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Abstract

Predicting the physical property of a class of microstructures is crucial in material design, structural sim-
ulation and design, etc. Property prediction may be conducted millions of times in these studies and is
better derived instantly for computational efficiency. This issue is addressed in this study via building a
mapping from a 3D microstructure to its effective material property, or called structure-property mapping,
using a 3D convolutional neural network(CNN). Unlike the direct approach using labeled simulation data,
the mapping is based on the physical knowledge of the structure-property relationship determined by its
underlying PDE equations. The knowledge is embedded in the loss function of the CNN framework, which
is designed and tested under several different formulations to improve its training convergence. Ultimately,
the derived structure-property mapping can instantly predict the associated material property for a given
microstructure and has far better generalization ability than the data-labeled approach, as demonstrated
via numerical examples.
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1. Introduction

In recent years, advancements in additive manufacturing have made it possible to fabricate complex
structures at the microscale [1, 2]. At the same time, due to the excellent physical characteristics of porous
structures, such as high strength-to-weight ratio [3] and enhanced damping [4], the optimal design of a porous
structure or its internal microstructure has also attracted more and more attention in various industrial fields.
Elaborate design or optimization of porous structures can obtain super-material properties that do not exist
in nature. However, it is considerably difficult and computationally challenging to predict the physical
behavior of these microstructures well. As the property prediction needs to be performed numerous times
when optimizing a cellular structure, it becomes highly time-consuming and may impede the utilization of
cellular structures in industrial applications.

The structure-property mapping can be obtained using the conventional prediction approaches, such as
n-point correlations, asymptotic homogenization, machine learning, et al., as shown in Fig. 1. These con-
ventional approaches consist of two main types: the analytical approach based on the statistical continuum
theories [5], and the numerical approaches based on finite element (FE) methods. The analytical approaches
are built on suitable statistical descriptions of the microstructures in the form of n-point spatial correlations,
but they are insufficient to quantify the material property fully. Although the numerical approaches can
effectively describe the microstructure’s physical response under external loadings, their computational costs
are significant.

In the past several years, some data-driven approaches (machine learning and deep learning) were also
introduced to microstructure analysis to circumvent these difficulties, while all of these methods need to
generate ground-truth labels because of the training process, which makes these approaches rather laborious.
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Figure 1: Conventional methods of structure-property prediction(e.g., predicating the homogenized elasticity tensors of the
varying-diameter truss structures).

Physics-informed neural networks (PINN) [6] are typical neural networks trained to solve supervised
learning tasks while respecting any given laws of physics described by general nonlinear partial differen-
tial equations(PDE). However, it has yet to be entirely clear which type of quantitative physical measure
is appropriate for a specific learning task. In this study, we aim to resolve this issue by designing and
testing various PINN measures, with or without data-driven measures, for the specific task of building a
microstructure-property mapping that can instantly predict the effective property for an input microstruc-
ture.

We propose an approach to build a structure-property mapping derived based on the physical knowl-
edge of the structure-property relationship determined by its underlying PDE equations. The knowledge
is embedded in the loss function of a neural network and is carefully designed and tested using various
physics-based discrete energy forms to improve its training convergence. In general, the n-point correlation
functions, as described above, would involve selecting the neighbor points and weights to measure their
relative priority to express the microstructure property. It has a very close similarity to the convolution
involved in convolutional neural networks (CNNs), and we thus derive the mapping using CNNs. Ulti-
mately, the derived structure-property mapping can instantly predict the associated material property for a
given microstructure under study and has better generalization ability than the data-labeled approach, as
demonstrated via numerical examples.

In summary, the study has the following main contributions:

• A plausible neural network framework to instantly predict structure-property is developed without
using any labeled training data;

• The effectiveness of the energy-based loss function is validated by comparing its performance against
other physics-driven loss functions, including PDE-based loss and weak-form-based loss, as well as
data-driven approaches;

• Theoretical foundations behind the different performances of the different PINN loss functions were
explored, in particular, by studying their associated matrix’s condition numbers.

The paper is organized as follows. The problem of structure-property mapping and overview of the
proposed approach is outlined in Section 3. Details on the label-free neural network for 3D microstructure-
property mapping are explained in Section 4. Numerical results of the proposed approach are demonstrated,
analyzed, and compared to other approaches in Section 5. Finally, we conclude the paper in Section 6.
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2. Related work

Predicting the effective property of a microstructure has long been studied as a central topic in material
studies [7, 8, 9, 10, 11, 12], mechanical industrials [13, 14, 15, 16, 17], and solid modeling communities [18].

The analytical approaches [19, 20] have demonstrated low computational costs for lower-order descrip-
tors, but their progress toward higher-order descriptors is hindered by the need to accurately establish
the associated Green’s function-based kernel [21, 22]. Tan et al. [11] proposed a constrained finite element
method for modeling the physical property. Although the numerical approaches usually have high prediction
accuracy for highly heterogeneous materials and complex microstructures, the computational costs of these
approaches play a dominant role in concurrent topology optimization that involves even millions of such
FEA computations [24, 25].

Data-driven meta-models have been developed that have obtained practical usage in effectively combining
accuracy and low computational costs [26, 27], relying on Machine Learning (ML) algorithms or data sci-
ence toolsets. For example, offline computation strategies based on POD/PGD model reduction [28, 13, 29]
or interpolation [30, 31] have been proposed via pre-computed elasticity tensors for some sampling data
structures. On the other hand, the neural network method has been extended for micro-structure mod-
eling [32]. Deep neural networks (DNNs) are emerging as one of the most promising candidates for their
universal and high-order descriptions, facilitating instant structure-property mapping [8, 9, 24, 33, 34, 35].
For example, [24] computes the homogenized elasticity tensors for some data points of the varying-diameter
truss structures and obtains a surrogate model offline for online interpolation. In these studies, the DNN
training is commonly posed as a supervised learning problem, and a sufficient amount of training data has
to be prepared for accurate prediction [8, 9]. These data-driven methods heavily rely on the ground-truth
labels when training the model, which is time-consuming. In addition, the data-labeled approach usually
tends to overfit the training data and suffers its loss of generalization ability, as will be further observed in
our numerical examples in Section 5.

