrete structured mesh model M
consisting of square elements e(n,m), that is,
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(a) (b)

Fig. 1 A supported element (in orange) is supported by one of the
supporting elements in blue in 2D and 3D

M = {e(n,m)| 1 ≤ n ≤ N , 1 ≤ m ≤ M}, (1)

where n,m are the indices increasing along the x- and y-axes,
respectively. Without confusion, we also use e to represent
a square element without explicitly mentioning its indices
n,m. In addition, a density matrix ρ of size s = N × M is
also associated with M, where an entry value ρ(n,m) = 1
or 0, respectively, represents a solid or void element e(n,m)

of M.
As illustrated in Fig. 1a, given a solid element e(n,m) in

M (in orange), it is supported, or called a supported element,
if one of the three blue elements below it is solid. We for-
mulate the self-supporting condition in a continuous form as
follows: an element e(n,m) ∈ M is supported if

∑

n−1≤r≤n+1

ρ(r ,m − 1) > 0. (2)

Correspondingly, the supporting set MS of model M is
the set of all supported elements within M, that is,

MS = {e(n,m) ∈ M|m = 1or
∑

n−1≤r≤n+1

ρ(r ,m−1) > 0}.

(3)

Similarly, given a3DstructuredmeshmodelM consisting
of cubic elements,

M = {e(n,m, l) | 1 ≤ n ≤ N , 1 ≤ m ≤ M, 1 ≤ l ≤ L},
(4)

where n,m, l are the indices increasing along the x−, y−, z-
axes respectively, the supporting set ofM is similarly defined
(see also Fig. 1b):

MS = {e(n,m, l) ∈ M | m = 1 or
∑

n−1≤r≤n+1,s=l
or r=n,l−1≤s≤l+1

ρ(r ,m − 1, s) > 0}. (5)

Note also that only five elements are included here as other
elements do not form appropriate overhang angles with the
orange element.

Correspondingly, the set of unsupported elements of a
model M is

MU = M\MS . (6)

2.2 Formulation of self-supporting topology
optimization

The self-supporting topology optimization problem aims
to find an optimized material distribution within a design
domainunder certain boundary conditions.Aswidely studied
before, the problem of minimum compliance or equivalently
maximum stiffness is examined here. Following the clas-
sical SIMP framework [2], the problem of self-supporting
topology optimization is formulated here as an optimiza-
tion problem with an additional explicit self-supporting
constraint. The constraint is reformulated using a simple
quadratic function with respect to the density, specifically,
requiring the number of unsupported elements (in terms of
the sum of square of their densities) to be zero. Details are
explained below.

The problem of self-supporting topology optimization is
stated as: find density distribution ρ,

min
ρ∈RN×M

c(u, ρ), s.t . (7)

⎧
⎪⎪⎨

⎪⎪⎩

K(ρ)u = f(ρ),

V (ρ)/V0 ≤ f ,
U (ρ) = ∑

e∈MU
ρ2
e ≤ ε,

0 < ρe ≤ 1, e = 1, . . . , s,

where ρ is the vector of design variables (element densities)
to be computed,u is the vector of global displacements andK
is the global stiffness matrix. The objective function c(u, ρ)

is the structure’s compliance, defined as

c(u, ρ) = uTKu. (8)

f(ρ) is the nodal force vector, V (ρ) and V0 are the material
volume and design domain volume, f is the prescribed vol-
ume fraction, MU is the index set of unsupported elements
as defined in (6) and ε > 0 is a small parameter close to 0.
A penalty parameter p, usually set as p = 3, is applied here
for the 0,1 convergence of ρ, or specifically,

Ke = ρ
p
e K0

e , (9)

where K0
e is the element stiffness matrix associated with an

element e in the model M and ρe the associated element
density.

The only difference between the above conventions in (7)
with previous SIMP-based formulations is that it has an
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additional constraint U (ρ) = ∑
e∈MU

ρ2
e ≤ ε to meet the

self-supporting requirement.
Note here that the self-supporting constraint stated in (7)

is based on the observation that when the sum of the ele-
ment densities of unsupported elements tends to 0, all the
elements are self-supported. The simple quadratic expres-
sion allows for a straightforward sensitivity derivation of the
self-supporting constraint and ultimately results in a linear
sensitivity expression.
The self-supporting topology optimization problem (7) is
solved using the MMA approach noticing that the sensitivity
can be derived straightforward. The key techniques behind it
are to be further explained in Sect. 3.1.

