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a b s t r a c t

Parametric optimization is an important product design technique, especially in the context of the
modern parametric feature-based CAD paradigm. Realizing its full potential, however, requires a closed
loop between CAD and CAE (i.e., seamless CAD/CAE integration) with automatic design modifications
and simulation updates. Conventionally the approach of model conversion is often employed to form
the loop, but this way of working is hard to automate and requires manual inputs. As a result, the
overall optimization process is too laborious to be acceptable. To address this issue, a new method for
parametric optimization is introduced in this paper, based on a unified model representation scheme
called eXtended Voxels (XVoxels). This scheme hybridizes feature models and voxel models into a new
concept of semantic voxels, where the voxel part is responsible for FEM solving, and the semantic
part responsible for high-level information to capture both design and simulation intents. As such, it
can establish a direct mapping between design models and analysis models, which in turn enables
automatic updates on simulation results for design modifications, and vice versa—effectively a closed
loop between CAD and CAE. In addition, robust and efficient geometric algorithms for manipulating
XVoxel models and efficient numerical methods (based on the recent finite cell method) for simulating
XVoxel models are provided. The presented method has been validated by a series of case studies
of increasing complexity to demonstrate its effectiveness. In particular, a computational efficiency
improvement of up to 55.8 times the existing FCM method has been seen.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Design optimization has been recognized as one of the dom-
nant industrial practices for product design due to improved
roduct quality, reduced cost, and shorter time to market [1].
he optimization may be done in various ways, and parametric
ptimization is among the primary [2]. It optimizes engineering
eaningful parameters that are embedded in feature-based CAD
odels with externally defined objective functions [3]. Design
ptimization of this sort has seen applications in many fields,
ncluding automotive, shipbuilding, and aerospace industries.

While parametric optimization is very relevant and beneficial
n the context of modern feature-based CAD [4], its full realization
s not trivial. Its working relies on a closed loop between CAD
nd CAE with automatic design modifications and simulation
pdates [5,6]. Forming such a loop is difficult because of the
ifferent information contents stored in CAD models and CAE
odels [1]. Specifically, a CAD model is designated to have an ac-
urate description of the design in order to automate any queries
rom manufacturing and assembling. It usually consists of feature
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E-mail address: qiangzou@cad.zju.edu.cn (Q. Zou).
ttps://doi.org/10.1016/j.cad.2023.103528
010-4485/© 2023 Elsevier Ltd. All rights reserved.
history, geometric constraints, and parameter definitions (which,
altogether, encompass design intent) [4]. A CAE model contains
data on the boundary conditions, material distribution, and volu-
metric meshes that are suitable for conducting the finite element
method or the like, which encompass simulation intent [5,7].

To solve the discrepancy between CAD models and CAE mod-
els, the approach of model conversion is often employed. As
illustrated in Fig. 1, a typical conversion begins with a feature
model, then goes through steps of boundary representation (B-
rep) generation, model simplification, volumetric mesh gener-
ation, and boundary condition specification, cumulatively into
a simulation model ready for FEM solving. The solving results
will then be used to generate parametric modifications on the
feature model for the next optimization iteration. Repeating these
procedures will lead to an optimized design.

Despite its conceptual simplicity, there are several technical
difficulties in the conversion. Typically the model simplification
and mesh generation steps are hard to automate and require
manual inputs [8–11], the design optimization and adjustment
cannot be directly fed back to CAD modeling operations [12], and
the important design intent could be lost after conversion [5,7].
In the context of iterative design optimization, such inefficiency
will be much amplified and consequently, the overall process is

https://doi.org/10.1016/j.cad.2023.103528
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Fig. 1. Traditional conversion-based process of parametric design optimization.
oo laborious to be acceptable. It has been reported that manual
ntervention accounts for about 80% of the overall design time in
he conversion-based process described above [5,13].

In view of the above issues, a unified representation scheme
hat can completely, compactly, and associatively represent the
ontents of both CAD and CAE models has been recognized as
much-desired method for parametric design optimization [5].
his paper follows this direction and proposes a new represen-
ation scheme called Extended Voxel (XVoxel) to address the
roblem. It essentially makes use of semantic voxels (as will be
etailed in Section 3), where the voxel part is responsible for
EM solving, and the semantic part responsible for high-level
nformation to capture both design and simulation intents. In a
utshell, XVoxel models provide the following advantages:

• Design and simulation intents can be preserved in the loop
of design, simulation, and optimization, which otherwise are
lost in the conversion-based approach and have to be recon-
structed. The relevant details can be found in Sections 3.1
and 4.3.

• Generation of analysis geometries and volumetric meshes
can be done virtually. As such, labor-intensive and non-
robust model simplification and mesh generation can be
possibly avoided, and boundary conditions can be well-
retained over the course of optimization iterations. The rel-
evant details can be found in Sections 3.3 and 3.4.

• Modifications on design parameters and updates on simu-
lation results can be associated automatically and locally,
allowing automatic and efficient looping among design, sim-
ulation, and optimization. The relevant details can be found
in Sections 3.2 and 4.3.

• Simulation of the feature models can be done efficiently
on a coarse XVoxel model while attaining high accuracy
through the combination of the fictitious domain technique
and material-aware shape functions. The relevant details
can be found in Sections 4.1 and 4.2.

The following sections begin with a review on existing para-
etric optimization methods in Section 2. A detailed description
n XVoxel models is given in Section 3. The XVoxel-based simu-
ation and design optimization are presented in Sections 4 and 5,
espectively. Application examples and comparisons with existing
ethods are provided in Section 6, followed by conclusions in
ection 7.

. Related work

Parametric optimization aims to find the optimal design
arameters regarding certain performance metrics. Related ap-
roaches include conversion-based optimization, unified model-
ased optimization, and parameter-driven topology optimization.
2

2.1. Conversion-based parametric optimization

The conversion-based parametric optimization is the de facto
standard in practice, but it may require significant manual
effort for complex CAD models or boundary conditions to
ensure that all conversion steps can be carried out successively [1,
6]. A typical conversion procedure involves model simplification,
volumetric mesh generation, boundary condition specification,
and design modification. Despite the progress on simplifying
geometries using methods like feature suppression [8], direct
modeling [14], virtual topology [15,16], etc., current methods
either have restricted applicability or have robustness issues,
thereby requiring considerable manual intervention. Generation
of unstructured meshes, e.g., tetrahedron meshes, is an almost
solved problem [17,18]. However, automatically generating struc-
tured meshes, which are preferable in applications requiring
high computational accuracy and efficiency, still remains an open
issue [19].

Boundary conditions are largely specified manually in practice,
which thus requires huge human efforts in design optimization
that loops even thousands of times between the feature model
and its simulation. Clearly, this is unacceptable. A common way
to address this issue is via assigning fixed boundary conditions
or imposing simple varying loads, e.g., in topology optimiza-
tion [20]. These approaches however would restrict the range of
the problem under study. The issue was addressed in a broad
sense by defining simulation intent by incorporating concepts of
cellular modeling and equivalencing [5,7]. It shares similar spirits
with the present work but does not involve standard voxels for
performing the simulation. The involvement of manual interven-
tion clearly decreases design efficiency and makes it hard, if not
impossible, to automate design optimization.

Note also that in the conversion-based parametric optimiza-
tion, the underlying FE mesh is varied during each step of the
design update, resulting in a varied design space. As a conse-
quence, it usually tends to result in an unstable optimization
convergence.

2.2. Unified model-based parametric optimization

Existing unified model-based parametric optimization appro-
aches mainly include isogeometric analysis (IGA), embedded do-
main, or their combinations.

