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 A B S T R A C T

We propose a novel approach to structure-aware topology optimization (SATO) to generate physically plausible 
multi-component structures with diverse stylistic variations. Traditional TO methods often operate within a 
discrete voxel-defined design space, overlooking the underlying structure-aware, which limits their ability 
to accommodate stylistic design preferences. Our approach leverages variational autoencoders (VAEs) to 
encode both geometries and corresponding structures into a unified latent space, capturing part arrangement 
features. The design target is carefully formulated as a topology optimization problem taking the VAE code 
as design variables under physical constraints, and solved numerically via analyzing the associated sensitivity 
with respect to the VAE variables. Our numerical examples demonstrate the ability to generate lightweight 
structures that balance geometric plausibility and structural performance with much enhanced stiffness that 
outperforms existing generative techniques. The method also enables the generation of diverse and reliable 
designs, maintaining structural integrity throughout, via a direct smooth interpolation between the optimized 
designs. The findings highlight the potential of our approach to bridge the gap between generative design and 
physics-based optimization by incorporating deep learning techniques.
1. Introduction

Generative design is a computational approach that explores a 
wide range of design options within predefined constraints, inspiring 
innovative solutions beyond conventional ideas. Recently, deep gen-
erative models (DGMs), particularly variational autoencoders (VAEs), 
have significantly advanced 3D shape generation by capturing com-
plex geometric details, making them crucial in fields like architecture, 
aerospace, and automotive engineering [1]. In parallel, topology op-
timization (TO) has established itself as a key method for creating 
novel shape topologies under physical constraints [2], or manufactur-
ing constraints [3]. Traditional TO methods typically discretize the 
entire design space, assigning material density to each element in the 
grid to optimize goals such as structural compliance.

However, these traditional TO methods mainly work within a dis-
crete voxel-defined design space and often overlook  structure-aware 
properties, such as design styles or the arrangement of components [4–
6]. This limitation restricts their ability to produce designs that are 
not only functionally robust but also visually appealing, especially in 
applications where  styles are as important as structural integrity. While 
state-of-the-art methods have focused on  visual appearance only [7–9], 
they often fail to generate physically reliable 3D shapes. For instance, 
the SDMNet model [10] produces a chair with an unnecessarily heavy 
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or unsteady structure under poorly designed loading conditions, as 
illustrated in Fig.  2.

To bridge the gap between generative design and TO, we introduce a 
novel TO method called structure-aware topology optimization (SATO) 
incorporating  structure-aware principles. Our approach leverages the 
latent space of a VAE [11], which encodes geometric shape and part 
arrangement, into a unified representation. The unified representation 
provides the geometry as a collection of separate components and the 
structure as pairs of bounding boxes, which enables the generation 
of diverse, physically reliable structures that satisfy both mechanical 
performance criteria and stylistic preferences. An overview of SATO is 
shown in Fig.  1.

The main technical challenges involve a clear mathematical prob-
lem formulation and an efficient, reliable numerical approach to find-
ing solutions that satisfy geometric and physical constraints. Under 
physical constraints, we formulate the problem as a TO problem, taking 
the design variables from a unified VAE space that encodes both the 
part geometry and their inter-relation uniformly. This latent space 
naturally enables the generation of structurally reliable designs while 
maintaining component interdependencies. To obtain the solution, the 
sensitivity of the generated structure’s properties with respect to (w.r.t) 
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Fig. 1. Overview of our SATO based approach for generating physically reliable 3D shapes. Unlike methods that prioritize visual appearance over functionality, our approach 
integrates stylistics and different components, ensuring the selection of lightweight, structurally robust, and optimized shapes for efficient load-bearing.
Fig. 2. Optimized chair using a traditional optimization method. The chair has 
poorly designed connectivity areas between components, leading to inadequate load 
distribution and an unnecessarily heavy structure.

the VAE design parameters is derived analytically by leveraging the 
automatic differentiation (AD) of the VAE network. 

Our main contributions are as follows:

1. A structure-aware TO approach (SATO) generates various phys-
ically reliable and geometrically plausible structures in vari-
ous styles, via encoding both local geometry and its structure 
in a unified latent space. This approach minimizes structural 
compliance while preserving geometric features.

2. A numerical approach tackles the SATO problem by deriving 
analytically the associated sensitivity w.r.t. the VAE design vari-
ables by leveraging the problem’s mathematical formulation and 
the AD of the VAE network.

3. A direct approach generates versatile physically sound shapes, 
which much overcomes the unstable and overly dense shapes 
generated from previous learning approaches, achieved via in-
terpolation between the source and target SATO shapes, owning 
to their uniform VAE representations.

4. Performance of the SATO is tested via various numerical ex-
amples across multiple volume fractions (0.3–0.7), loading con-
ditions, and different case studies, demonstrating its ability to 
produce different styled physically optimized shapes.

Additionally, to facilitate understanding, the main terminologies 
used in this work are listed in Table  1.
2 
The remaining part is arranged as follows. Section 2 reviews the 
existing methods. Section 3 formulates the SATO problem, followed 
by the details and implementation respectively in Sections 4 and 5. 
Section 6 presents and evaluates the numerical results, and Section 7 
concludes the study.