In this section, we first describe the overall framework and
skills in controlling the overall optimization process. In order
for a reliable structure to be generated, the overall optimiza-
tion process is carefully designed, as shown in Algorithm I.
It mainly consists of three main suboptimization processes
(C1,C2,C3) for a reliable structure to be generated:

C1, case of gray elements without self-supporting con-
straints;

C2, case of gray elementswith self-supporting constraints;
C3, case of pure 0–1 elements with self-supporting con-

straints.
Further illustration of C1,C2,C3 is also referred to

Fig. 13.
The overall framework is described in Algorithm 1, and

the above-described three cases are embeddedwithin a recur-
sive volume reduction process so that the self-supporting
constraints can be resolved from a larger to smaller design
spaces. The main purpose of the framework is to generate a
0–1 self-supporting structure with close compliance with the
original structure. In order to gain close compliance, print
direction is chosen and volume reduction strategy is used
during the optimization. Not just these points, particular con-
siderations on some aspects of the framework are further
explained below.

2.2.1 C1 to C2: choose print direction

Whether an element is self-supporting is dependent on the
print direction. In the study of Qian [22] and Langelaar [32],
we know that different print directions produce different
optimized structures. We here take the optimized structure
without self-supporting constraint as benchmark and aim to
produce a structure of close shape and close compliance to it.
See, for example, in Fig. 2a–c; different structures of differ-
ent compliances were produced in the case of different print
directions. This also shows that it is very important to choose
the print direction.

Thus, the direction is determined in the process of com-
puting the optimized structure without self-supporting con-
straints. Theprocess stopswhen thegrayness of the computed

(a)

(d) (e) (f)

(b) (c)

Fig. 2 Various generated structures for a classical MBB example in a
(size 150 × 60, filter radius 2.5 and target volume fraction 0.6). b was
obtained without self-supporting constraints; c–f with self-supporting
constraint; e, f further uses an iterative volume reduction strategy

structure reaches certain value, measured using the following
defined M0

nd ,

Mnd < M0
nd , (10)

where

Mnd =
∑s

e=1 4ρe(1 − ρe)

s
× 100%, (11)

and s is the number of elements of the domain, ρe is the
density of an element e.

We also plot in Fig. 3 different grayscale structures
corresponding to different values of Mnd for theMBB exam-
ple 0.5, 0.4, 0.3, 0.2, respectively. Different occupations of
grayscale regions can be observed from the examples. In
practice, we set the threshold of Mnd as 0.36, which corre-
sponds to a structure of uniform density of 0.1 or 0.9. When
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(a) (b) (c) (d)

Fig. 3 Different values of Mnd involved in Eq. (10) indicate different
grayness distributions of structures

Mnd reaches 0.36„ we detect the unsupported elements in
eachdirection and choose the print directionwith least unsup-
ported elements.

2.2.2 C2 to C3: from gray density to 0–1 density

During the optimization in the case of C2, a gray self-
supporting structure is produced, which, however, may still
have some unsupported elements of very small density val-
ues. The gray structure is a relaxation that the definition of
unsupported elements is based on 0–1 element. To ensure the
accuracy of the self-supporting constraint, the final structure
should be directly 0–1. In order to produce a pure 0–1 self-
supporting structure, the case C3 is further studied. In each
step of it, a simple density truncation method is applied to
set the structure pure 0–1 values satisfying the volume con-
straint. These values are taken as inputs to the next MMA
optimizer.

2.2.3 The value of� of self-supporting constraint

The conversion process is controlled using the value of ε

in Algorithm 1, which describes self-supporting situation
of a structure. For example, in Fig. 4, different values of
ε, respectively, 0.1, 0.01, 0.001 produce different grayscale
structures. As we can see, a larger value of ε, say 0.1 or
0.01, may produce a grayscale structure that may still have
unsupported edges, as indicated in the red box. The reason
behind is that the sum of these gray elements has been less
than the prescribed value of ε. On the other hand, a too small
value of ε also finds difficulty in convergence. Thus, the self-
supporting constraint is imposed in a soft way following a
similar strategy in [33]. Specifically, it decreases from a rel-
atively large value until reaching a target value ε, which is
set as 1e−3 by default in our study.