IGA, initialized by Hughes et al. [21], uses a unified geo-
metric representation scheme, i.e., NURBS (non-uniform rational
B-spline), for both design and analysis. Basically, it discards the
use of explicit meshes but employs the knot vector and spline
basis of a NURBS surface to directly generate the elements and
shape functions for FEM solving [22]. As the mesh generation
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tep is eliminated (in principle), IGA provides a tighter integra-
ion between CAD and CAE for automatic design optimization,
nd the benefits extend beyond integration to higher simula-
ion accuracy and efficiency [2,23–25]. However, IGA only works
ell on the surface model having a regular parametric domain.
or general shapes composed of trimmed NURBS surfaces or
D volumetric models, quadrilateral meshing of its boundary, or
exahedral meshing of its volume are inevitable, which are chal-
enging research topics in their own right. The XVoxel method to
e presented does not have this issue because there are no B-rep
odels or meshing processes involved. This advantage manifests

tself through situations where the B-rep model given to IGA is
omplex and introduces robustness issues in model simplification
nd difficulties in quad/hex meshing.
Unlike IGA which revolves around the design model (i.e.,

URBS), the embedded domain approach such as finite cell
ethod (FCM) [26] focuses on the other side, i.e., meshes. It uses

he same regular background mesh (e.g., a grid) to carry out FEM
olving regardless of the design model’s variations. As such, no
esh generation is needed when the design model is modified
uring optimization. This is essentially achieved through high-
rder finite elements and weak enforcement of unfitted essential
oundary conditions. FCM was also used together with IGA to
tilize both of their advantages [27,28], most of which did not dis-
uss its work on feature models. Recently, Wassermann et al. [29]
tudied the problem of conducting FCM on CSG model, which
ainly studied the point membership classification problem for
ifferent primitives while the present study focuses on the over-
ll integration flowchart for parametric optimization of feature
odels.
The embedded domain approach is to be combined with the

eature-based approach in this work to enable the embedding of
esign and simulation semantics within the background mesh
which is otherwise purely geometric), where the background
esh serves as a common data structure, and the embedded
emantics provide automatic links between design modifications
nd simulation updates.

.3. Parameter-driven topology optimization

Research efforts have been devoted toward parametric op-
imization of CAD models, which mainly focus on finding the
ptimal shape parameters in describing a specific CAD part but
eldom addressed the issue of integrating design semantics into
he optimization process.

Chen et al. considered using R-functions for design optimiza-
ion with topological changes [3,30]. Zhu et al. proposed a di-
ect simulation approach for CAD models undergoing parametric
odifications [31] using a model reduction technique called PGD

Proper Generalized Decomposition) [32]. Schulz et al. developed
n exploration tool for interactive exploration and optimization of
arametric CAD models [33] via pre-computations. More recently,
afner et al. proposed a generic shape optimization method,
alled X-CAD, for CAD models based on the eXtended Finite
lement Method (XFEM) [34]. These approaches did not involve a
omplex model-conversion process but worked on an embedded
ackground mesh so as to automate the overall process.
To keep the design intent, the adjustment should be made on

eature parameters or the feature history of CAD models [35].
onducting topology optimization under constraints of specific
AD features has attracted research interests. Zhang and his col-
eagues have studied extensively the topic [36–39] for practical
ngineering design. Recently, Guo introduced a novel topology
ptimization method of MMC (Moving Morphable Components)
40–42], which uses deforming bars as primitive features in topol-
gy optimization process for ease of geometric control. However,
3

Fig. 2. A CSG example.

most of the approaches only studied abstract and single para-
metric features without design history. Recently, Liu and To [12]
first included the feature modeling history of CAD models in the
design optimization process. This work follows this direction but
employs a more automatic and efficient method, i.e., XVoxel, to
carry out the optimization of feature parameters by embedding
design intent in the overall optimization process.

3. XVoxel models

This section introduces features, voxels, and their combination
into XVoxels, as well as the data structure and algorithms for
constructing and manipulating XVoxel models.

3.1. From features and voxels to XVoxels

There is no widely accepted definition of features. The one this
work employs is given by Shah [4]: a feature is a generic por-
tion of a model’s shape that has certain engineering significance.
Roughly speaking, features are clusters of geometric entities in
a CAD model, which can be used as information containers to
carry domain-specific attributes, e.g., materials and boundary
conditions. A feature model is a set of features, combined in a
way similar to traditional constructive solid geometry, as shown
in Fig. 2. Practically almost all of today’s commercial CAD systems
use features as an internal representation for constructing and/or
editing their CAD models [43]. The user designs a feature by
first defining a topology of geometric entities then specifying
geometric constraints relating them. A feature can be positioned
anywhere in space, or relatively to existing features (through,
again, geometric constraints). As such, geometric entities of a CAD
model are stored associatively and hierarchically. Changes to the
parameters of those features can then be propagated automati-
cally in a pre-defined fashion [44]. This is the basis upon which
parametric design optimization becomes possible.

A voxel is a cube-like element in space, and a voxel model is
a collection of voxels comprising a three-dimensional geometry
of interest. A voxel model can be stored as an array of voxels
occupied by the geometry or a grid with binary labels indicating
the occupancy relationship between each voxel and the geom-
etry; see also Fig. 3. The former storage scheme is often used
to represent static geometries, and the latter used to represent
dynamic geometries (and therefore the chosen one in this work).

This work proposes to combine features with voxels, i.e., em-
bedding features into voxels. Traditional CAD/CAE integration
methods consistently use features as information containers to

store design intent (e.g., shape parameterization) and simulation
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intent (e.g., meshing procedures and boundary conditions) [45].
In this work, voxels are information containers where design
intent and simulation intent reside. This shift leads to the notion
of semantic voxels (named XVoxels in this work). The primary
benefit of doing so is that explicit generation of analysis geom-
etry and meshes can be mostly avoided, and then an automatic,
closed loop between CAD and CAE can be achieved. This will be
demonstrated in the next few subsections. We begin with the
specific data structure used to represent XVoxel models and some
primitive operations used to manipulate them.

3.2. XVoxel representation and operations

An XVoxel model consists of two components: a list of features
and an array of voxel attributes, as shown in Fig. 3. The feature
list is nothing but an unordered set of features (with boundary
conditions, material properties, etc. already associated). The voxel
attributes associate each voxel with the features occupying it.
Three feature attributes are stored: feature occupancy, feature
nature, and feature history. For a voxel, feature occupancy de-
scribes whether it is completely or partially occupied by a feature;
feature nature indicates whether an occupying feature is adding
material or subtracting material; feature history refers to the
precedence of all occupying features of the voxel.

Consider, for example, the model in Fig. 3, and focus on
feature F1. It occupies the voxels colored blue. Voxels at its
boundary have partial occupancy, while those in its interior
have complete occupancy. The plus signs in Fig. 3b indicate
that the occupied voxels are positive (the same as F1’s nature).
Following the same principle, two additional arrays of voxel
attributes can be generated for features F2 and F3, as shown in
Fig. 3b. Combining these three arrays of voxel attributes in their
chronological order (i.e., F1 → F2 → F3) results in an XVoxel
odel, where each voxel maintains an ordered list of 3-tuples

feature index, feature nature, occupancy completeness), as shown
y the rightmost four lists in Fig. 3b.
In XVoxel models, determining a model’s actual shape relies

erely on XVoxel nature, which refers to the nature of the last
eature in the attributes list of individual XVoxels. This is because
hether the last feature adds or subtracts material, it will over-
ide any preceding operations. One exceptional situation is when
he last feature partially occupies an XVoxel; this XVoxel’s nature
s a compound result of the last few features in the attribute
ist, from the last feature with a complete occupancy to the
nd. In the following, an XVoxel of this kind is referred to as
ompound nature. Special algorithms will be developed in the
ext subsection to handle this situation when using XVoxel to
onduct its property simulation.
4

The above statements seemingly imply that there is no need
for storing all historical feature natures of an XVoxel, but only
the last one (or ones). They are actually saved for providing easy
ways to carry out XVoxel operations, as detailed below. In partic-
ular, the novel idea of constantly storing negative feature nature,
rather than immediately discarding it after feature Booleans as in
conventional feature modeling approaches, allows all operations
to work locally, efficiently, and robustly.

Feature Addition This operation creates a new feature by
instantiating a chosen feature class with user-specified feature
parameter values. After instantiation, the feature’s shape extent
is used to determine which voxels it occupies, then append the
feature’s attributes (i.e., the 3-tuple described above) to the end
of those voxels’ attribute lists. This addition operation is the basis
of constructing an XVoxel model from a given feature model. We
simply repeat this operation over all features of the model in their
chronological order.