2. Related work

2.1. Learning-based 3D shape generation

Recent advances in 3D shape generation have explored diverse 
input modalities, including images [12,13], point clouds [14–16], vox-
els [7,17–19], meshes [20,21], signed distance functions (SDF) [12,22], 
latent vectors [23,24], neural fields [25,26], text-to-shape [27–29], and 
image-to-shape [12,13].

Voxel representations, popular for their regular structure and com-
patibility with 3D CNNs, simplify FEA and support efficient TO algo-
rithms. For example, Wu et al. [8] combine voxel-based shape gen-
eration with part segmentation, and Wang et al. [18] incorporate 
physical constraints within voxel-based VAEs. Meshes offer finer sur-
face details and are essential for precise physical simulations. SDM-
Net [10] generates mesh-based shapes with semantic part awareness, 
while CLIP-Forge [30] enables text-guided mesh generation.

Deep generative models (DGMs) have transformed 3D shape gen-
eration by learning complex shape distributions from large datasets. 
In these studies, VAEs are often preferred over candidates for their 
stability and ease of shape manipulation and interpolation [31,32]. 
For example, DeepSDF [33] uses a VAE to learn a continuous signed 
distance function for 3D shapes, enabling the generation of high-
fidelity models, while Zhang et al. [23] demonstrate VAE-based shape 
generation with controllable category-specific attributes.

These works use different approaches to produce 3D shapes. How-
ever, these works often prioritize appearance over structural integrity 
and hence none of them address the challenges of generating physically 
reliable shapes. Despite yielding visually appealing shapes, these meth-
ods often fail to ensure physical reliability, highlighting the persistent 
challenge of balancing visual quality with structural integrity.
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Table 1
Main terms.
 Term Full meaning  
 SATO Structure-Aware Topology Optimization  
 TO Topology Optimization  
 FEA Finite Element Analysis  
 FEM Finite Element Method  
 MMA Method of Moving Asymptotes  
 GCMMA Global Convergent MMA  
 AD Automatic Differentiation  
 DGM Deep Generative Models  
 VAE Variational Autoencoder  
 CNN Convolutional Neural Network  
 PINN Physics-Informed Neural Network  
 nelx The number of elements in the x direction  
 nely The number of elements in the y direction  
 nelz The number of elements in the z direction  
 volfrac Volume Fraction  
 penal Penalization Power  
 rmin Filter Radius  
 SDF Signed Distance Function  
 MMC Moving Morphable Components  
 w.r.t with respect to  
 Stylistic Unique variations in structural and geometric 

features of shapes.
 

 Part Arrangement Spatial organization and positioning of 
structural components.

 

 Geometric Plausibility Functional validity of part connections and 
arrangements.

 

 Shape Semantic Functional or meaningful significance of a 
shape’s design.

 

 Component/ Part Structural elements of a design 
(used interchangeably).

 

 Visual Appearance Overall look and aesthetic appeal of generated 
structures.

 

2.2. TO-based 3D shape generation

Topology optimization aims to automatically generate a 3D shape 
for optimal physical performance [2] and often operates within a 
discretized design domain. Incorporating high-level design semantics 
during the optimization is one of its high-demand targets, enabling 
explicit control of various design or manufacturing constraints [34–38]. 
In particular, the Moving Morphable Component (MMC) approach [39] 
has emerged as one of the pioneering methods by utilizing explic-
itly defined morphable components that can move, deform, overlap, 
and disappear to create optimized designs. This approach effectively 
addresses low-level semantics [40,41] but struggles with high-level 
semantics like style and part arrangement, limiting their ability to 
generate varying styles according to design preferences. 

Integrating machine learning (ML) into TO has accelerated and 
diversified TO methods, enabling more customized design genera-
tion [42]. Zhang et al. [43] introduced an ML-enhanced approach to 
structural TO that incorporates human design preferences, aligning 
the optimization process with designer intentions. ML-driven TO ap-
proaches often employ neural networks to predict optimized material 
distributions under specific loading and boundary conditions [44,
45]. For instance, Jeong et al. [46] developed CPINNTO, a structural 
optimization framework based on physics-informed neural networks 
(PINNs). In 3D design, Zhang et al. [47] presented a method for 
generating optimized glider shapes using a VAE trained on an extensive 
3D structure dataset [48]. Furthermore, style transfer with 2D image 
data has been applied to VAEs [49], ensuring that designs generated in 
latent space maintain aesthetic alignment with original shapes while 
meeting structural requirements.

While these VAE and ML-based techniques have advanced TO, 
these methods often struggle with the complexities of multi-component 
systems, where interaction and connectivity between components are 
crucial to structural integrity.
3 
3. Overview and problem formulation

We aim to generate various physically reliable and structure-aware 
aesthetic structures in different styles. Traditional TO methods have 
struggled to incorporate stylistic elements, such as the arrangement 
of components and style consideration, into the design process.  We 
address this by utilizing a VAE to jointly encode part geometry and 
their relative locations, forming the basis of a novel topology optimiza-
tion problem. The VAE helps capture the inter-dependencies between 
geometric and structure-aware features and optimizes simultaneously 
the design’s part geometry, relative locations, and overall physical 
properties.

3.1. VAE architecture and structure encoding

VAE is a generative model that learns a probabilistic mapping from 
a latent space 𝒛 to the data space 𝐱. The VAE consists of three main 
components: the encoder, the latent space, and the decoder [11].