Algorithm 1Main Framework of Self-supporting Topology
Optimization
C1, case of gray elements without self-supporting constraints;
C2, case of gray elements with self-supporting constraints;
C3, case of pure 0–1 elements with self-supporting constraints.
1: Initialize density ρ = ρ0, case tag Pid = C1 // default

case without self-supporting constraint
2: while ρ not converge do
3: Volume Reduction: f = (1 − δ) f // f: the volume fraction in

Eq. (7); δ : evolution rate set 0.02 by default.
4: FEM Computing
5: if Pid == C1 and Mnd < M0

nd then // M0
nd : expected gray

element occupation
6: Choose print direction
7: Pid ← C2 // conversion from cases C1 to C2
8: end if
9: Sensitivity Analysis according to the value of Pid
10: Optimization with MMA according to the value of Pid
11: if Pid == C2 and U (ρ) ≤ ε then // ε: bound of unsupported

element number
12: Pid ← C3 // conversion from cases C2 to C3
13: end if
14: if Pid == C3 then
15: Set ρ to 0–1 values
16: end if
17: end while

(a) (b) (c)

Fig. 4 Different values of ε, as used to describe the self-supporting
situation of a structure, produce different ranges of self-supporting ele-
ments. Un-self-supported regions are observed in the red boxes

2.2.4 Optimization in a volume reduction loop

The optimization process is embedded in a volume reduction
loop, as described in step 3 in Algorithm 1. It mainly aims
to slowly reduce the target volume so as to provide sufficient
design space to impose self-supporting constraint during the
optimization process. Specifically, during each optimization
step, the target volume fraction is also reduced at a certain
evolutionary rate δ = 0.02 by default, or f = (1−δ) f for the
problem in Eq. (7). As can be seen from Fig. 2, using volume
reduction may produce a structure of smaller/better compli-
ance in (e) than those produced without volume reduction in
(f).
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2.3 Framework overview

3 Numerical details

3.1 Sensitivity analysis

The sensitivity of the self-supporting constraintU (ρ) can be
derived straightforwardly from (7) and given as:

∂U

∂ρe
=

{
2ρe if e ∈ MU ,

0 if e /∈ MU ,
(12)

where MU is the set of unsupported elements.
We comment here that the sensitivity of self-supporting

constraint is computed following the idea present in [33].
Devising an improved sensitivity calculation further con-
sidering the element range e ∈ Mu may help improve the
convergence and deserves future research effort.

Derivations of the sensitivities of the objective function
C(ρ) or of the volume constraint V (ρ), involved in (7), are
totally the same as those done in previous studies [9,34].
Integrating these sensitivities with thickness control can be
achieved using the Heaviside filter [35], as will be demon-
strated in Sect. 4. Details are not further explained here.

3.2 Discrete convolution for efficient unsupported
element detection

Computing the sensitivity (12) of the self-supporting con-
straints requires detecting the setMU of all the unsupported
elements. A novel convolution operator is further devised
below to accelerate the detection process.

Given a discrete structure M of size N × M in 2D, we
can see from (3) that an element e(n,m) ∈ M is supported
if the summation of the densities of its supporting elements
is larger than zero, or specifically,

∑

n−1≤r≤n+1

ρ(r ,m − 1) > 0. (13)

The newly introduced self-supporting convolution oper-
ator is designed based on this observation. Specifically,
suppose the overhang angle is 45◦. The associated 2D self-
supporting kernel matrixH of size 3× 3 is defined in Fig. 5.
A new matrix ρS is then computed via performing the con-
volution between the density matrix ρ and H, or

ρ̃S = sign(ρ ∗ H), (14)

Fig. 5 2D self-supporting
convolution kernel matrix H to
detect supported elements for an
overhang angle of 45◦

where ρ ∗ H is the convolution between matrices ρ and H,
whose (n,m) element is defined as

(ρ ∗H)(n,m) =
1∑

i=−1

1∑

j=−1

ρ(n− i,m− j) ·H(i+1, j+1),

(15)

and the sign function

sign(x) =
{
0 if x = 0,

1 if x > 0.
(16)

Correspondingly, we have the set of supported elementsMS

of the discrete structureM,

MS = {e(n,m) | ρ̃S(n,m) = 1}, (17)

for ρ̃S defined in (14).
The above expression assumes a 0–1 distribution of ρ,

while in the SIMP approach as studied here, the density
matrix ρ usually has entry value ranging from 0 to 1. A spe-
cific value usually needs to be set to replace 0 in (16) for
practical applications.

The basic procedure of the convolution computation is
further shown inFig. 6 and explainedbelow.For each element
e under consideration, a 3 × 3 matrix ρe centering at e is
selected. This is then followed by its Hadamard product, i.e.,
the element-by-element product between the matrices,

Ce = H̃ � ρe, (18)

where H̃ is the rotation of matrixH at a degree of 180◦. The
convolution value of element e is the summation of all the
values in the derived matrix Ce.

The above procedure works for every element e. For the
boundary elements, an additional loop of void elements is
added.Note also that the bottom elements are always taken as
supported considering the fact that they are always supported
by the baseboard of the fabrication device.