Feature Deletion The selected feature is simply removed
from the XVoxel model’s feature list, with feature dependen-
cies updated accordingly and its attributes removed from rele-
vant XVoxels’ attribute lists. To facilitate the retrieval of relevant
XVoxels, we further associate each feature with a list of XVoxel
indices it occupies in the XVoxel data structure (which can be
easily recorded during feature addition). For every single relevant
XVoxel, we linearly search the corresponding feature entry in its
attribute list and, once found, simply remove it from its current
position. (Note that in practice, because attributes in each XVoxel
are stored as a linked list, a postprocessing step to correct the
linking pointers of remaining entries in the list is needed.) If par-
allel computing is enabled, we can search and do the removal for
all XVoxels simultaneously, without the need for the associativity
from features to relevant voxels. Multiple features can also be
deleted in parallel. It should, however, be noted that to avoid race
conditions when deleting feature attributes at the same XVoxel,
we lock the list when the entry removal operation is being carried
out for a feature.

Parameter Editing This operation modifies features’ pa-
ameter values. In the background, we first delete it from the
Voxel model, then re-add its modified version to the XVoxel
odel according to its original precedence in the feature history.
s such, no additional algorithms are needed. Considering that
eatures are often interdependent [46], the above two procedures
re modified to include the dependent features of the feature
eing edited.
Feature Rearrangement This operation modifies the order

f features (under the condition that feature dependencies will
ot be broken). What we need to do is simply updating the
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rders in individual XVoxels’ attribute lists to accommodate the
earrangement.

As can be seen, there is no time-consuming and non-robust
eometric computing involved in the above operations, except for
he determination of voxels occupied by a feature to be added in
he addition operation. All operations boil down to manipulating
ntries in a certain linked list, which is easy to implement, robust,
nd efficient. For the determination of occupied voxels, the essen-
ial task involved is to voxelize the shape of a given feature, using
he same resolution as the XVoxel model. Note that voxelization
s done on individual feature shapes here, which are usually prim-
tives like cuboids or spheres, not on the overall combined shape
f all features, which is otherwise complex. Many algorithms exist
o voxelize a feature’s B-rep model, and the method developed by
oung and Krishnamurthy [47] is employed in this work due to
ts high efficiency. The B-rep model of a feature is often made
eadily available during feature instantiation, a function provided
y almost all modern commercial CAD modelers.

.3. Virtual model simplification

Model simplification1 is to remove some design features
e.g., small drilled holes) that are of little significance to simu-
ation. This task becomes straightforward if XVoxel models are
sed. What we need to do is applying the delete operation
escribed in the previous subsection. The only issue is that, sim-
lar to traditional feature-based model simplification approaches,
irectly removing a feature may cause the persistent naming
roblem, ultimately breaking the design-analysis cycle. To be
ore specific, features are made interdependent in feature mod-
ling to enable automatic propagation of parameter changes [44].
emoving a feature makes any inter-dependencies related to it
ndefined, and then the whole model becomes invalid, which is
he so-called persistent naming problem [50].

To solve this issue, we customize the delete operation slightly.
he delete operation in Section 3.2 directly removes a feature
rom the XVoxel model’s feature list. Instead, we retain it but
ake it transparent to voxel attributes by associating the feature

ist with a bitmask whose 0-elements indicate that features at
heir positions have been removed, virtually. As such, the difficult
ersistent naming problem is avoided and meanwhile, there are
o real geometric operations involved in model simplification.
nother benefit of doing so is that boundary conditions, once
ssociated with certain features, can retain over the course of op-
imization iterations regardless of design modifications because
hose features are completely stored in XVoxel models.

.4. Point membership classification

Traditionally, what comes next after model simplification is
enerating boundary-conformed meshes for downstream task of
imulations. This is, however, a field not all major questions have
een answered [21]. This work reformulates the problem as an
nderlying problem of point membership classification (PMC)
or Gaussian integral point selection. It is to be further com-
ined with the recently developed method of FCM for physical
imulation, which embeds the physical domain of computation
i.e., the geometry of the feature model) in a larger, regular mesh
ike a grid, and then transforms the FE computation onto the
mbedding meshes [26]. (A detailed introduction to FCM will be

1 It should be noted that a more general concept than model simplification is
odel idealization, which includes an additional dimension reduction task [10,
8,49]. As XVoxels models are three-dimensional, they are not able to handle
imension-reduced geometries in their current form. The authors wish to extend
Voxels to representing low-dimension geometries in our future studies.
5

given in the next section.) This way of working is a perfect match
for XVoxel models.

If an XVoxel has positive nature and complete occupancy, it
is completely within the model shape. Then the stiffness matrix
for this XVoxel can be computed in the exact same way as
conventional FEM does. If an XVoxel has compound nature, the
XVoxel crosses the boundary of the model shape. According to
FCM, voxel subdivision is needed to generate stiffness matrices
for such boundary XVoxels, which in turn relies on the operator
of point membership classification (PMC) to determine if a sample
integration point within a boundary XVoxel is IN/ON/OUT the
model shape.

Because XVoxel models have prepared the history of feature
occupancy for every XVoxel, the problem of PMC against the
overall model shape can be converted to a sequence of much
simpler PMCs against individual features [51]. The conversion
consists of three major steps: (1) screening relevant features; (2)
evaluating PMC against each screened feature; and (3) compiling
evaluation results to the final IN/ON/OUT decision. Clearly, not
all features occupying an XVoxel contribute to its final shape
(i.e., which portion of the XVoxel is solid or void). According
to the XVoxel’s attribute list, candidate features include those
ranging from the last feature with a complete occupancy to the
end feature (see Section 3.2). For this reason, the screening step
can be simply done by tracing from the back of the attribute list
up to the first entry having the complete occupancy attribute.

Having relevant features in place, we next determine the
IN/ON/OUT relationship between a query integration point and
each of the features. Let the relevant features be denoted by
f1, f2, . . . , fn, and their corresponding implicit representation de-
noted by φ1, φ2, . . . , φn. In this work, feature implicitization is
one by first triangulating its B-rep model with a sufficient high
ccuracy, then building a KD-tree for the triangles to allow fast
uery of the (approximated) signed distance between a given
oint and the feature, similar to the method presented in [52].
ote that alternative methods surely exist [53], and we choose
his one for its simplicity and efficiency. Whether a given point x
s IN/ON/OUT feature fi is determined by the sign of φi(x):

φi(x) > 0 → x IN fi,
φi(x) = 0 → x ON fi,
φi(x) < 0 → x OUT fi.

(1)

To compile individual classification results to the final IN/ON/
OUT decision, we again make use of the feature history stored
in each XVoxel. First, the features classified as OUT are filtered
out from the relevant feature set because they contribute noth-
ing to the process of adding/removing material. Then, the final
IN/ON/OUT decision is the same as the nature of the last re-
maining relevant features: if the nature is positive, the material
is added to the query point, and the final decision is IN/ON;
otherwise, the final decision is OUT. This is because the last
material removing/adding operation overrides all the preceding
operations.

Altogether, they yield a method to generate a ‘‘mesh’’ suitable
for FCM solving from an XVoxel model. The mesh is not explicitly
generated but through combining the fixed grid carrying the
XVoxel model and an implicit PMC operator developed specifi-
cally for XVoxel models. The method is thus easy to implement. It
should, however, be noted that, the use of triangulation in feature
implicitization will introduce errors, and therefore possible mis-
classifications in PMC. In fact, this is generally acceptable since
we can triangulate at a high accuracy. Also, due to the integral

nature of FCM, it is not very sensitive to such misclassifications.
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4. XVoxel-based simulation

In this work, simulation is to be carried out using a fictitious
domain approach following a FCM-like framework [26], which
can work directly on voxel models. This approach’s low compu-
tational efficiency is improved in two aspects: (1) by introducing
material-aware piecewise matrix-valued shape functions, called
CBN (Curved Bridge Node) shape functions following the previous
study in [54]; (2) by utilizing the local computation of XVoxel
models.

4.1. Finite cell method (FCM) for XVoxel-based simulation

The basic idea of FCM is to use a simple regular structured
mesh to approximate the solution fields. This is achieved by com-
bining the fictitious domain idea with the benefits of high-order
finite elements, thus avoiding the costly and even labor-intensive
meshing process.

