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We propose an approach to design an optimized heterogeneous interconnected porous 
structure over a fixed macro-design mesh for performance optimization, which has 
seldom been addressed despite its extensive potential industrial applications. We achieve 
this by introducing the concept of the extended triply periodic minimal surface (ETPMS), 
defined by an implicit function with additional control parameters that can prescribe the 
element anisotropy and heterogeneity consistently. The control parameters are expressed 
as continuous explicit functions of spatial coordinates, and ultimately generate a porous 
structure with perfect geometric connections and fully interconnected pore networks. 
The modeling advantages of the ETPMS come at the cost of challenges in its efficient 
simulation and optimization owing to its large number of varied ETPMS elements and 
their geometric validity requirements. These issues are further resolved using a strategy 
of offline pre-computation; in particular, parametric homogenization and several carefully 
designed optimization techniques. The performance of the approach is demonstrated using 
a suite of three-dimensional benchmark examples.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Porous structures appear extensively in natural objects such as bones, wood, cork, and bird beaks [1]. These structures 
manifest exceptional properties at relatively low densities, such as shock resistance [2], damping enhancement [3], and 
defect tolerance [4]. The supreme properties of porous structures arise from their complex geometries and topologies, par-
ticularly the structural heterogeneity and anisotropy, which have been tailored through thousand-year evolution given the 
competing constraints in nature [5]. These porous structures usually have fully interconnected pore networks within their 
interiors so as to enhance nutrition transfer or attachment, or to provide sufficient space for regeneration in tissue engi-
neering [6]. The interconnection property is also mandatory when fabricating such porous structures by means of additive 
manufacturing, so that the unnecessary support structures during fabrication can be cleaned during postprocessing [7]. 
However, approaches for the efficient design of such interconnected heterogeneous porous structures have seldom been 
presented.

We study the problem of designing a heterogeneous interconnected porous structure while simultaneously maintaining 
a high degree of mechanical and structural rigidity. The macro-design mesh is assumed fixed in the study so that we 
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have restricted the design space and thereby formulated a well-posed design optimization problem. The challenges of this 
problem lie in its proper geometric modeling, efficient performance simulation, and reliable design optimization.

In terms of the geometric modeling aspect, most conventional methods have mainly assumed a homogeneous element 
distribution, which only allows for rough shape tuning using parameters relating to the porosity and pore size. However, to 
utilize the design potentiality of porous structures maximally, it is highly necessary to model and control both the directional 
anisotropy and distributional heterogeneity. To achieve this goal, the concept of the extended triply periodic minimal surface
(ETPMS) is introduced, whereby the structural volume is prescribed using an implicitly defined surface under shape control 
parameters. In contrast to its counterpart the triply periodic minimal surface (TPMS), the ETPMS exhibits additional design 
freedom along three axis directions, further enhancing the element anisotropy. Moreover, instead of using discrete constant 
design variables in each cell, the ETPMS controls the element distribution using certain continuous controlling parameter 
fields, thereby enabling smooth transition between adjacent elements. Consequently, the consistent implicit definition of 
the ETPMS is expected to offer significant advantages in terms of continuous connectivity, structural integrity, and the 
distinctive properties of porous structures; compared to conventional lattice- or strut-based architectures, the ETPMS does 
not have joints and struts along the body.

The modeling advantages of the ETPMS come at the cost of challenges in terms of its efficient simulation. Conventional 
approaches [8–14] generally simulated the performance of such biscale structures via numerical homogenization, which 
computes an effective elasticity tensor for each microstructure via finite element (FE) analysis and substantially reduces the 
overall simulation costs. However, the costs remain high as the homogenization process must be conducted for each mi-
crostructure during each optimization iteration. We resolve the issue using the strategy of offline pre-computed parametric 
homogenization, which explicitly expresses the material property as a function of the ETPMS design parameters and can 
thus instantly simulate the property of an ETPMS element at any specific parameter. It ultimately not only avoids the com-
plex remeshing process, but also facilitates the process by building on a previous study on proper generalized decomposition
(PGD) [15].