Once the set MS of supported elements of M is deter-
mined from (17), the set of unsupported elements is derived
consequently,

MU = M\MS . (19)

The convolution procedure in 3D is similar to that in 2D,
and the corresponding kernel matrix H is shown in Fig. 7.
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Fig. 6 Discrete convolution
procedure in 2D for detecting
supported elements using the
designed self-supporting Kernel
matrix H in Fig. 5

Fig. 7 3D self-supporting convolution kernel matrix H to detect sup-
ported elements for an overhang angle of 45◦

Table 1 Time–cost comparison between direct enumeration and using
convolution for detecting supported elements in 2D and 3D cases

Domain size Enumeration (s) Convolution (s) Ratio

80 × 40 0.0094 0.0001 94

320 × 80 0.0380 0.00035 106.16

600 × 400 0.5214 0.0034 152.11

40 × 40 × 20 0.1419 0.0010 139.13

100 × 100 × 100 4.7974 0.0324 147.82

500 × 200 × 100 114.7641 0.7605 150.88

Extension of the approach to general overhang angle will be
later explained in Sect. 3.3.

In order to demonstrate the effect of using the convolu-
tion operator, we compare in Table 1 the computational time
in detecting the supported elements using the convolution
operator and using direct enumeration element by element.
As we can see, almost two orders of speedup are observed
from the results. The time of detecting supported elements is
not ignorable compared with FE computations. For example,
one step of FE for the size of 600 × 400 takes 0.4163s, and
the enumeration takes 0.5214s. The effect is important for
practical applications, particularly on 3D complex structures
with millions of elements, considering that FE computations
can be implemented in parallel and accelerating the detection
of supported elements then becomes prominent.

Note that various convolutionoperators havebeendesigned
andused asfilters in topologyoptimization for design control,
for example for removing checkerboard patterns or thickness
control [36]. They usually aim to compute an element’s den-
sity or sensitivity via averaging those of the elements around
it. Different from these studies, the convolution is used here
for detecting unsupported elements. It does not change the
element densities during the optimization process.

(a) (b)

Fig. 8 Procedure for building a self-supporting convolution kernel
matrix for a general overhang angle θ

3.3 Extension to general overhang angle

Extending the above procedure to a general overhang angle θ

is further explained below. The only difference from the case
of 45◦ is the construction of the kernel matrix H involved
in (18).

As shown in Fig. 8a, given an overhang angle θ , a straight
line L passing through the center of an element e and with a
slope angle θ is drawn. Then, the first element in each column
whose centers are below line L is taken as the supporting ele-
ment with respect to element e. Their densities are set as 1
and others’ 0, which together determines a matrix H̄. Rotat-
ing H̄with respect to the center e at a degree of 180◦ gives the
convolution kernel matrixH, as shown in Fig. 8b. The above
procedure works for building convolution Kernel using mul-
tiple layers; the more layers taken, the more accurate of the
built kernel matrix for detecting the supported elements.

4 Examples

Extensive 2D and 3D examples are performed to test the
performance of the proposed approach. For illustration pur-
poses, the material, load and geometry data are chosen to
be dimensionless. The Young’s modulus and Poisson’s ratio
of the solid material are set as E = 1 and υ = 0.3 for all
examples. The penalization factor is set to a value of 3. The
minimal thickness is set to be 2, and the overhang angle is
set to be 45◦ if not explicitly specified. The print direction
is selected during each optimization process and marked in
the example figure. The 2D examples were implemented in
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Table 2 Summary of the
numerical results for various
tested 2D examples: #M,
element number of the design
domain; #MU ,Cref , number of
unsupported elements of
structured computed from
topology optimization without
considering self-supporting
constraints and its associated
compliance; C , compliance of
the self-supporting structure
computed using the proposed
approach

#M #MU Cref C C/Cref (%)

Beam 9000 24 92.7 92.8 100.11

Beam (hole) 7755 25 115.4 117.4 101.73

Beam (r = 1.5) 9000 24 92.7 92.8 100.11

Beam (r = 2) 9000 18 92.4 92.8 101.43

Beam (r = 3) 9000 12 92.6 92.9 100.32

Beam (concentrated) 14,400 21 322.9 323.0 100.31

Beam (distributed) 14,400 12 255.4 256.1 100.27

Beam (mixed) 14,400 60 31971.1 32514.3 101.70

Beam (vf = 0.6) 9000 24 92.7 92.8 100.11

Beam (vf = 0.5) 9000 97 105.8 106.8 100.95

Beam (vf = 0.4) 9000 37 127.4 128.3 100.71

Beam (vf = 0.25) 9000 55 196.8 202.9 103.10

Beam (Angle = 30) 9000 12 105.8 113.6 107.37

Beam (Angle = 45) 9000 97 105.8 106.8 100.95

Beam (Angle = 60) 9000 425 105.8 141.3 133.55

MBB 38,400 1874 185.7 191.3 103.02

Square 22,500 474 1312.8 1544.7 117.66

The Cantilever beam examples are described in Figs. 9 and 17, the MBB example in Fig. 19, the 2D squares
in Fig. 21, the 3D examples in Figs. 22, 25 and 26

MATLAB, and the 3D examples were implemented in C++
and GPU for parallel computations on a computer of 3.2G
CPU, 8.0G RAM and GeForce GTX 970 Graphic card.