The FCM concept is interpreted by a 2D linear elasticity prob-
lem in Fig. 4. LetΩp ∈ R2 be the physical domain, ΓD the Dirichlet
oundary, and ΓN the Neumann boundary under external loading
. A linear elasticity analysis problem on Ωp is studied to find the
isplacement u satisfying

(u, v) = l(v), ∀ v ∈ H1
0 (Ω), (2)

here

(u, v) =

∫
Ωp

ε(u)TDε(v) dV =

∫
Ω

H(x)ε(u)TDε(v) dV, (3)

and

l(v) =

∫
Ωp

f·v dV+

∫
ΓN

τ ·v dΓ =

∫
Ω

H(x)f·v dV+

∫
ΓN

τ ·v dΓ , (4)

where H1(Ω) and H1
0 (Ω) are the usual Sobolev vector spaces, f is

the body force, σ(u) is the second-order stress tensor defined via
Hooke’s law,

σ(u) = D : ε(u), ε(u) =
1
(∇u + ∇uT ) (5)
2
6

for a fourth-order elasticity tensor D.
Here in Eqs. (3) and (4), the computation domain is converted

from Ωp to the embedded domain Ω by incorporating the ficti-
tious domain material which is defined via a Heaviside function
H(Φ(x)) ,

H(Φ(x)) =

{
1, if Φ(x) > 0,
α, otherwise ,

(6)

where Φ is the SDF (Signed Distance Function) of the feature
model Ωp and α is a small positive coefficient, say 10−8, to
avoid ill-conditionedness on the stiffness matrix. The Nitsche’s
method [55] was usually adopted to weakly impose Dirichlet
boundary conditions in FCM; we are not going into details here.

Following a classical Galerkin FE method, the solution u(x) to
Eq. (2) is approximated as a linear combination of higher-order
shape (base) functions Nα(x) for each regular grid (or voxel)Ωα

⊂

. Specifically, the overall displacement on any point of x ∈ Ωp

an be interpolated from an assembly sum

(x) ≈ N(x)Q =

M∑
α=1

Nα(x) Qα, x ∈ Ω, (7)

where N(x) is the collection of bases Nα(x), Q is the collection of
Qα , a displacement vector per voxel Ωα .

Accordingly, the displacement Q to Eq. (2) is computed as the
solution to a linear system

KQ = F, (8)

where the stiffness matrix and load vector are assembly from
their element stiffness matrix Kα and element load vector on a
regular grid (or XVoxels)

K =

∑
α

Kα, F =

∑
α

Fα. (9)

FCM transfers the challenges of mesh generation to the nu-
merical integration of discontinuous integrands in Eqs. (3) and
(4). An adaptive Gauss integration is usually applied to improve

α
its accuracy; see Fig. 5. The high-order shape functions N (x) in
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CM requires a huge number of Gaussian points, which involves
uge computational costs as compared with FEA and occupies the
ominant computational costs of FCM.

.2. CBN shape functions for efficient FCM computation

Following previous study [54], material-aware CBN shape
unctions are introduced in this work to replace the higher-order
hape functions in FCM to accelerate the computations.
In our adopted version of CBN, a 4 × 4 grid is formed by

ntroducing twelve additional virtual nodes on each face of a
oxel element besides its original 4 nodes (all together 80 nodes
or a 3D XVoxel). Displacement on these CBN nodes are collected
nto a vector Q and taken as DOFs for solution computation.

The higher order shape function Nα in Eq. (7) is replaced by the
ollowing one composed of linear shape functions on fine mesh
ia a transformation matrix Φ̃α:
α(x) = Nα,h(x) Φ̃α, x ∈ Ωα (10)

here Nα,h(x) is an assembly of the nodal shape functions on the
ine mesh of Ωα .

The CBN transformation matrix Φ̃α aims to map the CBN
odal values to the interior values in Ωα . It is derived as a
roduct of boundary interpolation matrix Ψ and boundary–interior
ransformation matrix M̃α , as follows,

˜ α = M̃α Ψ, (11)

here Ψ and M̃α maps the displacements from the CBNs to the
oundary nodes and then to the full fine nodes in Ωα .
The boundary interpolation matrix Ψ maps the CBN nodal

alues to the fine mesh boundary nodal values ofΩα . It is derived
y constructing a bi-cubic Bézier interpolation surface over the
ace of interest, taking the CBN as control points. The matrix Ψ is
erived by evaluating the surfaces at fine mesh nodes within the
ace, and collecting them in a matrix form all the values row by
ow for the six faces of the mesh α.

The transformation matrix M̃α maps the boundary node values
o those of the fine mesh in Ωα . It is derived from the local
imulation on the fine mesh of Ωα with the equilibrium equation[
kb kbi
kib ki

][
qb
qi

]
=

[
fb
0

]
, (12)

here kb, ki, kbi, kib are the sub-matrices of the local stiffness
atrix kα on Ωα , qb, qi is respectively vector of the boundary,

nterior nodes, and fb is vector of exposed forces on the boundary
odes formed by harmonic analysis [54].
We have from the second-row the relation of qi = Mαqb,

or Mα
= −k−1

i kib. Accordingly, assembling qi and qb as q =

qb, qi]
T , we have the form of M̃α ,

˜ α = [I2b,−k−1
i kib]

T , (13)

here I2b is the 2b × 2b identity matrix.
Once the CBN shape functions are derived, the solution to

he linear elasticity problem in Eq. (2) can be similarly attained,
ollowing a classical Galerkin FE method. More technical details
re referred to [54].

.3. XVoxel-based local simulation of feature models

Based on the approach of FCM for simulation, in combination
ith CBN, the XVoxel-based approach for simulation of modified

eature model is developed below.
The feature model is generally modified via updating feature

arameters, which may change the topology and geometry of the
7

inal B-rep model. As long as the feature model are updated, ele-
ent stiffness matrix Kα of each voxel need to be re-computed,
hich accounts most for the computation costs. FCM equipped
ith local voxel updates can accelerate the computations in two
ays: (a) the element stiffness matrix of each full-voxel or void-
oxel is identical; the voxels along the boundary are called cut
oxels; (b) the element stiffness matrices of voxels not affected
y updated features remain unchanged. Case (a) can be easily
esolved via a pre-computation strategy. For case (b), the element
tiffness matrix can be incrementally updated by updating and
uerying voxel-feature membership table via the PMC algorithm
escribed in Section 3.4, where voxels affected by the updated
eatures can be quickly located, called active voxels, and conse-
uently only their stiffness matrices are re-computed. This can
ignificantly reduce computation costs.

. XVoxel-based parametric design optimization

Using XVoxels, the parametric design optimization works over
fixed regular grid under controlled simulation accuracy, and
n direct updates of feature parameters. During the process, the
ensitivities with respect to the design parameters is derived for
arameter updates. The locality information of XVoxel provides
n efficient sensitivity computation either via finite difference or
ia a derived analytical expressions.
Let Ωp be a CAD model with features f1, f2, . . . , fn. For ease of

xplanation, each feature fi is assumed to take only one parameter
i. The classical compliance minimization problem is studied to
ind the optimized design parameters p = (p1, p2, . . . , pn):

min
p

C(u, p) = uTKu,

s.t.

⎧⎨⎩
Ku = F,
V =

∫
Ω
H(Φ(x, p))dΩ ≤ V̄ ,

p
i
≤ pi ≤ p̄i, i = 1, 2 . . . , n,

(14)

in which V and V̄ are the total structural volume and maximum
volume constraint, the Heaviside function H(·) is used to indicate
structural boundary, p

i
and p̄i are lower and upper bounds of the

design variable pi.
The optimization problem Eq. (14) is to be solved following a

numerical gradient-based approach Globally Convergent Method
of Moving Asymptotes (GCMMA) [56] for its robust convergence
in design optimization. It approximates the original nonconvex
problem through a set of convex sub-problems by using the gra-
dients of the optimization objective and constraints with respect
to the design variables p derived below.

The gradient computation follows the chain rule. First consider
the sensitivities of stiffness matrix K with respect to design
parameter pi. Rewriting ψ(x) = BTDB for conciseness, we have

∂K
∂pi

=
∂

∂pi

∫
Ω

BTDBH(Φ(x, p))dΩ

=

∫
Ω

BTDB
∂H(Φ)
∂Φ

∂Φ

∂pi
dΩ

=

∫
Ω

ψ(x)
∂H(Φ)
∂Φ

∂Φ

∂pi
dΩ.