A further disadvantage lies in the effective and efficient optimization owing to the implicitly defined shape description. 
A set of validity constraints must be prescribed for each ETPMS element for the ETPMS-based porous structure to be solid 
and/or core connected. This induces a significant number of constraints for the design optimization problem and makes 
it difficult to derive a converged solution efficiently. The numerical techniques of constraint aggregation and adjoint-based 
sensitivity computation are introduced to resolve the issue. Ultimately, the proposed approach can produce smooth and het-
erogeneous porous structures with scaled anisotropy and fully interconnected pore networks for performance optimization, 
as demonstrated via a suite of three-dimensional (3D) benchmark examples.

The main contributions of this study are as follows: An approach is proposed using implicit surfaces to design hetero-
geneous and anisotropic porous structures with fully interconnected pore networks, as well as a systematic approach for 
the implementation. The concept of ETPMS is presented for modeling the interconnected heterogeneous porous structures 
with consistent anisotropy and heterogeneity control, and a sufficient condition on its geometric validity is provided. Offline 
parametric homogenization is conducted based on PGD to predict the properties of a range of microstructures with high 
accuracy. A specially tailored biscale optimization approach for the ETPMS, in combination with the techniques of offline 
pre-computation and sensitivity computation, is demonstrated via various 3D numerical examples.

The remainder of this paper is organized as follows: pertinent studies are briefly reviewed in Section 2. The concept of 
the ETPMS is proposed, and its analytical and geometrical properties are described in Section 3. Thereafter, the problem of 
designing a heterogeneous porous structure for physical performance optimization is formulated in Section 4. The approach 
for computing the parametric homogenized material properties using PGD is presented in Section 5. The overall numerical 
optimization approach is outlined in Section 6. The numerical results from benchmark examples are discussed in Section 7. 
Finally, we conclude the paper in Section 8.

2. Review of pertinent studies

The current study is closely related to porous structure modeling, the TPMS, biscale topology optimization, and model 
reduction. Existing work on these topics is briefly reviewed in this section.

2.1. Porous structure modeling and TPMS

Heterogeneous and anisotropic porous structures exist ubiquitously in nature and have attracted substantial atten-
tion from researchers in the past several decades, particularly in the fields of bone tissue engineering [16] and material 
science [17]. The majority of these studies focused on the fabrication of porous structures using chemical or physical 
approaches, but provided little capability to control the modeling geometries. In recent years, the precise modeling of het-
erogeneous and anisotropic porous structures has started to attract more research interest with the development of additive 
manufacturing technologies, which significantly facilitate the precise fabrication of any geometrically complex structures. For 
example, Kou and Tan [18] initiated an approach to design irregular porous artifacts with controllable pore shapes and dis-
tributions based on Voronoi tessellations. Furthermore, Gómez et al. [19] used the Voronoi tessellation to design bone-like 
porous scaffolds.
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TPMS elements have been applied for modeling porous structures in previous studies. For example, a generalized pe-
riodic surface model was used in [20] to reconstruct the loci surfaces of crystals. Traditional TPMS elements are always 
periodically distributed in space, and in this study, they are extended to model porous structures so that the distribution 
and anisotropy of each element can be controlled precisely and explicitly with additional degrees of freedom. The modeling 
of heterogeneous porous structures for a smooth transition between adjacent TPMS elements with different shape param-
eters was also studied by Yoo [21]. In this study, the approach is extended to generate a smooth ETPMS with enhanced 
anisotropy control, and the overall distributions are further optimized to improve the elastic performance of the generated 
porous structure.