The examples include the classical cantilever beam,MBB,
a 2D square example and three 3D examples. The cantilever
beam is used to illustrate various aspects of the approach:
basic performance on a rectangular domain or a general
domain, iteration process, thickness control, different volume
fractions, different overhang angles, different types of exter-
nal forces. TheMBBshows the approach’s ability in handling
constraints of multiple print directions. The 2D square exam-
ple demonstrates the approach’s performance in the case of
complex topological structure obtained at distributed exter-
nal forces. The 3D examples are further used to demonstrate
the approach’s ability in handling complex 3D models of
millions of DOFs via parallel implementation.

Following previous studies [13,14,20,21], wemeasure the
ability of a self-supporting topology optimization approach
inmaintaining the structure’s physical performance using the
compliance ratio

C

Cref
, (20)

where Cref ,C is, respectively, the compliance of the struc-
ture computed with or without considering self-supporting
constraint.

The computational results for 2D examples are first sum-
marized in Table 2; cases of 3D examples are explained later.

(a) (b)

Fig. 9 Cantilever beam examples with a minimum thickness of 1.5

4.1 Cantilever beam example

The cantilever beam, as shown in Fig. 9, is first tested. The
model on the top has a 150× 60 rectangular domain and has
a target volume fraction of 0.6. The model on the bottom has
general domainmadevia cutting a circular holewithin the left
one and a target volume fraction of 0.5. Bothmodels are fixed
on the left edge with an external force exerted on the middle
point of its right edge. The print direction is determined from
left to right.

Without considering the self-supporting structure, the
structure in Fig. 10a, c is obtained where the elements in
red are those that cannot be successfully printed out. The
proposed self-supporting topology optimization approach
results in the structures in (b) and (d), both of which do
not contain any unsupported elements. We can see from
the results that the range containing unsupported elements
in (a),(c) moves upward in (b),(d) to adapt the requirement
of self-supporting. In addition, it is also very interesting to
notice that several local parts of (b) or (d) are very differ-
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(a) (b) (c) (d)

Fig. 10 Computational results for the cantilever beam example in Fig. 9
at a volume fraction of 0.6. See also Table 2 for more details

ent from those of (a) or (c) to satisfy the self-supporting
constraint and for the structures’ maximal physical perfor-
mance, although their overall structures are simultaneously
maintained. The structures computed with or without self-
supporting constraints have a very close compliance, with a
compliance ratio, respectively, of 100.11% and 101.73% for
the left and right examples.

In handling the bottommodel of a general design domain,
we work on the rectangular domain following the procedure
below. In each step of the optimization iteration, the den-
sity of each element within the circular domain is set as 0,
and then the convolution operation (detailed in Sect. 3.2)
is performed in the whole rectangular domain to detect the
unsupported elements. The above two steps are repeated until
convergence.

4.1.1 Iteration performance

The iteration process of the example given in Fig. 9a is fur-
ther explored by examining the variations in the structure’s
topology, the number of unsupported elements and the com-
pliance andvolume fraction of the derived structure, as shown
in Figs. 11 and 13.

The iteration process is divided into the following main
steps (see also Fig. 11). Firstly, a topology optimization step
without considering the self-supporting constraint, that is,
case C1 in Algorithm 1, is performed, and results in the
“gray” structure in (a). After this, the relaxed self-supporting
constraint is added in the optimization iteration step (case
C2 in Algorithm 1), producing a structure in (b). The derived
“gray” structure is then transformed into a black–white struc-
ture using the Heaviside project filter, as given in (c). After
this, the self-supporting topology optimization process (case
C3 in Algorithm 1) is iterated to reduce the number of unsup-
ported elementswhile simultaneously optimizing its physical
performance and maintaining its volume fraction, producing

(a) (b) (c)

(d) (e) (f) (g)

Fig. 11 Keyframe figures at different iteration steps, where the number
in brackets stands for the number of unsupported elements

Fig. 12 Close-up of the structure in Fig. 11g, where all the elements
are self-supported. Note particularly that the top two elements in the red
circle are self-supported by the left-bottom and right-bottom elements
below them in the next layer

the structures in (d), (e), (f) and ultimately the final structure
in (g). The unsupported elements are marked red in Fig. 11c–
g and illustrated in the caption. Their number is gradually
decreased during the optimization iteration process. Fig-
ure 12 also shows a close-up of the final optimized structure
in Fig. 11g, where all the elements are self-supported.