The encoder 𝑞𝜙(𝒛|𝐱) maps the input 𝐱 to a latent space 𝒛, where 𝜙
represents the parameters of the encoder. It outputs the mean 𝜇 and 
the standard deviation 𝜎 of a Gaussian distribution: 
𝑞𝜙(𝒛|𝐱) =  (𝒛;𝜇(𝐱), 𝜎2(𝐱)). (1)

From this Gaussian distribution, a latent vector 𝒛 is sampled: 
𝒛 = 𝜇(𝐱) + 𝜎(𝐱)⊙ 𝝐, (2)

where 𝝐 ∼  (𝟎, 𝐈) is a standard normal distribution, and ⊙ denotes 
element-wise multiplication.

The decoder 𝑝𝜃(𝝆|𝒛) maps the 𝒛 back to the data space, where 𝜃
represents the parameters of the decoder. The decoder reconstructs the 
input 𝐱 as output 𝜌: 
𝑝𝜃(𝝆|𝒛) = 𝝆(𝒛). (3)

The VAE is trained to maximize the evidence lower bound (ELBO), 
which combines the reconstruction loss and the Kullback–Leibler (KL) 
divergence: 
(𝜃, 𝜙; 𝐱) = E𝑞𝜙(𝒛|𝐱)[log 𝑝𝜃(𝝆|𝒛)] − KL(𝑞𝜙(𝒛|𝐱)||𝑝(𝒛)), (4)

where 𝑝(𝒛) =  (𝒛; 𝟎, 𝐈) is the prior distribution over the latent space.

3.2. Problem formulation

Traditional TO operates on discretized single-body design spaces 
and requires even hundreds of millions of DOFs (Degrees of Freedom). 
Its direct application meets two main challenges: (1) multi-component 
design requires simultaneous optimization of both component-level 
geometry and spatial configurations within a continuous design space; 
(2) TO is computationally expensive and even practically unfeasible.

We tackle these challenges by performing design optimization
within a VAE latent space, which enables us to capture important 
geometric features while maintaining the expressiveness necessary for 
structural design. Instead of directly optimizing the physical parameters 
of the design, we focus on optimizing the latent variables 𝒛. 

Based on the above considerations, the problem of structure-aware 
topology optimization (SATO), in a classic form of compliance mini-
mization, is formulated as follows, 
find 𝒛 ∼  (𝜇𝒛, 𝜎2𝒛)

min 𝑐(𝝆) = 𝐔𝑇𝐊𝐔

s.t. 𝑔(𝝆) =
𝑉 (𝝆)
𝑉0

− 𝑉𝑓 ≤ 0

𝐊𝐔 = 𝐅
0 ≤ 𝜌𝑖 ≤ 1, 𝑖 = 1, 2,… , 𝑁

2

(5)
𝝆 = Dec(𝒛), 𝒛 ∼  (𝜇, 𝜎 )
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where 𝑐 is the compliance, 𝐔 is the global displacement vector, 𝐊 is 
the global stiffness matrix, 𝑁 is the number of elements in the discrete 
design domain, 𝐮𝑖 is the element displacement vector, 𝐤0 is the element 
stiffness matrix for an element with fully distributed solid material, and 
𝑁 is the number of finite elements. The volume fraction constraint is 
given by 𝑔(𝜌) where 𝑉 (𝝆) and 𝑉0 are respectively the material volume 
and the design domain volume, 𝑉𝑓  is the pre-defined volume fraction, 
𝐅 is the global force vector, 𝒛 is the vector of design variables (relative 
densities), 𝐸𝑖 is Young’s modulus of element 𝜌𝑖.

To handle the non-linearity and complexity of the optimization 
problem, we adopt the Global Convergent Method of Moving Asymp-
totes (GCMMA) [50], an advanced version of the traditional Method 
of Moving Asymptotes (MMA). GCMMA outperforms MMA by better 
handling nonlinear and coupled constraints, allowing faster conver-
gence in large-scale structural optimization. It is particularly effective 
for nonlinear optimization problems with both inequality constraints 
and complementarity constraints, making it well suited for structural 
optimization tasks like designing a multi-component structure.

In technically resolving the above issues, we propose a hybrid 
method for computing gradients in the latent space combining ana-
lytical derivations and automatic differentiation (AD). GCMMA uses 
these gradients to update the design variables efficiently and ensure 
faster convergence during the optimization process.  The integration of 
GCMMA optimization with hybrid gradient computation significantly 
enhances the performance and accuracy of the optimization process, 
particularly for complex, multi-part structures. This combination lever-
ages the strengths of both approaches: GCMMA provides robust conver-
gence properties, while hybrid gradient computation ensures efficient 
and precise gradient estimation, even for intricate geometries.

To the best of our knowledge, this specific combination has not been 
explored in prior studies. While GCMMA and hybrid gradient methods 
have been investigated independently, their synergistic application to 
optimize complex, multi-part structures represents a novel contribu-
tion to the field. This approach addresses key challenges in TO, such 
as handling non-linear constraints and improving computational effi-
ciency, which are critical for achieving high-quality results in practical 
applications. 

4. Methodology

Our novel framework is illustrated in Algorithm 1. It merges the 
VAE-based 3D geometric shape generation and the TO process, ensuring 
the creation of reliable structures. Detailed methodologies for VAE to 
encode the component-based structure and the numerical approach to 
solving the SATO problem in Eq. (5) are presented below.