(15)

The key point of above equation is to compute derivative of
Heaviside function. We bring in Dirac delta function δ̂(Φ)

δ̂(Φ) = ∇H(Φ) ·
∇Φ

∥∇Φ∥
=

dH(Φ)
dΦ

∇Φ ·
∇Φ

∥∇Φ∥
=

dH(Φ)
dΦ

∥∇Φ∥,

(16)
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here

∇Φ∥ =

√(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2

. (17)

Consequently, Eq. (15) is rewritten as

∂K
∂pi

=

∫
Ω

ψ(x)
∂H(Φ)
∂Φ

∂Φ

∂pi
dΩ

=

∫
Ω

ψ(x)
∂Φ

∂pi

1
∥∇Φ∥

(
∂H(Φ)
∂Φ

∥∇Φ∥

)
dΩ

=

∫
Ω

ψ(x)
∂Φ

∂pi

1
∥∇Φ∥

δ̂(Φ)dΩ

=

∫
∂Ωp

ψ(x)
∂Φ

∂pi

1
∥∇Φ∥

dΓ ,

(18)

here ∂Ωp denotes boundary of feature model Ωp. This way, the
volume integral of sensitivities is transformed into a boundary
integral.

According to the expression of Φ(x, p) in Eq. (6), we further
have for Eq. (18),

∂Φ(x, p)
∂pi

=

n∑
j=1

∂Φ(x, p)
∂φj

·
∂φj

∂pi
, (19)

∥∇Φ(x, p)∥ =


n∑

j=1

∂Φ(x, p)
∂φj

∇φj

 . (20)

Noting that design variable pi is only associated to one feature
i, we have

∂φj

∂pi
= 0, j ̸= i. (21)

Let Si =
∂Φ(x,p)
∂φi

be the logical operation defined by parent
ifurcation nodes of fi in CSG tree, and Si ∈ {−1, 1}. Accordingly,

the integral domain of Eq. (18) can be reduced from boundary
∂Ωp of whole feature model Ωp to boundary ∂ fi of a feature fi,
hat is, computations.

∂Φ(x, p)
∂pi

=
∂Φ(x, p)
∂φi

·
∂φi

∂pi
= Si

∂φi

∂pi
, (22)

hich avoids redundant integration.
Similarly, we have

∇Φ(x, p)∥ = ∥Si∇φi∥ = ∥∇φi∥ (23)

for quadrature points along boundary of feature fi.
Accordingly, the sensitivities in Eq. (18) is reduced to

∂K
∂pi

=

∫
∂Ωp

ψ(x)
∂Φ

∂pi

1
∥∇Φ∥

dΓ

=

∫
∂ fi

Siψ(x)
∂φi

∂pi

1
∥∇φi∥

dΓ .
(24)

Afterwards, we consider sensitivities of structural compliance
,

∂C
∂pi

=
∂FT

∂pi
u + FT

∂u
∂pi

=
∂FT

∂pi
u + FTK−1

(
∂F
∂pi

−
∂K
∂pi

u
)

= 2
∂FT

∂pi
u − uT ∂K

∂pi
u.

(25)

ssuming for simplicity the independence of load F and feature
esign variables, the first term in the above equation is zero.
8

Fig. 6. Sensitivity computation (in 2D) as adaptive boundary integration of
finite cell (bold black grid): In each sub-cell (thin blue grid), the boundary is
approximated with line segments (green), along which Gauss quadrature points
(red) are taken. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Based on sensitivities of stiffness matrix in Eq. (24), we have

∂C
∂pi

= −uT ∂K
∂pi

u

= −uT (
∫
∂ fi

Siψ(x)
∂φi

∂pi

1
∥∇φi∥

dΓ )u

= −uT (
∫
∂ fi

SiBTDB
∂φi

∂pi

1
∥∇φi∥

dΓ )u.

(26)

In our numerical implementation, we use triangles in 3D (lines
n 2D) to approximate structural boundary of model for adaptive
ntegration; see Fig. 6 for an illustration.

. Numerical examples and discussions

The proposed XVoxel-based method for parametric design
ptimization of feature models has been implemented in Matlab
n a computer with Intel Core i7-12700 3.6 GHz CPU, 64 GB RAM.
ive different examples are shown to demonstrate its effective-
ess: the first three on simulation during interactive editing to
est its computational accuracy and efficiency, and the last two on
ts usage for feature-based design optimization. The CAD model
izes are all measured in micrometer, and the material has a
oung’s modulus E = 2e11 Pa and Poisson’s ratio ν = 0.3. In

FCM computing, all examples have the octree refinement depth
d = 3 and the shape function order p = 2, except for the first
example where d = 4 and p = 3.

The locality characteristics of XVoxel are measured in terms of
the number of active voxels (i.e. voxels affected by local feature
updates) against that of FCM. The fidelity of XVoxel or FCM is
measured via its displacement residual (in terms of top 10%)
against the benchmark:

ru =
∥u1 − u0∥

∥u0∥
, (27)

where u1, u0 are the computed and the benchmark displace-
ments, respectively.

The experimental settings and results are summarized in
Table 1, including mesh size, DOFs, timing (per step/iter), the
number of active voxels and relative error ru. In all these ex-
amples, FEA simulation results on tetrahedral meshes (in Ansys
Workbench 22R1) were taken as the benchmark. Three other
approaches were tested to show the method’s simulation ac-
curacy and efficiency: standard FCM approach [26], XVoxel-FM
combining FCM with XVoxel, XVoxel-CBN combining CBN-based
FCM [54]; the last two are our approaches. The DOFs of FEA and
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Table 1
Summary of the performance of XVoxel on the tested numerical examples in comparison with those using FEA and FCM (standard FCM, XVoxel-FCM combining FCM
with XVoxel, XVoxel-CBN combining CBN-based FCM and XVoxel). Here, d is the depth of octree refinement for element integration and p is the order of shape
unctions.
Example Step (iter) Mesh size DOFs Timings (per step/iter) Active voxel number ru (%)

FEA FCM(XVoxel) FEA FCM (XVoxel-FCM) XVoxel-CBN FEA FCM XVoxel-FCM XVoxel-CBN FCM XVoxel

#1

1 13,801

675

63,372

63,480 47,280

5.3 35.1 35.1 6.0 33 33 0.0061
2 14,118 64,833 5.2 28.8 28.9 2.9 21 21 0.0169
3 13,807 63,600 5.2 23.2 23.7 1.8 21 21 0.0263
4 13,844 63,714 6.2 17.3 17.7 1.3 15 15 0.0049
5 13,908 64,029 5.2 11.6 11.8 0.8 9 9 0.0047

#2

1 22,789

4004

109,632

108,135 255,024

8.5 44.9 44.9 13.8 1182 1182 0.0328
2 22,579 108,777 7.3 44.2 6.3 1.1 1182 121 0.0825
3 22,326 108,006 7.2 42.6 9.4 1.8 1182 183 0.0812
4 22,465 109,350 7.3 44.3 9.8 2.1 1185 189 0.1555
5 22,611 109,569 7.3 43.7 5.6 1.4 1191 128 0.3221
6 22,326 108,336 8.5 40.2 8.5 1.4 1141 227 0.0263

#3

1 222,816

39,775

1,019,364

998,325 2,365,080

22.1 140.1 143.1 80.9 6040 6040 0.0928
2 217,244 1,001,976 19.7 151.5 33.9 5.2 6048 397 1.0381
3 218,659 1,006,104 21.6 152.0 35.0 6.0 6156 491 1.1859
4 215,383 996,989 23.1 166.2 35.3 5.4 6356 412 1.3995
5 215,185 996,513 20.8 161.3 28.0 1.1 6369 97 1.4215
6 214,206 991,353 23.5 167.1 35.8 4.5 6545 458 1.4720
7 216,983 1,002,681 21.0 168.0 31.0 3.3 6561 216 1.4834
8 215,132 997,344 20.9 174.4 34.8 3.9 6681 325 2.5318
9 214,288 993,975 18.0 181.3 30.3 2.0 6789 190 2.3235
10 216,411 1,004,442 21.3 210.0 29.5 2.2 6633 102 2.4980
15 214,690 992,787 23.7 201.5 48.2 9.0 5837 677 2.7177
20 213,749 992,295 23.5 223.4 42.6 5.5 6485 459 3.0647

#4

1

9100 240,975 250,638

1,490.8 130.3 55.2 2256 2256
10 1411.0 109.6 25.2 2174 308
30 1401.8 101.3 24.8 2166 274
100 1467.5 102.4 25.3 2172 255

#5

1

33,150 279,265 282,006

146.0 148.0 60.4 4592 4,592
10 141.5 85.8 30.7 3904 1644
30 156.0 92.7 33.2 3952 1611
100 166.6 97.2 32.6 3962 1486
Fig. 7. Example #1. (a) Parameters (mm) of the L-shaped model, where the radius R gradually varies from 6 to 2 with a step size of −1; (b) The CSG of the model;
c) Boundary conditions, where γD is fixed and τ = 100 N/mm2 in γN ; (d) FEA mesh with 6325 tetrahedral elements; (e) FCM (XVoxel) mesh with 3 × 15 × 15
voxels.
XVoxel were set approximately same for the comparisons to be
fair.