Figure 13 shows the overall performance of the approach
in the different cases of C1,C2,C3 and the associated
keyframe labeled S1, S2, in terms of the variation in the
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Fig. 13 Variations in the structure’s number of unsupported elements,
compliance and volume fraction during the optimization iteration steps.
The critical situations marked S1, S2 indicate two keyframes: conver-
sion from cases C1 to C2 and conversion from cases C2 to C3. C1, case
of gray elements without self-supporting constraints; C2, case of gray
elements with self-supporting constraints; C3, case of pure 0–1 ele-
ments with self-supporting constraints. The three cases are embedded
in an iterative volume reduction procedure in Algorithm 1

number of unsupported elements, the target compliance and
the volume fraction. As can be seen, as the iteration step
increases, the number of unsupported elements decreases
until finally reaching zero. However, fluctuations in the num-
ber of unsupported elements may happen during the iteration
process. The structures’ compliance and volume fraction
decrease and finally reach a stable state. Note here different
from classical SIMP, where the volume fraction is main-
tained, an iterative volume reduction strategy is applied in
Algorithm 1, as can be observed in Fig. 13c.

4.1.2 Thickness control

The proposed approach is also able to control the struc-
ture’s thickness to meet different device requirements, with
a direct additional usage of a density filter for thickness
control. Figure 14 shows the obtained self-supporting struc-
tures, respectively, of thicknesses 1.5, 2 and 3. The overall
structures of these three self-supporting structures are sim-
ilar, and as the minimum thickness increases, the slender
beams are removed gradually. Consequently, the smaller the
thickness required, the more the details preserved in the
final structures. The associated compliances of the three
structures are very close to each other, as summarized in
Table 2, of ratios to their reference structures, respectively,
C/Cref = 100.11%, 101.43%, 100.32%.

(a) (b) (c)

Fig. 14 Numerical results for the Cantilever beam example in Fig. 9a
at different thicknesses of 1.5, 2 and 3. See also Table 2 for more com-
putational details. The target volume fraction is set 0.6

(a) (b) (c) (d)

Fig. 15 Self-supporting structures computed using the proposed
approach at different volume fractions. See also Table 2 for more com-
putational details

4.1.3 Different volume fractions

Performance of the approach is also tested at constraints of
different volume fractions, and the computed structures are
shown in Fig. 15. Such self-supporting structures become
harder to obtain for small value of volume fractions.As canbe
observed from the results, the self-supporting constraints can
still be satisfied although the number of elements decreases
as the volume fraction becomes smaller.

4.1.4 Different overhang angles

As have been explained previously in Sect. 3.3, the pro-
posed approach can also work for overhang angle different
from 45◦ via using different convolution Kernel matricesH.
We demonstrate its performance still using the cantilever
beam example in Fig. 9a at a volume fraction of 0.5, for
three different overhang angles: 30◦, 45◦, 60◦. The associ-
ated convolution kernel matrices H for angles of 30◦, 60◦
are also shown in Fig. 16d, e. As can be observed from
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Fig. 16 Self-supporting structures obtained using the proposed
approach at different overhang angles at a volume fraction of 0.5, and
their associated convolution kernel matrices. See also Table 2 for more
computational details

Fig. 17 Cantilever beam example with distributed external forces

the examples, as the overhang angle becomes bigger, the
boundary edges moves upward to meet the self-supporting
constraints. The structure’s minimal compliance is still well
kept at these different angles, with C/Cref , respectively, of
107.37%,100.95% and 133.55%. It is also noticed that the
larger overhang angle deteriorates the structures’ physical
performance. Similar phenomenon was also observed in pre-
vious studies [13,14,21].

4.2 2D cantilever beam example with different types
of forces

In order to test the ability of the proposed approach in select-
ing the print direction and its performance in finding an
optimized structure at different external loadings, the 2D can-
tilever beam example in Fig. 17 is tested under different types
of forces, respectively, of concentrated force, distributed
force and mixed forces. In this example, the design domain
is discretized into 240×60 square FE elements. The volume
fraction is 0.6 and the minimum thickness is 2. The concen-
trated force is exerted on the middle point of the right edge
and points downward. The distributed force is exerted evenly
on the bottom, top and right edges of the model, while the
case of mixed forces takes both into account.