Recently, Yang et al. [36] introduced a novel CNN-based simulation for multi-material optimization,
which does not rely on any labeled simulation data but is instead designed based on a physics-informed loss
function without using labeled training data. In particular, a novel energy-based loss function is defined
based on the principle of minimal potential energy. Such loss function was also used in the PH-Net [23]
for predicting the homogeneous material properties for microstructures with a parallel hexahedral boundary
shape. The newly developed 3D U-Net [37], instead of CNN, was used, where they introduced a shape-
material transformation and voxel-material tensor to encode the microstructure type, base material, and
boundary shape together as the input of the net.

In this study, the performance of the energy-based loss function is further explored and validated, e.g.,
the generalization of the models, by comparing it against other physics-driven models, such as PDE-based
loss and weak-form loss, and data-driven approaches. In addition, relations between these loss functions
and their associated matrix conditioner numbers are explored to lay a theoretical foundation of the PINN
for microstructure-property prediction. More typical datasets of microstructures are also introduced in this
study in comparison with [23].

3. Problem statement and approach overview

3.1. Problem statement

The problem of structure-property prediction takes a microstructure as input. The voxelization repre-
sentation of the microstructure is taken due to its ability to produce uniform expression, compatibility with
the conventional CNN, and ease of FE analysis.

Suppose ω is a 3D unit cell, divided into m × m × m voxels erst, 1 ≤ r, s, t ≤ m. A microstructure is
defined on ω and represented by a material distribution parameter ρ ∈ Rm×m×m, where 0 ≤ ρrst ≤ 1 or
ρrst = 0, 1 represents a continuous or discrete density in voxel erst, see Fig. 3.

The linear elasticity problem is studied here, and the property of the structure ρ is defined as its
effective elasticity tensor DH(ρ) in the macro-scale, which measures the stress response to its strain tensor.
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Figure 2: Macroscopic and microscopic scales in the asymptotic homogenization theory.

(a) A microstructure (b) Voxel representation

Figure 3: An input microstructures and its voxel representation.

Specifically, the generalized Hooke’s law gives

σ = DH(ρ)ε, (1)

where σ and ε are the second-order stress and strain tensors, respectively, and DH is the fourth-order
elasticity tensor. The fourth-order elasticity tensor DH

ijkl can also be written in a matrix form, as not
detailed here.

In this study, we aim to construct the high-dimensional mapping from a set of microstructures {ρ}
defined on the unit cell ω to the corresponding material properties, i.e., the effective elasticity tensor

{ρ} → {DH(ρ)}. (2)

The convolutional neural network (CNN) is taken to build the mapping and is stated as follows:

(Structure-Property Mapping Problem:PO) Construct the structure-property mapping via building
the CNN model NH :

D̂H(ρ) = NH(θ,ρ), (3)

for predicting the effective elasticity tensor D̂H(ρ) for any input ρ ∈ p(ρ), where p(ρ) is the associated
density postulated by mathematical considerations or learned from data, θ the parameters of the neural
network NH , and D̂ represents the value of variable D outputted by the neural network.
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In fact, various approaches [8, 9] have been developed to construct the DNN NH for Problem PO using
data-driven approaches, which minimizes the loss function

Llabel =
1

N

N∑
s=1

∥∥∥DH(s) − D̂H(ρ(s))
∥∥∥2
F
, (4)

where D
H(s)

is the effective elasticity tensor of s-th microstructure ρ(s) pre-computed using traditional
structure-property prediction approaches.

In this study, the model NH(θ,ρ) will be generated without any labeled training data. The performance
of the data-driven model is to be compared with the proposed label-free model in Section 5.

3.2. Asymptotic homogenization

The proposed label-free structure-property mapping relies on the theory of asymptotic homogeniza-
tion [38, 39]. It assumes that ω(ρ) is periodically distributed within the space, and its area is relatively
small enough as a homogenized point in the macroscopic scale.

Fig. 2 shows macroscopic and microscopic scales in the asymptotic homogenization theory of a porous
structure, where X stands for the X-th element and ε means the size of the element. Let y represent the
coordinate of a point in the micro-structure ω, and x be the coordinate of that point on the macroscopic
scale. Correspondingly, we can obtain the relationship between the microscopic and macroscopic coordinates
as:

x = X + y, 0 ≤ y ≤ ϵ

Accordingly, with an asymptotic expansion of the governing equations, the asymptotic homogenization
theory approximates the effective elasticity tensor DH(ρ) for the cell ρ via equalizing their strain energy at
the macro and micro scales, as stated below.

Lemma 1. [40]Let Dijpq(ρ,y) be the elasticity tensor at every micropoint y for a cell ω; Dijpq(ρ,y) takes
zero for void material. For each specific pair of i, j, k, l ∈ {1, 2, 3}, each component of the homogenized
elasticity tensor DH

ijkl(ρ) can be approximated as:

DH
ijkl(ρ) =

1

|ω|

∫
ω

(Dijkl(ρ,y)−Dijpq(ρ,y)
∂µkl

p

∂yq
)dω, (5)

where summation convention is used here for p, q ∈ {1, 2, 3} and henceforth, and the periodic unit strain
displacements µkl

p are obtained via solving:

∂

∂yj
(Dijpq(ρ,y)

∂µkl
p

∂yq
) =

∂Dijkl(ρ,y)

∂yj
, (6)

or equivalently, solving the weak form∫
ω

Dijpq(ρ,y)
∂µkl

p

∂yq

∂vi

∂yj
dω −

∫
ω

Dijkl(ρ,y)
∂vi

∂yj
dω = 0, (7)

for all periodic test function vi.

Thus, as shown in Fig. 4, numerically calculating the homogenized tensor DH(ρ) involves two steps:

1. Compute solutions µkl to Eq. (7), via FE analysis or others;

2. Substitute the derived solutions µkl into Eq. (5) to obtain DH
ijkl(ρ) (i, j ∈ {1, 2, 3}).
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Figure 4: A 2D example of asymptotic homogenization procedure.