4.1. Geometric 3D shape generation and encoding

Our particular interest is in generating novel topology-optimized 
3D shapes by traversing the latent space. The VAE must capture both 
geometric features and the structural patterns from the TO pipeline.

We formulate a VAE to learn the joint distribution of geometry and 
structural features. This work adopts GRUs (Gated Recurrent Units), 
a type of Recurrent Neural Network (RNN), in the VAE architecture 
because they effectively model sequential dependencies and relation-
ships between parts in 3D shapes. Unlike simpler methods like fully 
connected layers, GRUs can capture complex, long-range dependencies 
in both geometry and structure, which is crucial for generating plau-
sible shapes. GRU has fewer gates but enables storing and filtering 
information with its internal memory. This alleviates the gradient 
vanishing problem during the network training. Furthermore, GRU has 
fewer learnable parameters, thereby achieving greater flexibility in a 
more principled training framework [51]. This makes GRUs well-suited 
4 
Algorithm 1: Algorithm for structure-aware topology optimiza-
tion (SATO)

Input: nelx, nely, nelz, load size, load location, volfrac, 
boundary conditions, penal, rmin, VAE, initial latent 
vector, initial decoded density, 𝜕𝜌𝜕𝑧

Output: Optimized latent vector 𝒛, final physically reliable 
density distribution 𝜌

1 Construct a VAE;
2 Generate initial density from latent vector 𝒛 using Eq. (2);
3 Initialize optimization parameters;
4 Discretize decoded density 𝜌 into voxel grid  Fig 3;
5 while not converged do
6 Compute element stiffness matrices 𝑘𝑖(𝜌𝑖) using Eq. (14);
7 Assemble global stiffness matrix 𝐾(𝜌) using Eq. (16);
8 Solve for nodal displacements 𝑈 (𝜌) using Eq. (17);
9 Compute compliance 𝑐(𝜌) = 𝑈 (𝜌)𝑇𝐾(𝜌)𝑈 (𝜌);
10 Compute compliance sensitivity w.r.t. densities 𝜕𝑐(𝜌)𝜕𝜌  using 

Eq. (18);
11 Compute density sensitivity w.r.t. latent vector 𝜕𝜌𝜕𝑧  using Eq. 

(20);
12 Update latent vector using GCMMA optimization [50] ;
13 Generate new density using updated latent vector;

Fig. 3. A decoded mesh before processing through SATO pipeline.

for the joint analysis of geometry and structure in the VAE. The encoder 
processes two types of input features, respectively of part geometry, 

ℎ𝑔 = 𝐺𝑔
𝑒𝑛𝑐 (𝐻𝑔), 𝐻𝑔 = ℎ𝑖|𝑖 = 1,… , 𝑘 (6)

where 𝐻𝑔 represents the sequence of geometry features for 𝑘 com-
ponents and 𝐺 is GRU, and of the relative arrangement of parts, 

ℎ𝑠 = 𝐺𝑠
𝑒𝑛𝑐 (𝐻𝑠), 𝐻𝑠 = ℎ𝑖,𝑗 |𝑖 = 1,… , 𝑘, 𝑗 ≥ 𝑖 (7)

where 𝐻𝑠 encodes structural relationships between components.
We combine the geometry vector in Eq. (6) and structure vector in 

Eq. (7) using another GRU with a part mask (𝑐), which indicates the 
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presence or absence of each part in the shape. The part mask ensures 
that the model can handle shapes with varying numbers of parts. This 
GRU (𝐺𝑐

𝑣) fuses the geometry and structure features into a single joint 
feature (ℎ𝑣) using the following equation: 

ℎ𝑣 = 𝐺𝑐
𝑣(𝑓 ([ℎ𝑔 , 𝑐]), 𝑓 ([ℎ𝑠, 𝑐])) (8)

where 𝑓 ([ℎ𝑔 , 𝑐]) and 𝑓 ([ℎ𝑠, 𝑐]) are fully connected layers that combine 
the geometry and structure features respectively with the part mask. 
The joint feature (ℎ𝑣) is then passed through a fully connected layer to 
produce two vectors 𝜇 and 𝜎 to encode the latent space representing 
both geometry and structure, as follows: 

𝒛 = 𝜇 + 𝜎𝒏 (9)

where 𝜇 (mean), 𝜎 (variance) define the learned distribution parame-
ters and 𝑛 is a random noise vector. More details are referred to [8].

In SATO, the VAE’s latent space, defined by the 𝜇 and 𝜎 vectors, en-
codes essential geometric and structural relationships among parts. This 
latent representation enables the model to generate diverse, topology-
optimized designs. Sampling from this space allows flexible exploration 
within the TO framework, supporting structural integrity and adapt-
able design variations, which is crucial for developing complex and 
optimized multi-component 3D structures.

The simulation and optimization of the VAE-represented structure 
are outlined in detail below. 

4.2. Simulation aspects

The physical properties of the structure, such as stiffness and com-
pliance, are computed using FEA. This allows us to evaluate the struc-
tural performance for each potential design, even in the latent space, 
by translating geometric parameters into physical behavior through the 
FEA.