For each of the three cases, different print directions are
chosen and shown in Fig. 17 by the proposed approach.
The corresponding optimized structures are also shown in
Fig. 18. As can be observed from the results and the sum-

(a)

(c)

(e) (f)

(d)

(b)

Fig. 18 Derived optimized structures of the cantilever beam example
in Fig. 17 under different types of external forces. In all cases, structure
similarity and compliance closeness are observed between the structures
with or without considering the self-supporting constraints. Different
print directions were chosen for these different cases for ease of conver-
gence and optimized physical performance. See also Table 2 for more
computational details

mary in Table 2, different boundary conditions may require
different print directions and produce different optimized
structures, which all can be handled successfully via the
proposed approach. Compliance of the reference structure
is maintained at a compliance ratio of 100.31%, 100.27%
and 101.70%.

4.3 2DMBB example constrained bymore than one
print direction

The proposed approach is also able to simultaneously take
into account more than one print direction constraints, pro-
vided they do not conflict with each other. This is illustrated
using the classical MBB problem in Fig. 19. Due to the sym-
metry of themodel’s structure and boundary conditions, only
half of the computational domain is used here which consists
of 160 × 30 square FE mesh elements. The volume fraction
is 0.5 and the minimum thickness is 1.5.

The aim is to produce a self-supporting structure main-
taining the mirror symmetry of the original model. Thus, the
self-supporting requirement has to be added in both direc-
tions: from right to left and from left to right for the half-sized
structure in Fig. 19b. As a result, a self-supporting structure
in both directions is obtained in Fig. 20b, as compared with
the support-needed structure in Fig. 20a, where the unsup-
ported elements are plotted in red. The compliance of the
support-needed structure and the self-supporting structure is,
respectively, 185.7 and 191.3, at a relative ratio of 103.02%.

Note that the 2D MBB problem of the same domain size
was also tested by Gaynor and Guest in [21], where the print
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Fig. 19 2D MBB example: Due to its symmetry, only one half of the
model needs to be studied in the topology optimization process

direction was manually set from bottom to top. Such setting
thus does not require constraints of multiple constraints.

4.4 Complex internal structure at distributed force

Theproposed approach is also able to produce self-supporting
structure for complex internal structure, as demonstrated
using the square example at distributed forces in Fig. 21a.
The computed support-needed structure and self-supporting
structure are, respectively, given in Fig. 21b, c. It can be
seen from the results that the original support-needed struc-
ture has many small flat edges which prevent the structure
to be fabricated without a large number of additional sup-
ports. Such unsupported elements have disappeared in the
optimized self-supporting structure in Fig. 21b, despite the
structure’s high complexity. In addition, the self-supporting
structure also has a close compliance with that of the original
support-needed structure, respectively, of 1544.7 and 1312.8
at a relative compliance ratio of 117.66%. A self-supporting
requirement is very necessary for such highly complex struc-
ture, as computing the supports or their removal would be
extremely troublesome if not impossible.

4.5 3D Examples

The proposed approach has also been implemented for com-
plex 3D examples of high DOFs, including the classical
benchmark examples: a 3D wheel, a 3D cantilever and a
newly devised examples of a 3D desk. The domain size
and their associated computational time are summarized in
Table 3.

(a) (b)

Fig. 21 Problem of a square under a distributed force, and its compu-
tational results. See also Table 2 for more computational details

4.5.1 3DWheel

The 3Dwheel example in Fig. 22 consists of 100×100×100
cubic mesh elements. The four corners of the bottom face are
fixed, and a concentrated force is exerted on the middle point
of the bottom face. The target volume fraction is 0.25 and
the minimum thickness is 2. The print direction is chosen as
from top to bottom.

The computed self-supporting structure using the pro-
posed approach is shown in Fig. 23b, as compared with its
counterpart of support-needed structure in Fig. 23a. The cor-
responding structure slices at x = 25, 35, 45 of both the
self-supporting and support-needed structures are also shown
and compared in Fig. 23f–h, and c–e. As can be seen from
the results, the originally flat regions of the support-needed
structure, which cannot be fabricated without supports, have
been optimized to meet the self-supporting requirement. The
resulting structure is totally self-supporting for direct fabri-
cation purpose, and its compliance is 87.32, very close to
that of the original support-needed one of 86.16, at a relative
ratio of 1.01%.