As can be seen from Table 1, the error of FCM (XVoxel) is as
low as 0.005%, demonstrating its high accuracy. FCM and XVoxel-
FCM always have the same simulation accuracy, and CBN-FCM is
very close to them. Other examples may have higher error due
to the need for balancing accuracy and efficiency. Note that FCM
(XVoxel) can reach a prescribed accuracy voxel refinement or
degree elevation [26]. In all examples, FEA is much more efficient
than FCM while XVoxel-FCM improves the efficiency, resulting in
a similar computation time to FEA, due to its local computations.
XVoxel-CBN greatly improves the efficiency of XVoxel-FCM due to
its usage of piecewise linear shape functions. We have to mention
again that in comparison with FEA FCM or XVoxel (either FCM or
CBN version) has a prominent advantage in its much easier and
more robust voxelization than FEA’s tetrahedral meshing.

6.1. Example #1: an L-shaped model for simulation accuracy testing

The accuracy of the proposed method was first tested on a
classic L-shaped model as shown in Fig. 7, constructed by com-
bining two cubes and one rounded corner. The model is fixed
on its upper face and subject to a downward traction of τ =

100 N/mm2 on its right face. The tetrahedral mesh of FEA has
6.3K elements, and the FCM has 768 voxels.
9

The rounded corner radii was varied from 6 mm to 2 mm at
a step of −1 mm. The simulation error, the number of active
voxels, and timings for each step were respectively plotted in
Figs. 8(a), (b), (c). FEA and XVoxel-FCM has a very close approx-
imation at an error ru = 0.03%, as can also be observed from
distributions of their displacement norm and von Mises stress in
Figs. 9(a), (b). We also notice from Figs. 9(c) and 8(b), (c) that FCM
and XVoxel-FCM have exactly the same number of active voxels
and computational timings in this example. This is because the
cut cells in FCM are just the active voxels due to the regular shape
of the L-shaped model.

6.2. Example #2: a connector model for simulation efficiency testing

The second test was conducted on the engine connector as
shown in Fig. 10 to test XVoxel’s ability in handling more complex
models. The model is fixed on its left hole, subject to horizontal
and vertical tractions on its right hole. The FEA tetrahedral mesh
has 23K elements while the XVoxel has 7.9K voxels. The connec-
tor model was modified in Fig. 12(a) by the following six steps of
feature operations:

1. Add a pair of inner groove made of two cylinders and
their tangents. Note that the two sides of connector are
symmetrical, and we only consider design parameters on
one side.
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Fig. 8. Performance statistics of Example #1 in Fig. 7: (a) Displacement residual ru between XVoxel and FCM; (b) The number of active voxels by FCM and XVoxel;
c) Timing of four methods FEA, FCM, XVoxel-FCM (XVoxel based on FCM) and XVoxel-CBN (XVoxel based on CBN).
Fig. 9. Results for an L-shaped model in editing step 1, 3 and 5. (a): Displacement norm (mm) from FEA (left) and FCM/XVoxel (right); (b) Von Mise stress (MPa)
from FEA (left) and FCM/XVoxel (right); (c) Active voxels (in gray) of XVoxel.
2. Translate the two cylinders by changing parameters d1
from 25 to 30, d2 from 55 to 40.

3. Modify the right cylinder’s radius r2 from 5 to 7.5.
4. Modify the inner groove’s depth h from 1.5 to 2.5.
5. Modify design parameter h from 2.5 to 3.5 and remove the

round corner so that the inner groove goes through the
whole model.

6. Modify design parameters r from 5 to 3, r from 7.5 to 5.
1 2

10
XVoxel has a close approximation to FEA with a maximal ru =

0.33% as observed from plot in Fig. 11(a), or the comparison of
simulation results in Figs. 12(b) and (c). We also noticed from
Figs. 12(d) and 11(b) and (c) that the XVoxel (XVoxel-FCM and
XVoxel-CBN) has much less computational time than FCM during
the model modifications (after the first step) as its local voxel
update immensely decreases the number of active voxels.
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Fig. 10. Example #2. (a) Parameters of the piston model, where modified variables are d1, d2, r1, r2 and h; (b) The CSG of the model; (c) Boundary conditions where
D is fixed and τx = 100 N/m2 and τy = 200 N/m2 were applied to ΓN as (sinusoidal) bearing loads; (d) FEA mesh of 22789 tetrahedral elements in step 1; (e)

FCM (XVoxel) mesh of 55 × 16 × 9 voxels.
Fig. 11. Performance statistics of Example #2 in Fig. 10: (a) Displacement residual ru between XVoxel and FCM; (b) The number of active voxels by FCM and XVoxel;
c) Timing of four methods FEA, FCM, XVoxel-FCM and XVoxel-CBN.
Fig. 12. (a) The models for steps 1 to 6: Initial model with a pair of symmetrical grooves; Modify d1 and d2 to translate grooves; Increase the right cylinder’s radius
2; Increase grooves’ depth h; Increase groove’ depth h to run through the model; Decrease radii r1 and r2 to narrow the groove; Results for a connector model in
diting steps 1, 3, 5 and 6 (b) Displacement norm (mm) by FEA (left) and FCM/XVoxel (right), (c) Von Mise stress (MPa) from FEA (left) and FCM/XVoxel (right), (d)
ctive voxels (in gray) of XVoxel.
(
i
l

.3. Example #3: a pump model under drastic topology variation
nd varying loads

The proposed method’s potentiality in handling drastic topol-
gy variations and varying loads was further tested on the com-
lex pump model in Fig. 13. The pump’s bottom is fixed and
ts top and outer side are exerted by forces of 200 N, 100 N
espectively. The FEA has 216K tetrahedral elements while FCM
11
XVoxel) has 40K voxels. The model was edited by the follow-
ng steps, during which both the model’s topology and external
oadings are varied:

1. Input an initial model consisting of different cylinders.
2. Add a round corner feature f1.
3. Add feature f2 which consists a cube and a cylinder.
4. Add a negative feature f3 as a union of four cylinders.
5. Add a negative feature f .
4
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Fig. 13. Example #3. (a) Parameters (mm) of the pump model at the 10th step, where d1 and d2 are the variables to modify in step 11 − 20; (b) The CSG of the
model at the 10th step, where fi are the features to add in step 1− 10, i = 1, . . . , 9; (c) Boundary condition, where γD is fixed and τz = 200 N and τy = 100 N; (d)
FEA mesh with 216411 tetrahedron at the 10th step; (e) FCM (XVoxel) mesh with 25 × 43 × 37 voxels.
6. Add a feature f5.
7. Add a feature f6 consisting of four spheres.
8. Add a negative feature f7.
9. Add a feature f8 consisting of a cube and a cylinder.

10. Add a negative feature f9.
1–15. Modify design parameter d1 from 76 to 56 at a step of −4.
6–20. Modify design parameter d1 from 50 to 70 at a step of 4.