Different values of k, l determine different elements of the homogenized elasticity tensor DH . Considering
the symmetry of the elasticity tensor (Dijkl = Djikl,Dijkl = Dijlk,Dijkl = Dklij), six different combinations
of (k, l) values are sufficient to get all the 21 independent components of the homogenized elasticity tensor
in 3D case.

Asymptotic homogenization has been applied widely to predict the properties of different microstructures
and is applicable to multi-material or high-contrast composite microstructures. However, its high compu-
tational costs will be prominent for high-resolution prediction or multi-scale design optimization problems,
where the asymptotic homogenization has to be conducted millions of times during the optimization iter-
ations. On the other hand, based on the asymptotic homogenization theory, our novel label-free neural
network is to be developed next, which instantly builds the structure-property mapping.

3.3. Overview on label-free CNN approach

Figure 5: Framework of the label-free 3D microstructure-property mapping over convolution neural network (CNN).

Noticing that directly training a neural network on the elasticity tensor based on Eq. (5) is difficult
to formulate, we instead derive the unit strain displacements µkl via a label-free neural network based on
Eqs. (6) or (7). The elasticity tensor can then be easily computed via Eq. (5). As illustrated in Fig. 5, the
procedure consists of the following two main steps.

Firstly, a mapping between the structure ρ and the associated unit strain displacements is derived via
constructing the following label-free neural network.

(Label-free Structure-Property Mapping Problem : PS) Construct the simulation neural network
model NS ,

µ̂θ = {{µ̂kl
θ } = NS(θ,ρ), ρ ∈ p(ρ) (8)
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to predict the unit strain displacements µ̂θ = {µ̂kl
θ } defined on the unit cell ω. Note k, l = 1, 2, 3, and 3

(2D) or 6 (3D) solution vectors are generated from Lemma 1.
The simulation model NS is to be built using a 3D convolutional neural network (CNN) with a novel

physics-informed loss function, as detailed in Section 4.
Next the effective elasticity tensor DH(ρ) is derived using the predicted µ̂θ = {µ̂kl

θ } based on Eq. (5),
which ultimately gives the final mapping,

D̂H(ρ) = NH(θ,ρ) = H(NS(θ,ρ),ρ). (9)

Both the forward propagation of the first part and the calculation of the second part can be accomplished
in interactive time.

4. Label-free CNN on high-dimensional structure-property mapping

The 3D convolutional neural network (CNN) is applied for our microstructure-property mapping instead
of the fully connected neural network. One reason is that the number of neural work parameters will explode
as the resolution of the microstructure increases. More importantly, in constructing the microstructure-
property mapping, the convolutional networks efficiently identify features from a great number of potential
features automatically without feature engineering.

The simulation CNN takes the microstructure ω(ρ) as input and outputs the unit strain displacement
fields µ̂. To get a well-approximated solution, a CNN model has to be trained by adjusting the weights to
minimize the pre-defined loss function. Instead of simply taking the loss function in (4), a physics-informed
loss function based on (7) is carefully defined, as detailed below.

4.1. The physics-informed loss function

Let {ρ(s)}Ns=1 be the training set (without any labels). The training of the neural network defined in
Problem: PS in (8) is equivalent to minimize the loss function defined as

min
θ

L(θ, {ρ(s)}Ns=1), (10)

where

L(θ, {ρ(s)}Ns=1) =
1

N

N∑
s=1

L(ρ(s), µ̂
(s)

θ
) (11)

for L being the loss of a single input.
It is observed in this study that different physics-informed forms for L may be defined, which may result

in different prediction performances. Different previous studies mainly based on the differential form [41, 42].
In our work, we introduce a novel weak-form-based loss function and an energy-based loss function, which
we will explain next.

PDE loss. In most previous studies, the original PDEs, together with their associated boundary conditions,
are adopted to define the loss function [41, 42]. In this study, the PDE of the unit strain displacements is
given in Eq. (6). It can be regarded as an elasticity problem under the body force, whose component on the
i-direction is ∂Dijkl(ρ)/∂yj . Accordingly, the following loss function is naturally considered,

Lpde(ρ,µ) =
∑
k,l

∫
ω

[
∂

∂yj
(Dijpq(ρ)

∂(µkl
p )

∂yq
)− ∂Dijkl(ρ)

∂yj

]2

dω. (12)

However, the body force equals zero within the domain of the same material. For the microstructure with
explicit boundaries, each point in the unit cell is either solid or void such that ∂Dijkl(ρ)/∂yj is hard to
calculate using numerical approaches. Based on the observations, the loss function defined as the residual
norm of the PDE is thus not adopted here.
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Weak form loss. Considering the weak form in Eq. (7), one can define the loss function as

Lweak(ρ,µ) =
∑
k,l

∑
periodic v

[∫
ω

Dijpq(ρ)
∂µkl

p

∂yq

∂v

∂yj
dω −

∫
ω

Dijkl(ρ)
∂v

∂yj
dω

]2

. (13)

Energy function loss. It is also noted that (7) is the first variation of the total potential energy function,

Π(µkl) =

∫
ω

1

2
Dijpq(ρ,y)

∂µkl
p

∂yq

∂µkl
i

∂yj
dω −

∫
ω

Dijkl(ρ,y)
∂µkl

i

∂yj
dω. (14)

Computing solution to Eq. (7) is equivalent to solving the minimization problem,

min
µkl

Π(µkl). (15)

Accordingly, the physics-inform loss function can also be defined in terms of the total potential energy
function as follows, bendsoe1988generating

Leng(ρ,µ) =
∑
k,l

∫
ω

1

2
Dijpq(ρ)

∂µkl
p

∂yq

∂µkl
i

∂yj
dω −

∫
ω

Dijkl(ρ)
∂µkl

i

∂yj
dω. (16)

Performance of the CNN under different loss functions (14) or (16) will be tested and compared in Section 5.