2.2. Biscale topology optimization

In this study, the performance of the porous structures is optimized within a biscale optimization framework, which 
is closely related to studies on topology optimization. In one of the pioneering works in topology optimization, Bendsøe 
and Kikuchi first proposed a homogenization-based topology optimization approach [8], in which the hole size parameters 
and an orientation parameter within each design element were iteratively optimized to produce an optimized structure. 
As opposed to our study, which focuses on porous structure design, the approach in [8] aimed to produce an optimized 
structure on the macroscale. Thus, it did not involve issues such as the porous structure modeling and its geometric validity, 
or forming an interconnected pore network within their interiors.

Biscale topology optimization has recently attracted extensive research interest, whereby both the macrostructure and 
microstructure densities have been taken as design variables and iteratively updated to optimal values [8–14]. Although 
biscale topology optimization has been demonstrated in creating complex structures with supreme properties, it still faces 
challenges, particularly expensive simulation costs and disconnection between adjacent elements. To reduce the computa-
tional costs, solutions based on meta-modeling or surrogate models have been proposed [22,23]. In our study, a PGD-based 
acceleration process is proposed to resolve this issue by constructing direct mapping from the design parameters to their 
associated effective elasticity tensors.

The geometric disconnection between adjacent micro-elements arises from the assumption of scale separation in 
homogenization-based simulation, which is involved in biscale optimization approaches. Consequently, the optimized overall 
structure does not necessarily form an integral part and is usually inferior to the designed structure [24]. This critical issue 
has recently attracted significant research interest, and several approaches based on geometric or physical constraints have 
been proposed [25,24,13,14]. In particular, Zong et al. proposed a variable cutting (VCUT) level set that uses a continuous 
cutting function by interpolating a set of height variables to generate functionally graded cellular structures, and ultimately 
achieved perfect geometric connections between adjacent cells [13]. This concept is similar to our proposal for creating a 
heterogeneous smooth ETPMS using interpolation functions on the controlling parameters.

Moreover, specific material anisotropy has been explored for structure optimization. For example, Liu and Shapiro [26]
realigned the orientations of microstructures inside macrostructures according to the material orientation obtained from 
topology optimization. Compared to the extensive studies on general biscale topology optimization, the design of an optimal 
structure made of specific anisotropic materials has undergone relatively little investigation. In recent years, Regazzoni et 
al. [27] constructed optimal multimaterial structures of minimum compliance using self-assembling diblock copolymers, the 
effective elastic properties of which were controlled by a scalar parameter and orientations of the anisotropy.

2.3. PGD

In this study, a model reduction approach, namely PGD, is applied to reduce the computational costs. PGD [15] is a novel 
model reduction approach that was recently developed for efficiently calculating a parametric simulation solution. The 
approach has been studied for various physical problems, such as viscous fluid motion simulation [28], heat problems [29], 
and linear elasticity [30]. We extend it to compute the parametric effective material properties for microstructures under 
parametric variations. In contrast to previous PGD studies, which have generally been conducted in a fixed computational 
domain, the computational domains studied in this work are not only varied by control parameters, but are also defined by 
implicit functions. This difference results in further issues in the efficient integral computation involved in computing each 
element of the associated stiffness matrix and elasticity tensor.

3. Extended triply periodic minimal surface (ETPMS)

We first introduce the following notations used throughout the paper. Let � := {�e}N ⊂R3 be a fixed 3D macro-design 
domain consisting of cubic elements �e , e = 1, . . . , N , and �D and �N are the fixed boundary and loading boundary, 
respectively. Let x := (x, y, z) ∈ � be the spatial Cartesian coordinate of a point in �, and s := {se = (ae, be, ce) ∈ I, e =
1, . . . , N} is the vector of control parameters defined on each cell �e ; I is the range of the parameters so that a connected 
ETPMS is generated. Accordingly, a set of discrete ETPMS elements φ(x, s) := {φ(x, se)}N is defined, where each element 
φ(x, se) is described by the control parameter se for an implicitly defined function. We also rewrite φ(x, s), φ(x, se) as 
φ(s), φ(se) for simplicity. We denote φc(s(x)) as the continuous ETPMS (or c-ETPMS) to model a porous structure under a 
parametric control function vector s(x) over the domain �. We present the details thereof in Section 3.2.
3
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Table 1
Functions of typical TPMS.