The resulting models during the modification were shown
n Figs. 14(a)–(c), with the associated active voxels given in
ig. 14(b). Statistics of the relative errors, numbers of active vox-
ls, timings were compared in Fig. 15, which indicates XVoxel’s
igh simulation accuracy and efficiency, as already confirmed in
xamples #1 and #2.
We in particular observed from Fig. 15(b) that the number

f active voxels of XVoxel is only around 1/4 of FCM’s, demon-
trating XVoxel’s strong ability in properly selecting active voxels
egardless of the complex feature shape and feature operations.
he nice property in turn resulted in a 4-time efficiency im-
rovement of XVoxel-FCM in comparison to FCM; XVoxel-CBN
ven achieved a 50 times efficiency improvement. Such efficiency
s very useful in obtaining interactive simulation feedback in
odifying designs.

.4. Example #4: a bracket model for parametric design optimization

The proposed method’s ability in feature-based parametric
esign optimization was first tested on an asymmetric bracket
odel in Fig. 16, which has a negative groove feature composed
f several cylinders and prisms. The model was fixed on its left
ole, and subject to an axial load of 100

√
5N on its right hole.
12
The model is discretized into 9.1K voxels for FCM (XVoxel) based
simulation.

The design goal is to minimize the bracket’s compliance under
a volume ratio of 0.9 by varying the locations and sizes of the
groove. The design variables are: circle centers xi, yi and radii
ri (i=1, 2, 3, 4) of the four corner circles, their inscribed circle
radius r5 and circumscribed circles’ radii r6, r7, r8 (in 2D plane).
The associated geometric constraints are formulated as follows
so as to produce a valid geometry:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ku = F,

V ≤ 0.9V0,

∥(xi, yi) − O5∥ + ri = r5, i = 1, 2

∥(xi, yi) − O6∥ − ri = r6, i = 3, 4

∥(xi, yi) − O7∥ − ri = r7, i = 1, 4

∥(xi, yi) − O8∥ − ri = r8, i = 2, 3

xmin
i ≤ xi ≤ xmax

i , i = 1, . . . , 4

ymin
i ≤ yi ≤ ymax

i , i = 1, . . . , 4

rmin
j ≤ rj ≤ rmax

j , j = 1, . . . , 8

where V0 is the volume of the original model, Oi’s are the 2D circle
centers’ coordinates, and ranges of xi, yi, rj were set so that the
features would not move out of the bracket.

Some intermediate structures during optimization were shown
in Fig. 17(a), where the groove gradually enlarged its size to meet
the volume constraint while moving to the left side for perfor-
mance improvement. Stress distributions were also plotted in
Fig. 17(b), and the active voxels were shown in gray in Fig. 17(c).
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Fig. 14. (a) The models in editing steps 1–10, 15 and 20, (b) Active voxels (in gray) of XVoxel in editing steps 1–10, 15 and 20, (c) The simulation results for a
ump model in editing steps 1, 5, 10, 15 and 20. Displacement norm (mm) of FEA (up) and of FCM/XVoxel (down).
Fig. 15. Performance statistics of Example #3 in Fig. 13: (a) Displacement residual ru between XVoxel and FCM; (b) The number of active voxels by FCM and XVoxel;
c) Timing of four methods FEA, FCM, XVoxel-FCM and XVoxel-CBN.
The optimization was stopped after 100 iterations, where the
eatures and their relative constraints were all maintained during
13
the optimization; the convergence curve was plotted in Fig. 18(a).
During the optimization, XVoxel only had approximately 1/8
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p
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Fig. 16. Example #4. (a) Parameters (mm) of the model. The position and size of a groove are optimized by changing the position and radius of the tangential
cylinders that form it, where the design variables are xi, yi and rj(i=1, 2, . . . , 4; j=1, 2, . . . , 8); (b) The CSG of the model; (c) Boundary conditions, where ΓD is fixed
and τx = 100 N, τy = 200 N are applied on ΓN as (sinusoidal) bearing loads; (d) FCM (XVoxel) mesh with 52 × 25 × 7 voxels.
Fig. 17. Results for a bracket model in optimization iterations of steps 1, 10, 30 and 100 (a) The model, (b) Von Mise stress (MPa) of FCM/XVoxel, (c) Active voxels
(in gray) of XVoxel, (d) Active voxels (in gray) for calculating the sensitivities with respect to x1, y1, r1 (left) and r5 (right) in the first iteration.
Fig. 18. Performance statistics of Example #4 in Fig. 16: (a) Convergence curves of compliance and volume by XVoxel and FCM; (b) The number of active voxels by
FCM and XVoxel; (c) Timing of three methods FCM, XVoxel-FCM and XVoxel-CBN.
active voxels of FCM, with a much-improved efficiency; see also
Figs. 18(b) and (c). XVoxel-FCM and XVoxel-CBN respectively
achieved around 13× and 50× efficiency improvements com-
ared to FCM. By maintaining the feature lists during optimiza-
ion, the simulation was greatly accelerated by local recomputa-
ions for active voxels.
14
As can be seen from Fig. 18(a), the compliance curve did not
go steadily, but first went up quickly to the peak, then went
down. This is because compliance is highly sensitive to volume
changes, and the volume factor dominates the optimization be-
fore reaching the specified volume limit. That is, the optimization
will quickly reduce the volume toward the specified volume limit
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Fig. 19. Example #5. (a) The CBS (Closed B-Spline) design features fi, i = 1, . . . , 11 and restricted area R1 (in yellow) for fj, j = 3, 4, 5, 7, 8, 9, R2 (in yellow) for f6 ,
3 (in green) for f10 and R4 (in red) for f11 . The x-coordinate of fi, i = 1, 2 and x-, y- coordinates of fj, i = 3, 4, 5, 7, 8, 9 are fixed. There are 250 design variables in
otal, and each feature contains 22 control radii and unfixed x-, y-coordinates; (b) The CSG of the model; (c) Boundary conditions, where ΓD is fixed and τx = 100 N
nd τy = 100 N are exerted on ΓN as (sinusoidal) bearing loads; (d) FCM (XVoxel) mesh with 50 × 17 × 39 voxels. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
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t the beginning (see the volume curve in the same figure).
fter getting the peak (at the 10th iteration), the optimization
lgorithm (i.e., the globally convergent method of moving asymp-
otes) reduces compliance effectively while keeping the volume
bove the limit. This process corresponds to the going down
hase in Fig. 18(a).
In conducting the optimization, the sensitivities for this ex-

mple were derived using finite differences. Without proper han-
ling, the computation would be very expensive as it requires a
omplete FE recomputation for all 16 design parameters. Instead,
Voxel requires much fewer active voxels for the finite difference
omputations, as only one feature parameter was varied in each
inite difference process; see also Fig. 17(d) for an illustration.

.5. Example #5: a bearing bracket model for parametric design
ptimization with varied topology

The proposed method’s robustness in handling complex para-
etric design optimization with varied structural topology was

ested on a bearing bracket model in Fig. 19, where the design
odel, CSG tree, boundary conditions, discrete voxels were re-
pectively shown in Figs. 19(a), (b), (c), (d). The FCM (XVoxel) has
3K voxels, and the volume ratio constraint was set to be 0.6.
The model has 11 CBS (Closed B-Spline) negative features,

ach with 24 control radii and 2 position coordinates, where
he first and last radii of each feature are driven parameters for
igher-order geometric continuity. In order to maintain the fea-
ures to produce a valid structure of complex topology, features
1 and f2 were restricted to move only along the y-axis, fea-
ures f3, f4, f5, f7, f8, f9 were fixed, and features f6, f10 and f11 only
oved along a prescribed plane; see also Fig. 19(a). Altogether,

here are in total (24− 2+ 2)× 11− 14 = 250 design variables.
The intermediate results of the examples are given in Fig. 20

nd performance statistics of the example in Fig. 21. As can
e seen from Fig. 20, during the optimization, the CBS features
radually expanded to meet the volume constraint, resulting in
rastic topology variations in the arm and base part of the bear-
ng bracket, before reaching convergence after 35 iterations. The
Voxel-based optimization successfully handled the topological
hanges.
The XVoxel model has around half active voxels of FCM, and

Voxel-FCM is about 1.3× faster than FCM in each iteration. The
peedup is much smaller in comparison with Example #4, as the
BS features were distributed more broadly within the bracket
odel, and therefore resulted in more active voxels. Nevertheless,
Voxel-CBN has gained about 5× efficiency improvement. Again,
he proposed method remains robust in the feature-based design
ptimization framework in handling such a large-scale model
ith a large number of design variables and drastic topology

hanges.