4.2. Numerics combing finite element basis

Numerically implementing the loss functions Eqs. (13) and (16) in a neural network faces the following
challenges. Firstly, innumerable options exist for v in Eq. (13) in the test function space and need to be
carefully selected. Secondly, the gradient computation faces an accuracy problem because the displacement
field has no analytical representation in the neural network. The gradient has to be approximated using
numerical approaches. In fully connected neural network simulation approaches where the spatial coordinates
are taken as the input, the gradient is computed using automatic differentiation of neural network [41, 42].
The CNN simulation approach [43] uses Sobel filters and correction matrices to approximate the gradients.
Both approaches do not apply directly to the physical loss under study.

To resolve the above issues, the finite element basis is introduced here such that the periodic function v
can be implemented as the FE basis, and the gradients of µkl

i can be derived via the differentiation of the
basis functions as we now explain.

Following the notations in Section 3, suppose the unit cell ω is discretized into M = m3 finite elements
of unit cubes. Following ideas in FE analysis, the solution µkl = {µkl

e } can be taken as the assembly sum
of those on each FE element e, where we specifically have

µkl
e (y) =

nb∑
n=1

Ne
n(y)u

kl
e,n, (17)

where Ne
n(y) is the basis function corresponding to node n in element e, ukl

e,n is the unknown value at node
n, and nb is the number of nodes of element e.

This way, the gradient of µkl can be computed via the gradients of the basis functions as

∂µkl
e (y)

∂yj
=

nb∑
n=1

∂Ne
n(y)

∂yj
ukl
e,n. (18)

Following a classical finite element assembly process, we have the stiffness matrix and force vector given
as follows,

K(ρ) =
∑

assemble

∫
e

BT
e De(ρ)Be dy,

fkl(ρ) =
∑

assemble

∫
e

BT
e De(ρ)ε

kl
0 dy,

(19)
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where De is the elasticity tensor of element e, Be is the strain-displacement matrix, and εkl0 corresponds to
the macroscopic unit strain fields taken the following form for the 3D problem,

εkl0 = (1, 0, 0, 0, 0, 0)T , (0, 1, 0, 0, 0, 0)T , (0, 0, 1, 0, 0, 0)T ,

(0, 0, 0, 1, 0, 0)T , (0, 0, 0, 0, 1, 0)T , (0, 0, 0, 0, 0, 1)T .
(20)

Accordingly, noticing that µ contains µkl for different k, l = 1, 2, 3, the discrete forms of Eq. (13) and
(16) are derived as

Lweak(ρ,µ) =
∑
k,l

∥∥K(ρ)µkl − fkl(ρ)
∥∥2
2
, (21)

Leng(ρ,µ) =
∑
k,l

[
1

2
(µkl)TK(ρ)µkl − (µkl)T fkl(ρ)

]
. (22)

The assembly of the global stiffness matrix K(ρ) can be further avoided via calculation of the element-
wise loss for parallel implementation,

K(ρ)µkl =
∑

assemble

Ke(ρe)µ
kl
e , (23)

whereKe(ρe) =
∫
e
BT

e De(ρe)Be dy is the local stiffness matrix and µkl
e is the displacement vector of element

e.
The energy functional loss can also be easily computed as the sum of the element-wise values as

1

2
(µkl)TK(ρ)µkl − (µkl)T fkl(ρ) =

M∑
e=1

[
1

2
(µkl

e )TKe(ρe)µ
kl
e − (µkl

e )T fkle (ρ)].
(24)

Thus, solving a large-scale, sparse linear equation is avoided. In addition, as all the FE elements are of the
same shape, no element integration is involved in this process, and the above loss computations are very
efficient and different from FE analysis even though the FE basis is used. Moreover, the above computations
are naturally conducted in parallel with GPUs in machine learning platforms like PyTorch, TensorFlow, et
al.

Effective elasticity tensor computation with FE basis. Once the discretized unit strain displacements {µkl
e }

are obtained, the matrix form of the effective elasticity tensor can be computed as follows [44],

DH(ρ) =
1

|ω|

M∑
e=1

∫
e

(I−Beµe)
TDe(ρ)(I−Beµe) dω (25)

where I is the identity matrix and µe contains the three (2D) or six (3D) displacement vectors µkl
e of element

e.

4.3. Comparison between the physics-informed loss functions

The convergence behavior of the two different loss functions defined via Eqs. (13) and (16) is further
analyzed below.

We have the gradient of the loss function with respect to the neural network parameter θ as follows,

∂L
∂θ

=
1

N

N∑
i=1

∂L

∂µ̂kl

∂µ̂kl

∂θ
, (26)
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where for the weak form (13)

∂L

∂µ̂kl
=

∂Lweak

∂µ̂kl
= 2KTKµ̂kl − 2KT fkl, (27)

or for the energy form (16)
∂L

∂µ̂kl
=

∂Leng

∂µ̂kl
= Kµ̂kl − fkl. (28)

Solving the minimization problem is equivalent to solving the following linear equations,

Kµ̂kl = fkl, (29)

or
(KTK)µ̂kl = KT fkl. (30)

Noticing that the global stiffness matrix K is very sparse for the boundary value problem, the following
property on the associated condition number is observed,

cond(KT (ρ)K(ρ)) ≫ cond(K(ρ)), (31)

where cond(A) represents the condition number of a matrix A.
Correspondingly, Eq. (30) is generally expected to have much slower convergence behavior than Eq. (29),

and we can expect that the neural network would perform better using Leng than using Lweak. Results of
our numerical examples in Section 5 are also consistent with the above theoretical analysis.

Figure 6: A example of 2D convolution computation with a 3× 3 filter.

4.4. 3D convolutional neural network architecture

The convolutional neural network [45] is a class of deep learning neural networks containing convolution
calculations, and is a powerful tool for solving problems in computer vision [46], natural language process-
ing [47], etc. The convolutional layer is the core of convolutional neural networks. Fig. 6 shows a typical 2D
convolution operation with a 3×3 filter. As a specialized kind of linear operation, convolution with each filter
includes computing the dot product between the filter weights and an equal-sized subdomain of the input,
putting together the results of the dot products, and adding the bias. The convolutional neural network
extracts higher-order microstructure information as filters from the voxel microstructure information.
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Figure 7: Architecture of our 3D CNN, which mainly consists of four Conv3D blocks and two 3D convolution layers.