Type Function

P cos X + cos Y + cos Z − c = 0
D cos X cos Y cos Z − sin X sin Y sin Z − c = 0
G sin X cos Y + sin Z cos X + sin Y cos Z − c = 0
I-W P 2(cos X cos Y + cos Y cos Z + cos Z cos X) − (cos 2X + cos 2Y + cos 2Z) − c = 0
F -R D −(cos 2X cos 2Y + cos 2X cos 2Z + cos 2Y cos 2Z) + 4 cos X cos Y cos Z − c = 0

Fig. 1. Shapes of typical TPMS elements.

Fig. 2. P elements with parameter c changing from left to right, from −1.5 to 0.9 in a step of 0.4.

We formulate the problem of the heterogeneous porous structure design as determining the optimal distribution of 
φ(s) = {φ(se)}N under certain controlling parameters s for overall physical performance optimization. The postprocessing 
yields a smooth porous structure defined by a c-ETPMS φc(s(x)).

In the following, we first recall the classical TPMS, and then propose the concept of the ETPMS and c-ETPMS. A sufficient 
condition on the geometric connection of an ETPMS is also derived.

3.1. Triply periodic minimal surface (TPMS)

TPMS shapes have been found in copolymers, crystals, biological membranes, and many other areas of natural science, 
and have received attention from structural physicists and material scientists. They are minimal surfaces in R3 , with a 
zero mean curvature and periodicity in three independent directions. We refer to the volume enclosed by a TPMS in one 
periodicity as a TPMS element.

The classical TPMS includes the P , D , G , I-W P , and F -R D types, and these are usually defined via implicit functions 
φ(c) = 0, as listed in Table 1 and depicted in Fig. 1. We use the P type as an example without loss of generality. A TPMS 
φ(c) = 0 separates the unit cell �e into two parts: the solid part defined by φ(c) ≥ 0 and the void or pore part defined by 
φ(c) < 0. In particular, a P -type element over a cubic unit cell �e = [x0, x0 + 1] × [y0, y0 + 1] × [z0, z0 + 1], x0, y0, z0 ∈ Z
is defined as follows:

φ(c) = cos(2πx − π) + cos(2π y − π) + cos(2π z − π) − c ≥ 0, [x, y, z] ∈ �e, (1)

where c is a constant controlling the element shape.
As can be observed from Fig. 2, a smaller value of c results in a larger solid volume of the associated element φ(c).

3.2. Extended TPMS of controlled anisotropy

The concept of the ETPMS is introduced, which has a different anisotropy control parameter along a different axis direc-
tion.

Definition 1 (ETPMS). An ETPMS element of type P inside a cubic unit cell �e is defined as follows:

φ(r, s, t, p) = r cos(2πx − π) + s cos(2π y − π) + t cos(2π z − π) − p ≥ 0, [x, y, z] ∈ �e, (2)

where r, s, t �= 0, p are constant parameters controlling the ETPMS element shape.
4



M. Li, L. Zhu, J. Li et al. Journal of Computational Physics 425 (2021) 109909
Fig. 3. Extended P surface elements when c = 0 and a, b take different values. Each cell can be extended periodically in space along the x, y, and z 
directions.

Fig. 4. 2 × 2 × 2 tiling of extended P elements with different c values, representing connected or unconnected solids or pores: (a) fully filled; (b) pores not 
connected; (c) well-connected solids and pores; and (d) solids not connected.

As r �= 0, we rewrite (2) as follows for simplicity:

φ(a,b, c) = cos(2πx − π) + a cos(2π y − π) + b cos(2π z − π) − c ≥ 0, (3)

where a = s/r, b = t/r, and c = p/r. We also denote se = (a, b, c) for simplicity. In Fig. 3, the shapes for different a, b, and c
are plotted.