15
.6. Example #6: bearing plates containing varying cylindrical sup-
orts

In the end, we further test the approach’s ability in handling
eatures of varied locations, sizes or orientations using the ex-
mple in Fig. 22. The approach’s potentiality is also tested in
emoving unnecessary features in the construction history dur-
ng the optimization. The model has two plates supported by
cylinders in the middle. Each cylindrical feature contains 5

esign variables, including position coordinates xi, yi, directions
i, βi and a radius ri for i = 1, . . . , 9. The upper surface of the
op plate is exerted by a radiant force F defined as F (x, y) =

c cos (
√
(x − xc)2 + (y − yc)2/(9

√
2) ·

π
2 )

8
, where Fc = 50 N, xc =

xc = 9 mm, 0 ≤ x, y ≤ 12 while the lower surface of the bottom
plate is fixed, as shown in Fig. 22(c). Three different tests are
conducted at a volume fraction of 1.2 times the original volume
of the cylinders by optimizing xi, yi and ri; αi, βi and ri; all the
variables.

The optimized structures and convergence curves are shown
in Fig. 23. All the cases lead to reliable convergence and pro-
duce structures respectively of compliance 39.3, 47.1, and 36.0.
It can be observed that the full variable optimization has the
best convergence rate. Meanwhile, note in Fig. 24(c) that three
design features are able to run out of the design area during
optimization, demonstrating the approach’s ability in removing
unnecessary features automatically. In this case, we can conve-
niently remove the features from the feature list. The variations
of the features are also shown in Fig. 24.

6.7. Discussion and limitations

As one may have noticed from the above examples, although
the final results of our XVoxel method can admit topology
changes, their overall shapes still follow a similar structural
pattern to those of the initial designs before optimization. This
is because the method is designated for feature-based CAD and
parametric optimization, where feature semantics (and therefore
the overall shapes) often need to be respected. For example,
the boundary representation of the final results is consistently
composed of smooth parametric surfaces; there is no way the
boundary takes discrete, free shapes (which is the case for SIMP
or the voxel density method [20]).

For this reason, our method works better for situations like
fine or semi-fine design tuning. Dimensional variations and topol-
ogy changes can be large (as demonstrated by the example in
Fig. 20) but cannot be radically different. If design changes of this
sort are desired, other methods, e.g., the voxel density method,
should be used. For the same reason, our method needs to take
as input an initial design that does not deviate too much from the
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Fig. 20. Results for a bearing bracket model in optimization iterations of steps 1, 10, 30 and 100: (a) the models, (b) Von Mise stress (MPa) of FCM/XVoxel, (c)
active voxels (in gray) of XVoxel.

Fig. 21. Performance statistics of Example #5 in Fig. 19: (a) Convergence curves of compliance and volume by XVoxel and FCM; (b) The number of active voxels by
FCM and XVoxel; (c) Timing of three methods FCM, XVoxel-FCM and XVoxel-CBN.

Fig. 22. Example #6. (a) Parameters (mm) of the model, where the design variables are xi, yi, αi, βi and ri for i = 1, 2, . . . , 9; (b) The CSG of the model; (c)

Boundary conditions, where ΓD is fixed and ΓN is exerted by a radially decayed force field F (x, y) = Fc cos (
√
(x − xc )2 + (y − yc )2/(9

√
2) ·

π
2 )

8
, where Fc = 50 N,

xc = xc = 9 mm, 0 ≤ x, y ≤ 12.

16



M. Li, C. Lin, W. Chen et al. Computer-Aided Design 160 (2023) 103528
Table 2
Performance comparison of FCM, XVoxel-FCM and XVoxel-CBN on the tested numerical examples. The table shows the size of mesh, the number of DOFs, the total
time and the total acceleration ratio..
Example Mesh size DOFs Timings (total steps/iterations) Total acceleration ratio (based on FCM)

FCM(XVoxel-FCM) XVoxel-CBN FCM XVoxel-FCM XVoxel-CBN XVoxel-FCM XVoxel-CBN

#1 675 63,480 42,280 116.0 117.2 12.8 0.990 9.06
#2 4,004 108,135 255,024 259.9 84.5 21.6 3.08 12.0
#3 39,775 998,325 2,365,080 3,801.4 883.6 174.6 4.30 21.8
#4 9100 240,975 250,638 145,022.8 10,321.3 2597.2 14.1 55.8
#5 33,150 279,265 282,006 15,849.0 9,358.5 3278.5 1.69 4.83
Fig. 23. Optimized models and convergence curves of structural compliance and cylindrical volumes: (a) xi, yi and ri as design variables; (b) αi, βi and ri as design
variables; (c) all 5 design variables; in Fig. 22.
final result. This is different from methods like the voxel density
method. Their input can even be a block without bearing any
similarity to the final result.

7. Conclusions

An XVoxel-based parametric design optimization method for
feature models has been presented in this paper. The proposed
method combines the local regularity of voxel models and the
global semantic information of feature models to facilitate the
automatic linking between CAD and CAE. By further integrating
XVoxels, FCM and CBN, design modifications and simulation up-
dates can be looped in an efficient and robust manner, without
involving labor-intensive conversion between CAD models and
CAE models. The effectiveness of the proposed method has been
validated by various numerical examples with complex topology
variations and varying loads. And a computational efficiency im-
provement of up to 55.8 times the existing FCM method has been
achieved, see Table 2.

We consider the proposed XVoxel method as an alternative
attempt toward the long-standing research objective of a unified
model representation scheme that can completely, compactly,
and associatively represent the contents of both CAD and CAE
models. The method builds itself upon a new concept called
semantic voxels to provide the advantage of avoiding B-rep model
simplification and mesh generation. These two procedures could
present a particular challenge for existing methods; for example,
the quad/hex meshing required by IGA is never easy if the geom-
etry is complex. For this reason, a typical use case where XVoxel
is preferable over the others is when the design to be optimized
is given as a feature model and its overall shape is complex.

A couple of interesting improvement directions for the XVoxel
method are noted here. As already noted in Sections 3.3 and 4.3,
XVoxel models can much reduce the dependence of simulation
on model simplification and can be directly used to guide the

simulation-suitable model simplification process. Nevertheless,

17
the method, in its current form, is still not able to handle di-
mension reduction, which is the other important step in model
idealization [10,48,49]. Extending the method to including di-
mension reduction is among the research studies to be carried out
in our group. Another interesting improvement direction is that
the proposed method has only been implemented in Matlab for
proof of concept. Its further implementation on basis of commer-
cial/opensource feature modelers, e.g., Open CASCADE, and then
release as an open-source plugin is of great interest to our future
research work.

In industrial design optimization, innovative designs often
require heavy optimization within a large design space but time
resources are limited. This entails the use of dimensionality re-
duction techniques on the design space during optimization. The
proposed XVoxel method has a good potential to integrate with
dimensionality reduction methods, e.g., parametric model em-
bedding [57], due to its generality on the input model. Such an
interesting integration is among our future work. Another im-
provement direction lies in the efficiency of the proposed method.
Currently, our use of octrees in finding Gaussian points leads to
a time-consuming simulation. If augmented with some adaptive
meshing method (e.g., [58]), the proposed method can be much
accelerated.

It is also worth noting that a model may correspond to mul-
tiple construction ways using Boolean operations. For different
construction ways, their design variation spaces may be differ-
ent, so do the corresponding optimization processes. Therefore,
the construction way needs to be carefully thought out before
using our method. The proposed method, in its current form,
only focuses on parametric optimization on given models, and it
cannot automatically find an appropriate construction way. Such
an automatic selection mechanism is of great interest to future
work. In addition, If a B-Rep model is provided, a Boundary-to-
CSG conversion procedure (e.g., the method presented in [59]) is
necessary for the proposed method to work. Another limitation of

the proposed method is that the optimization result is affected by
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Fig. 24. The disappearance of features during optimization in Fig. 20(c).
he size of the cells used in the simulation, a consequence of using
CM for simulation (see [60] for a detailed discussion). Currently,
here is no principled way to choose the best cell size, and the
sual solution is using empirical tuning to find a good cell size.
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