We sample an initial 3D shape from the latent space mentioned 
in Eq. (9) (see Fig.  3). Following traditional topology optimization, 
our approach modifies these discrete values into continuous densities 
between 0 and 1, where values remain close to 0 but never actually 
reach zero, following 

𝐸𝑖(𝜌𝑖) = 𝐸𝑚𝑖𝑛 + 𝜌𝑝𝑖 (𝐸0 − 𝐸𝑚𝑖𝑛), (10)

where 𝑝 is the penalization power (𝑝 > 1), 𝐸min is the elastic modulus of 
the void material, set as 0.001 to avoid singularity of the finite element 
stiffness matrix, 𝐸0 is the Young’s modulus of solid material.

Using the FEM, the elastic solid element stiffness matrix is computed 
as 

𝐤𝑖
(

𝜌𝑖
)

= ∫

+1

−1 ∫

+1

−1 ∫

+1

−1
𝐁T𝐂𝑖

(

𝜌𝑖
)

𝐁𝑑𝜉1𝑑𝜉2𝑑𝜉3, (11)

where 𝜉𝑒(𝑒 = 1,… , 3) are the natural coordinates. The strain–
displacement matrix 𝐁 relates the strain 𝝐 and the nodal displacement 
𝐮, 
𝝐 = 𝐁𝐮. (12)

The 𝐂𝑖 denotes the elements constitutive matrix following the SIMP 
approach 

𝐂𝑖
(

𝜌𝑖
)

= 𝐸𝑖(𝜌𝑖)𝐂0, (13)

where 𝐂0 is the constitutive matrix with unit Young’s modulus. The 
element stiffness matrix can be further written as, 
𝐤𝑖

(

𝜌𝑖
)

= E𝑖
(

𝜌𝑖
)

𝐤0, (14)

where, 

𝐤0 = ∫

+1

∫

+1

∫

+1
𝐁T𝐂0𝐁𝑑𝜉1𝑑𝜉2𝑑𝜉3, (15)
−1 −1 −1

5 
The global stiffness matrix 𝐊 is obtained by the assembly of element-
level counterparts 𝐤𝑖, 

𝐊(𝝆) =
𝑁
∑

𝑖=1
𝐸𝑖(𝜌𝑖)𝐊0

𝑖 , (16)

where 𝐊0
𝑖  is the global version of 𝐤𝑖

Finally, the nodal displacements vector 𝐔(𝝆) is the solution of the 
equilibrium equation 
𝐊(𝝆)𝐔(𝝆) = 𝐅 (17)

where 𝐅 is the vector of nodal forces.

4.3. Optimization aspects

The SATO problem formulated in Eq. (5) is solved by using the 
GCMMMA optimizer [50]. The sensitivities of both the design target 
and constraints w.r.t the VAE variables are derived analytically in 
combination with the AD mechanism of the VAE network.

Using the chain rule, we first derive the derivatives of c(𝝆) w.r.t the 
VAE design variable 𝑧𝑗 , 

𝜕𝑐(𝝆)
𝜕𝑧𝑗

=
𝑁
∑

𝑖=1

𝜕𝑐(𝝆)
𝜕𝜌𝑖

𝜕𝜌𝑖
𝜕𝑧𝑗

, (18)

where 𝜕𝑐
𝜕𝜌𝑖

 is the gradient of compliance with respect to the part 𝜌𝑖 of 
the 3D output shape (𝜌), and 𝜕𝜌𝑖𝜕𝑧𝑗

 is the gradient of the 3D output shape 
w.r.t the latent space (𝑧).

Notice that the compliance 𝑐(𝝆), as our objective function, is defined 
as 

𝑐(𝝆) = 𝐔𝑇𝐊(𝝆)𝐔 =
𝑁
∑

𝑖=1
𝐸𝑖(𝝆𝑖(𝒛𝑖))𝐮𝑇𝑖 𝐤0𝐮𝑖. (19)

The derivative of 𝑐(𝝆) with respect to the density 𝜌𝑖 can be derived 
based on the adjoint theory [52,53] 
𝜕𝑐(𝝆)
𝜕𝜌𝑖

= −𝑝𝜌𝑝−1𝑖 𝐸0𝐮𝑇𝑖 𝐤0𝐮𝑖. (20)

The term 𝜕𝜌𝑖𝜕𝑧𝑗
 represents the sensitivity of the material distribution 𝜌𝑖

of part 𝑖 w.r.t the design variable 𝑧𝑗 . This derivative is computed using 
automatic differentiation (AD), a method that efficiently calculates 
derivatives by applying the chain rule to a sequence of elementary 
operations. AD avoids both the inaccuracies found in numerical differ-
entiation and the complexity of symbolic differentiation. This makes 
it ideal for complex models where material properties 𝜌𝑖 depend on 
nonlinear mappings of design variables.

Similarly, the derivative of the volume constraint 𝑣(𝝆) with respect 
to the design variable 𝑧𝑗 is computed 

𝜕𝑣(𝝆)
𝜕𝑧𝑗

=
𝑁
∑

𝑖=1

𝜕𝑣(𝝆)
𝜕𝜌𝑖

𝜕𝜌𝑖
𝜕𝑧𝑗

, (21)

where the term 𝜕𝑣(�̃�)𝜕�̃�𝑖
 is simply the volume 𝑣𝑖 of element 𝑖, as given by: 

𝜕𝑣(𝝆)
𝜕𝜌𝑖

= 𝑣𝑖. (22)

These equations allow us to compute the sensitivities required 
for updating the design variables 𝒛 during the topology optimization 
process, subject to the volume constraint and minimizing compliance 
(maximizing stiffness).