The architecture of our 3D convolutional neural network is illustrated in Fig. 7. The 3D convolutional
neural network mainly consists of four Conv3D blocks and two 3D convolutional layers. Different Conv3d
blocks have a similar structure but different input and output channels. The numbers of the input and
output channels of the 4 Conv3D blocks are (1,9), (9,18), (18,36), and (36,72), respectively. In detail, each
Conv3D block is composed in sequence of the batch normalization layer, double 3 × 3 × 3 convolutional
layers, the batch normalization layer, the Leaky ReLU activation function with slope a = 0.01 and another
3× 3× 3 convolutional layer. Zero-padding is used in all the convolutional layers such that the data shape
of each channel is kept as 40 × 40 × 40. In image processing, using multiple convolutional kernels of small
size performs better than a single big-size convolutional kernel [48]. Our Conv3D block is designed based
on this. The network has 14 convolutional layers with a total of 437642 parameters.

Figure 8: Degrees of freedom of 2D and 3D periodic FE elements.

Our CNN model takes as input the voxelized representation of a microstructure ρ and outputs the unit
strain displacement fields µkl. Corresponding to the FE basis introduced for loss computation, our simulation
neural network outputs the nodes’ displacements. The m×m×m voxel mesh has totally (m+ 1)3 nodes.
Each node corresponds to 3 degrees of freedom as the X-, Y-, and Z-direction displacements. However, the
degrees of freedom on the boundaries of the unit cell are not independent because of the periodic boundary
conditions. The square finite element mesh for the 2D unit cell and the cubic finite element mesh for the 3D
case with periodic boundary conditions are illustrated in Fig. 8. In our case, for each input microstructure,
the displacement fields µkl for six different εkl0 are to be output, and each µkl includes m × m × m × 3
degrees of freedom. In summary, the output for each input microstructure ω(ρ) is 6× 3 voxelization field of
size m×m×m.

We compared our CNN model with PH-Net [23] in Table 1. From the comparisons in the table, we
can see that the total parameters of PH-Net are approximately 14.3 times greater than ours, implying
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higher computational costs under similar circumstances. It is worth noting that our approach addresses
their deficiency in comparing loss functions as well. The utilization of the FE basis notably improves the
computational efficiency of gradient and loss function computations.

Table 1: Comparison between PH-Net and our model.

FE basis
Physical loss

function comparison
Data-driven

loss function comparison
Total parameters

PH-Net × × × 6.26M

ours
√ √ √

0.0438M

5. Numerical examples

5.1. Settings

Platform and general settings. Our 3D microstructure-property mapping neural network model, as well
as the other neural networks for comparison described below, have been implemented using PyTorch. A
Python code of 3D numerical homogenization is implemented by our own based on the 2D one [49]. The
homogenized results provide the reference effective elasticity tensors or are taken as labels for other data-
driven neural networks. In this study, we aim to test and compare our method with different physics-informed
loss functions (e.g., the weak form residual loss) and the data-driven approaches. Consequently, we need to
control nonsignificant variables and set the solid materials with fixed values. The resolution of all unit cells is
set as 40×40×40, considering the computational budget of the 3D numerical homogenization computation.
Although different resolutions may impact some test indices, such as training time, prediction time, and
predictive accuracy, these influences are not the focus of the present study. The solid materials have Young’s
modulus E = 1 and the Poisson’s ratio ν = 0.3, which are the same as PH-Net [23]. The proposed method
can be used for all kinds of materials, whether they can be manufactured or not at present. Validating
the properties of the material through physical experiments is another critical topic in future work. All
the experiments run on a PC of Ubuntu 16.04 with a 5GHz Intel core i9 CPU, 32GB RAM, and a single
NVIDIA TITAN Xp GPU.

Datasets (microstructures). Only the input samples are needed to train our 3D microstructure-property
mapping neural network model. In all the examples, the density of a void or solid element is set to ρ = 10−9

or 1, and the value of the light-colored element varies within this range. The minimum density, ρmin = 10−9,
is established to prevent singularity in the global stiffness matrices during numerical homogenization. To
train or validate the neural networks, voxelization sampling was conducted on the four types of microstruc-
tures, as depicted in Fig. 9.

Dataset 1 (Frame) Widely used in topology optimization and additive manufacturing [24, 51]. In our
experiment, 598 frame microstructures of 9 different topologies [50] are generated. For each topology, tens
of microstructures are generated with different strut radii.
Dataset 2 (TPMS) Triply periodic minimal surface defined by an implicit function I(x, y, z) = c, and
I > c or I ≤ c each is regarded as the TPMS element as listed in Table 2. Widely used in porous structure
modeling in 3D printing and tissue engineering fields [52, 53]. Different values of the shape parameters c
generate the sampling microstructures while keeping each one-piece. A total number of 565 TPMS cells are
included in this dataset.
Dataset 3 (LHS)Microstructures of random densities generated using the Latin hypercube Sampling (LHS)
method [35, 54]. For a unit cell of resolutionm×m×m, we sampled 8192 values in them3-dimensional space,
resulting in microstructures consisting of random gray-scale voxels, i.e., ρLHS = {ρLHS

ijk }, ρmin ≤ ρLHS
ijk ≤ 1.

Dataset 4 (P-LHS) Microstructures of penalized random densities for Dataset 3 (LHS), or ρ(i) =

(ρ
(i)
LHS)

di , di ∼ |N(0, 1.22)| for the i-th microstructure sampled by LHS. The proposed label-free structure-
property mapping relies on the theory of asymptotic homogenization which is based on the periodic boundary
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(a) Frame microstructures of different topologies from [50]

(b) TPMS-based microstructures: I > c (Top row); I ≤ c (Bottom row);

(c) Microstructures of random densities via Latin hypercube Sampling (LHS)

(d) Microstructures of penalized LHS random densities (P-LHS)

Figure 9: Microstructures for training or validating the performance of the 3D homogenization surrogate model.

conditions, so both the microstructures in LHS and P-LHS are of periodic boundaries. While the volume
faction of the LHS microstructure mostly falls around 50%, the volume fractions of the penalized microstruc-
tures vary from 16.43% to 99.97%, whose distribution is shown in Fig. 10. This dataset also includes 8192
microstructures.