4.5.2 3D cantilever

Two different 3D cantilever examples are tested here as illus-
trated in Fig. 25: one of size 100× 50× 50 exerted by point
loadings, and another one of size 150 × 50 × 50 exerted by
edge loadings; a same example to the latter was also studied

Fig. 20 Topology optimization
result of the MBB model
without a or with b
self-supporting structure. The
self-supporting constraint is
needed simultaneously in two
different directions: from left to
right and from right to left, so
that the mirror symmetry of the
original structure can be
maintained. See also Table 2 for
more computational details

(a)

(b)
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Table 3 Time comparison for
3D examples

Example Wheel in Fig. 22 Cantilever (a) in Fig. 22 Cantilever (b) in Fig. 22 Desk in Fig. 26 (a)

Size 100 × 100 × 100 100 × 50 × 50 150 × 50 × 50 120 × 120 × 80

Time 35m 11m 17m 66m

Fig. 22 The wheel example

(a)

(c)

(f) (g) (i)

(d) (e)

(b)

Fig. 23 Self-supporting structure generated using the proposed
approach and its comparison with that of the support-needed one gen-
erated without the consideration of self-supporting constraint. Both the
3D structure and their slices at x = 25, 35, 45 are shown

in [14]. The target volume fraction is 0.3 and the minimum
thickness is 2. The print direction is chosen as from top to
bottom. The computed self-supporting structures are shown
in Fig. 25, which is directly to be fabricated without any
additional support materials.

4.5.3 3D Desk

A more complex 3D desk problem(also called hanging
bridge), as shown in Fig. 26a, is designed to further test per-
formance of the proposed approach. The example is of size

Fig. 24 A3Dcantilever example of size 100×50×50 at a point loading
F1 and of size 150 × 50 × 50 at an edge loading F2

120 × 120 × 80 and consists of 1.152 millions of elements.
In this example, the four bottom corners are fixed and the
top face is exerted by a uniformly distributed force pointing
downward. The target volume fraction is 0.3, the minimum
thickness is 2 and the print direction is chosen from right to
left. The final generated self-supporting structure is shown in
Fig. 26b together with slices in (c) and (d), taking 66min. It
is also interesting to note that the four legs of the desk are not
totally solid but take porous bone-like structures to balance
the constraint of the object weight and the target compliance.

4.6 Summary

As can be observed from these examples, using the proposed
self-supporting topology optimization framework, the edges
or faces of the original support-needed structure are aligned
toward the print direction so that all elements can be success-
fully fabricated. In addition, the produced structures with or
without self-supporting constraints have very close shapes,
and their compliance difference is maintained within a very
small or negligible range. The performance demonstrates
the strength of the proposed framework in designing self-
supporting structures and simultaneously maintaining their
optimized structures and physical performances.

5 Limitations and future work

A novel self-supporting topology optimization framework is
developed in this paper for applications in additive manufac-
turing. The usage of convolution operator and the associated
numerical techniques enables the self-supporting structure to
be generated efficiently. In the framework, special techniques
are developed to fine-tune the convergence of the approach,
as described in Sect. 2.3, so that an optimized structure of
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Fig. 25 Generated self-supporting structures, together with its slices, for two difference cases: a, b for structure of size 100 × 50 × 50 at a point
loading F1, and c–f of size 150 × 50 × 50 at an edge loading F2 for the example in Fig. 24

(a) (b)

(d)(c)

Fig. 26 A 3D desk example, its generated self-supporting structure and the associated slices at x = 23 and x = 35

close compliance and shape to the benchmark structure can
beultimately generated.Using the technique helps to produce
a reliable structure, but it, on the other hand, also involves
issues on choosing appropriate parameter values, and further
research effort is to be devoted to resolving the issue.

The framework chooses an appropriate print direction
before taking into account the self-supporting constraint dur-
ing the optimization process. If ignoring the step of choosing
the print angle and setting an arbitrary print direction, the
approach may fail to produce a converged structure. For
example, an optimized self-supporting structure is hard to
obtain for the MBB example in Fig. 19 at a different direc-
tion. Such phenomenon may not prevent the approach in
generating a self-supporting structure suitable for additive
manufacturing, but may hinder its usage in specific applica-

tions. We also note that recent work of [13,22,32] does not
involve such a process of selecting the print angle.

The framework is at present implemented using regular
square or cubic elements, which are dominated in researches
of topology optimization. On the other hand, the overall
framework also works for general domains consisting of
irregular quad- or hex-elements, but is also limited by the
fact that the convolution operator presented in Sect. 3.2 is
no longer applicable as they become different for different
elements. Thus, the element-by-element enumeration has to
be taken and will reduce the computational efficiency.

The framework can also be extended to porous interior
designs of 3D free-form structures that do not need any
additional supports within its interior. Such supports would
otherwise be very difficult to remove. In addition, besides
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the self-supporting requirements studied here, other fabri-
cation constraints, such as hanging bridge, also need to be
included so that ultimately an optimized structure ready to
be fabricated can be directly generated.
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