Once the gradients are computed and the design variables are 
updated, the latent variables 𝐳 are decoded back into the material distri-
bution 𝝆 and the corresponding geometry. This decoded representation 
is used to evaluate the structural performance (compliance) and to en-
force the constraints (volume). The process repeats until convergence, 
where the material distribution and geometry are jointly optimized to 
minimize compliance while satisfying the volume constraint. 
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5. Implementation details on SAGNet

SATO builds on the proven SAGNet framework [8] for managing 
part-based relationships and their unified VAE encoding. The partition 
strategy for generating 𝑘 parts is based on coarse segmentation with 
consistent part ordering, which reduces complexity. Pairwise relation-
ships are encoded as 6D bounding boxes, effectively capturing spatial 
dependencies. This structured approach aligns well with our SATO 
framework by preserving part relationships and facilitating the learn-
ing of inter-relations critical for generating optimized and structurally 
sound designs. Additionally, The input to our framework consists of 
geometries and bounding boxes.

The input to SAGNet-based VAE comprises 𝑘 parts, with each part 
having a corresponding geometry in voxel format and a bounding box. 
Key elements, such as datasets and architecture, are highlighted here 
for ease of explanation. More details are referred to [8].

5.1. Dataset

We follow the dataset that comes with the SAGNet shape dataset 
that includes geometries and bounding boxes for different classes such 
as chairs, guitars, lamps, motorbikes, and tenon-mortise joints. The 
class of tenon-mortise joints is synthesized to evaluate the necessity 
of joint analysis of geometry and structure which benefits our SATO 
work. The dataset includes 10,000 synthetic examples, such as tenon-
mortise joints with eight connection modes, to highlight inter-relational 
geometry dependencies.

5.2. Architecture

The framework consists of a two-branch autoencoder aligned with 
voxel mesh outputs: the upper branch processes geometry, and the 
lower branch processes structure. The geometry branch contains five 
3D convolutional layers in the encoder, accepting 𝑘 (32 × 32 × 32) 
voxel maps as input. These layers down-sample the voxel maps by a 
factor of 16, followed by a fully connected layer that computes 𝑘 512D 
features.

Simultaneously, the structure branch employs a fully connected 
layer to process 𝐾 pairs of bounding boxes, generating 𝐾 512D features. 
The encoder’s outputs feed into two GRUs that capture part relation-
ships for both geometry and structure. These GRUs use Geometry and 
Structure Attention components to exchange information, producing 
𝑘 and 𝐾 200D features for the 2-Way VAE. The decoder mirrors the 
encoder, using five 3D deconvolutional layers to reconstruct voxel maps 
and a fully connected layer to regress latent features to bounding boxes, 
yielding a unified latent space encompassing both shape geometry and 
structure.

6. Numerical results and evaluation

We have implemented our structure-aware TO framework SATO on 
a standard workstation equipped with an NVIDIA GeForce GTX 970. 
In the study, all design domains are assumed to consist of materials 
with a Poisson’s ratio of 𝜈 = 0.3, Young’s modulus of 𝐸0 = 1, and 
a minimum modulus 𝐸min = 1 × 10−9. The default values are set as 
penal=3 and rmin=1.3 (filter radius) for all examples. The load was 
imposed on the upper surface of the seat directed downwards opposite 
to the 𝑌  direction while opposite to the 𝑋 direction for the backrest, 
and the leg parts touching the ground are fixed. BCs are set manually at 
the start of the GCMMA iteration and remain fixed throughout to ensure 
convergence. Binary voxels (0, 1) are converted to continuous densities 
(𝜌 ∈ (0, 1)) for gradient-based optimization, with the force vector (𝐹 ) 
in Eq. (17) remaining constant to maintain structural continuity at BC 
regions. The concrete parameters for the examples are summarized in 
6 
Table  2. The optimization stopping criteria for problem in Eq. (5) is 
based on the traditional TO convergence criteria, 
‖𝑥new − 𝑥‖∞ ≤ 0.01, (23)

We employed a VAE model based on the work of SDMNet [10], 
augmented with an additional layer to calculate signed distance func-
tion (SDF) values, which are used for converting triangular meshes 
into voxel meshes for our FEA module. The SDF offers high accuracy 
and control by representing the shortest distance to an object’s surface, 
ensuring precise voxelization.

We test and evaluate our method’s ability to generate lightweight 
structures that optimize both visual appearance and structural in-
tegrity, specifically, physically reliable 3D shape generation in Sec-
tion 6.1, style-driven 3D shape generation in Section 6.2, and volume-
constrained shape generation in Section and 6.3.

6.1. Physically reliable shape generation

We first test the effectiveness of our method in generating physically 
reliable shapes and compare it with SAGNet and SDMNet. Two cases are 
conducted: direct shape generation in comparison with SAGNet [8] and 
SDMNet [10] in Section 6.1.1, and topology-preserving interpolation in 
the latent space in Section 6.1.2.

6.1.1. Comparative analysis
In this section, we conduct a comparative analysis with recent 

works, specifically SAGNet [8], to evaluate the effectiveness of SATO in 
producing structurally sound and geometrically plausible designs under 
varied conditions.