We compared our datasets with those of PH-Net, as shown in Table 3. Our datasets have four types
of microstructures, while PH-Net has only three. Furthermore, functions of five typical TPMS are defined
in our Dataset 2, but PH-Net chooses TPMS as the microstructure with uniform samples in the volume
fractions ranging from 2% to 33%. In contrast, the volume fraction of our dataset covers a wider range,
varying from 16.43% to 99.97%. Overall, our datasets contain a greater variety of microstructures and a
broader volume fraction in contrast with PH-Net.

Accuracy metrics. The predicted elasticity tensor and the one from numerical homogenization, or D̂H and

D
H
, are compared to demonstrate the accuracy of the approaches. The accuracy is measured by relative

errors, calculated as follows for the (α, β)-th component of the elasticity tensor,

δαβ =


D̂H

αβ−D
H
αβ

D
H
αβ

, if |DH

αβ | ≥ ε,

0, if |DH

αβ | < ε,
(32)

for α, β ∈ {1, 2, · · · , 6} and ε being a small positive value. The mean relative error for a microstructure is
defined as

∆m =
1

36

6∑
α=1

6∑
β=1

δαβ (33)
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Table 2: Functions of 5 typical TPMS. X = 2πx− π, Y = 2πy − π, Z = 2πz − π.

Type Function I(x, y, z)

P cosX + cosY + cosZ = c

G sinX cosY + sinZ cosX + sinY cosZ = c

D cosX cosY cosZ − sinX sinY sinZ = c

I-WP
2(cosX cosY + cosY cosZ + cosZ cosX)

−(cos 2X + cos 2Y + cos 2Z) = c

F -RD
−(cos 2X cos 2Y + cos 2X cos 2Z + cos 2Y cos 2Z)

+4 cosX cosY cosZ = c

Figure 10: Distribution of volume fractions of microstructures in Dataset 4.

and the mean relative error for a dataset (training or validation set) is defined as

∆S =
1

NS

NS∑
i=1

∆i
m, (34)

where NS is the number of microstructures in the training or validation set.

Trained models. Five neural network models are trained to demonstrate the approach’s performance and
its comparison with other approaches. Models 1, 2, 3, 4 are independent models while Model 1-A is the
fine-tuned from Model 1.

The common features of Models 1, 2, 3, 4 are firstly introduced. The 3D CNN, as shown in Fig. 7,
is adopted for Models 1, 1-A, 2, 3 with the same hyperparameters and Model 4 uses a slightly different
one shown in Fig. 11 and to be explained. The frame microstructures are considerably common, and they

Figure 11: Architecture of the neural network for the elasticity tensor data-driven microstructure-property mapping model.
The neural network mainly consists of three Conv3D Blocks, each followed by a max pooling layer and four fully connected
layers.
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Table 3: Comparison of microstructure datasets between PH-Net and our model.

Frame/Truss Shell LHS P-LHS
Function numbers of

typical TPMS
Range of

volume fraction

PH-Net
√ √

× × 1 2%-33%

ours
√

×
√ √

5 16.43%-99.97%

have drawn the attention of many researchers. In our work, we selected frame microstructures from Dataset
1, which are pretty common, to train or validate these models for comparison. To make Dataset 1 more
representative, we generated 598 frame microstructures using nine different topology structures, and tens of
microstructures were generated with different strut radii for each topology. From Dataset 1, 512 samples
are randomly picked as the training set, and the rest of the microstructures are adopted as the validation
set for Models 1, 2, 3, 4. They are all trained for 6000 epochs using the SGD optimizer, where the batch
size is eight, considering the GPU RAM. The learning rate is adaptively adjusted in training using the one
cycle policy [55], where the maximum learning rate is 0.01.

The special characteristics of the models are listed as follows:
Model 1 (Ours): Trained using the potential energy loss function (22).
Model 1-A (Fine-tuned): Fine-tuned based on Model 1 using additional 76 P and F − RD TPMS
elements.
Model 2 (∥Kµ− f∥22 loss): Trained using the weak form residual loss function (21).
Model 3 (µ data-driven): Trained using pre-computed displacements µkl as labels and the loss function
is defined as

Lu =
1

N

N∑
i=1

Lu(ρ
(i), µ̂(i)), (35)

Lu(ρ
(i), µ̂(i)) =

∑
k,l

∥(µkl)(i) − µ̂kl(ρ(i))∥22 (36)

where (µkl)(i) is the pre-computed unit strain displacement field using FEA as the label of input ρ(i).
Model 4 (DH data-driven): Trained using the effective elasticity tensors as labels, and the loss function
is defined in Eq. (4). The neural network architecture of the model is illustrated in Fig. 11. The neural
network consists of three Conv3D blocks, each followed by a max pooling layer, one flattened layer, and four
fully connected layers. The kernel size of the max pooling is two, such that the feature map is reduced to
1/2 after each max pooling layer. The max pooling and fully connected layers gradually reduce the data
size. The number of parameters of the above neural network is 592643, larger than those of the 3D CNN in
Fig. 7.

The output of the neural network is the nine components of the elasticity tensor as DH
11,D

H
12, DH

13,
DH

22,D
H
23, D

H
33, D

H
44,D

H
55,D

H
66 considering the symmetry of the elasticity and that the values of the other

components are 0 or very close to 0 for the microstructures in the experiments. We have also tested similar
models outputting 21 and 36 components of elasticity tensors, and the one outputting nine components gave
the best results.

The time of training, label preparation, and online prediction for these models are summarized in Table 4.
The variations of loss functions (22), (21), (35), (4) corresponding to Models 1, 2, 3, 4, the training error
and the validation error are used to show the overall performance of an approach, and are shown in Fig. 12.
The training error represents the mean relative error, calculated as Eq. (34), for the training set including
512 frame microstructures, and the validation error indicates the mean relative error for the validation set
consisting of 86 frame microstructures.