In this test, we selected four different initial structures (a, b, c, 
d) generated by SAGNet and assigned volume fractions of 45%,40%, 
35%, and 30% respectively. A vertical load of 40N was applied to the 
chair seat area. The results are shown in Fig.  4, where the generated 
designs from SAGNet are shown in the left column, and our SATO in 
the middle. The associated convergence curves of ours are also shown 
in the rightmost column;  the iterations for each case were 72, 65, 79, 
and 81, respectively.

The comparison revealed a notable reduction in compliance val-
ues, averaging approximately 88.45%, in shapes generated by SATO, 
showcasing the method’s strength in enhancing structural performance 
while maintaining visual appearance and highlighting SATO’s robust-
ness. Additionally, Fig.  5 (volfrac 45%) showed that SAGNet’s material 
distribution was suboptimal, especially in the seat and leg regions. 
In contrast, SATO effectively optimized material placement in critical 
load-bearing areas, leading to structurally sound designs.

Overall, the results demonstrate that SATO outperforms in generat-
ing 3D shapes to achieve optimized material distribution and reduced 
compliance values, which marks a significant advancement over exist-
ing methods, positioning it as a robust framework for generating both 
visually appealing and structurally sound designs.

6.1.2. Intermediate shape interpolation in latent space
The VAE’s latent space enables smooth interpolation between shapes

by embedding both geometric and structural information in a contin-
uous, low-dimensional space. Moving linearly between latent vectors 
of two different shapes in our SATO framework creates intermediate 
visually appealing and structurally sound shapes. Its performance is 
tested against those of SDMNet. We specifically integrated SDMNet into 
the interpolation section to demonstrate broader applicability.

In the test, we first generated two shapes as source and target using 
SDMNet and then interpolated 100 shapes between the source and 
target (chair), displaying shapes at specific intervals (1st, 20th, 50th, 
70th, and 100th). We then input the same SDMNet-generated source 
and target shapes into the SATO framework. Both shapes had identical 
BCs, with the source having a 40% volfrac and the target a 45% volfrac. 
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Table 2
Parameters for Case Studies: Chair, Motorbike, Guitar, and Lamp.
 Input parameter Case study
 Chair Motorbike Guitar Lamp  
 Mesh Size 32 × 32 × 32 45 × 45 × 55 45 × 45 × 55 45 × 45 × 55 
 Volfrac 0.35–0.65 0.6–0.75 0.35–0.55 0.35-0.45  
 Load size (N) 10–50 20–50 10–30 5–15  
 Load cases Backrest and seat Seat and handlebar Neck and body Top and base  
 Boundary conditions Fixed on legs Fixed on wheels Points where guitar is held Fixed at base  
 Number of Iteration 56–82 51–72 48–76 38–61  
 Avg. Time Taken (sec) 5.72–7.2 11.21–9.2 14.35–12.03 14.27–13.44  
Fig. 4. Comparison between SAGNet and SATO. SAGNet’s initial decoded chair bases show suboptimal topology with irregular member sizes and connections. SATO improves 
these designs by setting volfrac to 45%, 40%, 35%, and 30% for a, b, c, and d, respectively. The optimized outputs (middle column) evolve into more uniform, stiffer structures.
Fig. 5. Material distribution analysis. SAGNet: The leg sections are inadequately designed to withstand loading and it is overweight. SATO: our framework takes the initial shape 
from SAGNet, by setting volfrac as 45%, generates lightweight shapes with optimized material distribution, ensuring reinforcement in areas subjected to loads and boundary 
conditions.
7 
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Fig. 6. Comparison of interpolation methods. (a) Top row: SDMNet method interpolation, (b) Bottom row: SATO’s approach, demonstrating lightweight topology optimized shapes. 
Source and target shapes maintain volume fractions of 40% and 45% respectively.
Fig. 7. Generated physically reliable shapes and their corresponding von Mises Stress 
distributions.

The generated shapes through SDMNet interpolation are in the top row 
while SATO is in the bottom row as shown in Fig.  6.

We observed that SATO produced lightweight intermediate shapes 
with an average reduction in compliance of 88.7% (±8.2%) across the 
interpolation sequence (Fig.  6). SATO effectively redistributed material 
to reinforce critical areas while maintaining the original visual appear-
ance. The FE analysis results in Fig.  7 on the random intermediate 
interpolation shapes also indicate a reliable physical property of smooth 
stress distributions. Moreover, the FEA stress analysis is performed on 
the original density distribution, ensuring accurate stress calculations. 
The results tell that integrating TO produces intermediate shapes with 
improved stiffness and volume control, ensuring practical, versatile, 
and structurally reliable 3D shapes suitable for fast shape generation 
tasks.

6.2. Styled shape generation at different BCs

In the context of SATO’s work, style refers to unique variations in 
the structural and geometric features of generated shapes distinct from 
the original input. Technically, these stylistic aspect is related to the 
learned patterns of component configurations derived from the training 
data. We first test SATO’s ability in styled shape generation controlled 
through its BCs: varying loads and adjusting the fixed regions (Fig.  9), 
from a single input.
8 
In the test, we set the volfrac as 0.45, 0.55, and 0.46 for the 
cases from top to bottom in Fig.  8 and default parameters mentioned 
in Section 6. We observed styled shape generations ranging from ro-
bust, disc-leg structures to lightweight, swivel-chair, and four-legs-chair 
forms. SATO is able to control material allocation and overall den-
sity, influencing the weight and form of the generated style. These 
transformations evolve iteratively, as seen in the convergence curves 
of compliance and volume (Fig.  8). The generated styles exhibit varied 
topology and structural designs while retaining functionality and visual 
quality. This showcases the dynamic nature of SATO in shape genera-
tion process and its capacity to produce stylistic and structurally sound 
designs.