In the following, the overall performance of the proposed approach (Models 1, 1-A) is first explained
in Section 5.2. After this, comparisons between the proposed and the one using a different loss function
(Model 2) are given in Section 5.3. The comparisons to data-driven approaches (Models 3, 4) are given
in Section 5.4.

15



Table 4: Time cost of homogenization surrogate modeling using our approach and data-driven approaches.

Approach
Label

preparation
Training

Online
predicting
/computing

Ours —
48.88 h

(6000 epochs)
11.23 ms

Weak form
residual loss

—
92.18 h

(6000 epochs)
11.23 ms

Data-driven -
displacements

34.66 h
(512 samples)

28.91 h
(6000 epochs)

11.23 ms

Data-driven -
elasticity tensors

34.68 h
(512 samples)

2.00 h
(6000 epochs)

0.60 ms

Numerical
homogenization

— — 243.86 s∗

(∗ In the Python implement of numerical homogenization, the global stiffness matrices are represented as sparse
matrices, and the linear systems are solved using the conjugate gradient method (scipy.sparse.linalg.cg) while using

the direct method (scipy.sparse.linalg.spsolve) costs more than half an hour for each microstructure.)

After training, given an input microstructure, it takes about 11.23 ms to output the effective elasticity
tensor via forward propagation and the calculation via Eq. (25) using Models 1, 1-A, 2, 3, while it takes
0.60 ms using Model 4.

5.2. Overall performance

The overall performance of our approach Model 1 is first explained, including its accuracy and gener-
alization ability analysis.

Accuracy. Seeing from Fig. 12(a), after 6000 epochs, the mean relative error of the training set decreases to
1.4%, and the one of the validation set decreases to about 1.7%. Some critical components of the elasticity
tensors as DH

11,D
H
22,D

H
33 are plotted as points in Fig. 13, where the x-coordinate indicates the reference

value from numerical homogenization and the y-coordinate indicates the predicted value. The mean and
the standard deviation values of the relative errors are marked in the upper left corners of the plots. The
distribution of mean relative errors for microstructures in the validation set are also illustrated in Fig. 14(a),
which tells that the mean relative errors of the predicted elasticity tensors are below 2% for most frame
microstructures. The maximum mean relative error for frame microstructures is about 13%.

Generalization. Given any microstructure, the 3D microstructure-property mapping neural network model
can output the corresponding elasticity tensor after training using the physics-informed loss function. In
this sense, the trained CNN model can generalize to any input microstructure without additional training.
On the other hand, the model is often expected to output the predicted elasticity tensor for a given input
via forward propagation in real-time. Such generalization ability to predict the elasticity tensors of different
microstructures is also evaluated here. To evaluate the generalization ability to predict the elasticity tensors
of different microstructures, we tested on all the 565 TPMS elements from Dataset 2, 512 LHS microstruc-
tures randomly sampled from Dataset 3 and 512 P-LHS microstructures randomly sampled from Dataset 4.
The results are analyzed as follows.

The relative errors in predicting the elasticity tensors of TPMS, LHS, and P-LHS microstructures are
shown in Fig. 15(a). Except for several P and F −RD type elements, the relative errors are all below 10%.
For all LHS microstructures and most P-LHS microstructures, the relative errors are all below 1%. The
mean relative errors for TPMS, LHS, and P-LHS microstructures are 4.4%, 0.66%, and 0.73%, respectively.

Fine tuning for different microstructures. Model 1 is further trained to improve its performance for the
P and F − RD elements without good accuracy, resulting in Model 1-A. Instead of the expensive total
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(a) Model 1 trained using the potential energy func-
tional loss (22)

(b) Model 2 trained using the weak form residual
loss (21)

(c) Model 3 trained using displacements labels (d) Model 4 trained using elasticity tensor labels

Figure 12: Loss and mean relative error variations for different models on Test Set sampled from Dataset 1.
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Figure 13: Scatter plots and relative error metrics of DH
11,D

H
22,D

H
33 predicted by Model 1.

re-training, the model is fine-tuned using the original 512 frame microstructures and one-third of the P and
F −RD elements (76 microstructures). The model is trained for another 500 epochs in 4.6 hours.

Using the fine-tuned model, the mean relative errors for TPMS, LHS, P-LHS, and frame microstructures
are 3.1%, 0.64%, 0.76% and 1.6%, respectively, and the distribution of relative errors is also shown in
Fig. 15(b).

5.3. Performance of loss functions

The performance of Model 1 and Model 2 under different loss functions was tested and summarized
in the section. Model 1 utilizes the potential energy functional loss (22), while Model 2 employs the weak
form residual loss (21).

Observing from Fig. 12(b), the value of the loss function finally reaches approximately 6 × 10−5 after
6000 epochs of training. The mean relative errors of the predicted elasticity tensors of the training and
validation sets are 10.61% and 12.86%, respectively. The distribution of relative errors of frame validation
is shown in Fig. 14(b). As can be seen from the results, the model trained by the energy functional loss is
superior to the one trained by the weak form residual loss in both efficiency and accuracy.

5.4. Performance of physics-driven and data-driven approaches

The performance of the proposed approach is also compared with data-driven approaches that utilize
displacements or effective elasticity tensors as labels, denoted as Model 3 and Model 4, respectively.
Computing the elasticity tensor of each microstructure takes approximately 243.86 seconds using numerical
homogenization. The data-driven approach takes about 35 hours to obtain the elasticity tensors as labels
for the training set of 512 samples.

5.4.1. Using displacement label

The training and validation errors in Fig. 12(c) are 4.3% and 4.7%, respectively, and the distribution of
relative errors for frame validation are shown in Fig. 14(c). It was found that the displacement data-driven
model obtains less accuracy than our physics-driven model for microstructures, either in the training or
validation set.

To find the reason, we further compare the output µ̂u of Model 3 and the output µ̂e of Model 1. For
each microstructure in the training set, the outputted µ̂u and µ̂e are substituted into the energy functional
function (22) and the displacement data-driven loss function (36). The differences as Lu(µ̂

e)−Lu(µ̂
u) and

Leng(µ̂
e)− Leng(µ̂

u) are illustrated in Fig. 16. It can be seen that for most microstructures,

Lu(µ̂
e) > Lu(µ̂

u),

but for all microstructures
Leng(µ̂

e) ≤ Leng(µ̂
u).
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(a) Model 1 (Ours) (b) Model 2 (∥Kµ− f∥22 loss)

(c) Model 3 (µ data-driven) (d) Model 4 (DH data-driven)

Figure 14: Mean relative errors distribution of elasticity tensors of microstructures in the frame validation set of Dataset 1
predicted by different models.

It indicates that the output of the displacement data-driven model is close to the displacement fields com-
puted from FEA using the square error metric but is far from the minimum point of the energy functional.
The fact tells that the displacement data-driven model needs to be better in terms of physical knowledge,
which consequently results in effective elasticity tensors of not high accuracy.

5.4.2. Using effective elasticity tensor labels

The performance of Model 4, which utilizes elasticity tensors as labels, is compared with Model 1. In
this scenario, the neural network directly predicts the elasticity tensor instead of displacement fields.

Observing from Fig. 12(d), the trained model achieves lower mean relative errors on both the training
and validation sets compared to those of our label-free approach, specifically 0.99% and 1.15%, respectively.

The relative errors for validation frame microstructures are all below 2%, as illustrated in Fig. 14(d).
However, when the TPMS, LHS, and P-LHS microstructures are all input into Model 4, significantly higher
mean relative errors are observed compared to those of our label-free approach, as depicted in Fig. 15(c).
The prediction error of Model 4 exceeds 20% for several microstructures, and the maximum relative error
surpasses 100%.

The above tests show better generalization ability for different types of microstructures compared to the
data-driven approaches. Furthermore, the generalization ability between microstructures of the same type
is further compared between our approach and the elasticity tensor data-driven approach.We conducted the
comparison experiments using Dataset 2 and Dataset 4, respectively. We trained models of our approach
and the data-driven approach with 32 P-type TPMS microstructures from Dataset 2 and validated them
with 68 different P-type TPMS microstructures. We sampled 128 P-LHS microstructures from Dataset 4
to train two models, one based on the proposed approach and the other on the elasticity tensor data-driven
approach, and another 1024 P-LHS microstructures were sampled for validation.

As seen from Fig. 17, both models get minimal relative errors on the training data after 5000-epoch
training. However, the validation error of the data-driven model is far greater than the training error.
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(a) Model 1 (Ours)

(b) Model 1-A (Fine-tuned) (c) Model 4 (DH data-driven)

Figure 15: Generalization of Models 1, 1-A, 4 for 565 TPMS elements of different types as Dataset 2, 512 LHS microstruc-
tures randomly sampled from Dataset 3 and 512 P-LHS microstructures randomly sampled from Dataset 4.

Figure 16: Differences of the displacements predicted by our model (Model 1) and the displacement data-driven model (Model
3) in terms of different metrics for microstructures in the training set.

In contrast, the variations of the validation error of our physics-driven model are similar to the training
error. The validation error of the data-driven model tends to increase even as the training error decreases
during the training procedure. Similar phenomena occur for other microstructures. For example, Fig. 18
illustrates the loss and relative error variations of models trained using our approach and the elasticity tensor
data-driven approach with 32 P-type TPMS microstructures and validated with 68 different P-type TPMS
microstructures. Our approach achieves a much smaller validation error compared to the data-driven one.

5.5. Experiments summation

The overall performance of the proposed approach is demonstrated and compared to the approach using
the weak form residual loss and the data-driven approaches. The time costs for different approaches are
summarized in Table 4, and the mean relative errors of various methods for different microstructures are
also summarized in Fig. 19.

Except for the elasticity tensor data-driven approach, our approach utilizing the energy functional loss
surpasses other methods in terms of efficiency, accuracy, and generalization ability. The elasticity tensor
data-driven approach achieves better accuracy in predicting the validation frame microstructures than ours,
with mean relative errors of 1.15% and 1.7%, respectively. However, the relative errors of the elasticity
tensors predicted by the data-driven model for different microstructures are much higher than those of our
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(a) Physics-driven (Ours) (b) DH data-driven

Figure 17: Loss and mean relative error variations in training (128 P-LHS microstructures) using our physics-driven and data-
driven approaches.

(a) Physics-driven (Ours) (b) DH data-driven

Figure 18: Loss and mean relative error variations in training (32 P-type TPMS microstructures) using our physics-driven and
data-driven approaches.

physics-driven model. In summary, our approach establishes a 3D microstructure-property mapping neural
network model with fair accuracy and far better generalization ability than data-driven approaches.

6. Conclusions

The study proposes a novel approach for constructing structure-property mapping using a label-free CNN
model that does not require any labeled simulation data. This is achieved by leveraging observations on
the characteristics of asymptotic approximation via FE analysis, statistical analysis via n-point correlation
function, and the powerful feature extraction capabilities of CNNs. The CNN model, trained with a novel
energy-based physics-informed loss function, ultimately learns the high-order hierarchical point correlation
within the voxelization representation of an input microstructure. Various numerical examples demon-
strate that the approach exhibits well-controlled errors and good generalization abilities across different
microstructures compared to data-driven approaches.

Future work on this topic is extensive, with some aspects explained below. Firstly, further study is needed
to understand why physics-informed models exhibit far better generalization ability than data-driven ones.
Secondly, although the CNN model proves highly effective in instant property prediction once trained, similar
to classical challenges in conventional deep learning, its validity and error control abilities lack theoretical
study and merit further exploration. Additionally, extending the approach to nonlinear cases and exploring
its applications in bi-scale simulation, inverse homogenization, or bi-scale topology optimization are also
worthy of future research efforts.
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Figure 19: Mean relative errors of different models predicting elasticity tensors for different microstructure inputs.
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