6.3. Styled shape generation with different design settings

We further test SATO’s ability in styled shape generation controlled 
through design settings: different initial TO values, and different volfrac 
(Fig.  10). The input parameters are listed in Table  2. The six different 
generated shapes are shown in Fig.  10, where each column has the 
same initial value but a different volfrac. The optimization process 
typically converged within 60–90 iterations, with each iteration taking 
approximately 6–7.5 s, demonstrating computational efficiency.

Our approach was also tested at different volfrac for diverse case 
studies, including a motorbike, a guitar, and a lamp, and it successfully 
generated physically reliable and geometrically plausible 3D shapes 
(Fig.  11).

We observed that volfrac values below 0.25 lead to structural de-
ficiencies, inadequate load support, and reduced reliability, as seen in 
Fig.  12. The limitations, inherent in TO, also appeared in the VAE-based 
TO, and we aim to address them in future work.

7. Conclusion, limitations, and future work

In the present work, a novel structure-aware topology optimization 
(SATO) approach is proposed. This approach overcomes the limitations 
of traditional approaches by incorporating geometry and corresponding 
structural information in a unified latent space to create mechanically 
robust and geometrically plausible structures. By leveraging a varia-
tional autoencoder’s latent space, we enable the generation of diverse, 
physically reliable designs with various styles. Numerical examples 
demonstrate up to 95.7% reduction in compliance, showcasing signif-
icant improvements in stiffness and stress performance. This approach 
bridges the gap between generative design and physics-based optimiza-
tion, offering a powerful tool for creating high-performance, stylish 
structures. Our method’s ability to freely interpolate between source 
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Fig. 8. Convergence curves of compliance and volume for different styles of generation, distinct from the input, along with interim results.
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Fig. 9. Test SATO’s ability in styled shape generation at different BCS. Given the same input at the left, different loads and support setups are described in the middle, and 
different shapes are generated at the right. Here, loads are applied to the back and seat areas of the chair (highlighted in red), while the legs serve as the fixed regions for support.

Fig. 10. Test SATO’s ability in styled shape generation at various design settings: different initial TO values, and different volume fraction. Each column has the same initial 
values but at different volume fractions.

Computer-Aided Design 183 (2025) 103864 
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Fig. 11. Other case studies with their corresponding volume fractions shown below.
Fig. 12. The failure examples of SATO’s approach when the volume fraction becomes less than 0.25.
and target shapes in latent space opens new possibilities for AI-driven 
design and engineering, providing a flexible and efficient solution for 
structural optimization with semantic control.

7.1. Limitations

Despite the promising results, the proposed approach has certain 
limitations that need to be addressed. Our method at present con-
siders only volfrac as a constraint, which, while common, restricts 
control over the shape-generation process. For instance, the inability 
to incorporate user-defined constraints, such as sketch-based guidance 
or image-based priors [12,54], limits the flexibility and creativity of 
the generated shapes. Introducing such constraints could significantly 
enhance the method’s ability to produce more diverse and user-specific 
designs.

Another significant limitation is the need for manual intervention to 
pre-set boundary conditions (BCs). This requirement not only increases 
the complexity of the workflow but also reduces the overall scalability 
of the method, particularly for large-scale or complex structures. While 
11 
concepts like simulation intent [55] or XVoxel [38] offer potential solu-
tions by automating or simplifying the specification of BCs, integrating 
these approaches into our framework remains an open challenge. Ad-
dressing these limitations could produce a more robust and versatile 
3D shape generation framework.

7.2. Future work

Several directions could be explored to further improve and extend 
the proposed approach. One promising avenue is embedding SATO 
within a gradient-free topology optimization (TO) framework [56–58]. 
This would eliminate the need for problem-specific sensitivity analysis, 
as discussed in Section 4.3, thereby broadening its applicability to com-
plex industrial design problems. However, this approach comes with 
significant computational costs, requiring several orders of magnitude 
more structure simulations than gradient-based optimizers to reach 
convergence [58]. The integration of physics-informed neural networks 
(PINNs) [59] could help alleviate this issue by accelerating convergence 
and improving optimization efficiency.
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Another key direction is the development of a surrogate deep-
learning-based prediction model [59], which could significantly reduce 
finite element (FE) computation costs and accelerate the TO process. 
This enhancement would enable the method to handle more complex 
geometries and multi-field simulations, making it suitable for industrial 
applications such as automotive and consumer electronics design.

Additionally, integrating a geometry-physical coupled latent space 
that encodes both the physical performance and geometric attributes 
of a shape would be highly desirable. This would enable a fully au-
tomated, responsive design process, allowing the generation of struc-
turally optimized and aesthetically refined models. Such advancements 
could enhance applications in engineering, architecture, and product 
design, further bridging the gap between AI-driven generative design 
and physics-based optimization.
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