3.3. Range of parameters for volume connection

An ETPMS element φ(se) within a cubic unit cell �e divides the space into two volumetric structures φ(se) and �e \
φ(se), known as the solid and pore, respectively. We aim to construct a connected ETPMS in both parts. However, different 
values of se = (a, b, c) in (3) may produce well-connected or disconnected solids or pores (see, for example, Fig. 4). The range 
with respect to the parameters a, b, c must be properly determined for structural validity, as explained in the following.

The range of the parameters (a, b, c) is determined by taking into account the three types of colored points in Fig. 5: 
red, blue, and green, respectively. The relative locations of these points with respect to the ETPMS indicate the connections 
of the solid or pore parts, based on which we can specify the associated parameter range.

First, consider the extreme case in which the solid element fully fills the cubic unit cell. The condition is satisfied if the 
eight red points in Fig. 5 all lie within the volume element; that is, φ(x, se) ≤ 0 for the points x = (l1, l2, l3), l1, l2, l3 ∈ {0, 1}, 
which yields:

1 + a + b + c ≥ 0 =⇒ An ETPMS element is within the unit cubic cell. (4)

Next, the solid part of an ETPMS element is connected if the central green points on the six faces of the cubic unit cell 
in Fig. 5 all lie within the ETPMS element; that is, φ(x, se) ≥ 0 for x = (l1, 0.5, 0.5), (0.5, l1, 0.5), (0.5, 0.5, l1), l1 ∈ {0, 1}, 
which yields:
5
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Fig. 5. Description of sufficient condition on solid and pore connections of ETPMS element. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

⎧⎨
⎩

−1 + a + b − c ≥ 0
1 − a + b − c ≥ 0
1 + a − b − c ≥ 0

=⇒ a solid-connected ETPMS element. (5)

Similarly, the interior porous network (determined as � \ φ(x, se)) is fully connected if the blue midpoints of the 12 
edges in Fig. 5 are not within the solid ETPMS element; that is, φ(x, se) < 0 for x = (0.5, l1, l2), (l1, 0.5, l2), (l1, l2, 0.5), 
l1, l2 ∈ {0, 1}, which yields:⎧⎨

⎩
1 − a − b − c < 0

−1 + a − b − c < 0
−1 − a + b − c < 0

=⇒ a pore-connected ETPMS element. (6)

Summarizing the above results, we obtain the following important lemma.

Lemma 1. Given an ETPMS described by (3), the following properties are verified:

• The solid part is connected if both (4) and (5) are satisfied, the range of which is denoted by I s. The condition is specified as se ∈ I s .
• Both the solid and porous regions are connected if (4), (5), and (6) are all satisfied, the range of which is denoted by I sp. The 

condition is specified as se ∈ I s .

The two types of parameter ranges prescribed by Lemma 1 are illustrated in Fig. 6 as I s and I sp , respectively. Note that 
the range I s is a cone-like polyhedron and the range I sp is a subset of I s , where the values of the parameters a, b, c in I s or 
I sp may approach infinity; see also Fig. 6(b). Moreover, we note in Fig. 6(a) that different values of se produce very different 
types of ETPMS elements, which exhibit different material properties.

3.4. c-ETPMS

The ETPMS described above has a constant value se = {(a, b, c)} in each cell, and the adjacent elements are not smoothly 
connected for different values of se within different cubic cells. To produce smooth, heterogeneous porous structures with 
controllable anisotropy, we further introduce the concept of the c-ETPMS, which replaces the constant parameters a, b, c
in (3) with the continuous functions a(x), b(x), c(x). The continuity of the control parameters ensures a smooth transition 
between adjacent ETPMS cells.

Definition 2 (c-ETPMS). A c-ETPMS element under control parameter s is defined as follows:

φc(s) = cos(2πx − π) + a(x) cos(2π y − π) + b(x) cos(2π z − π) − c(x) ≥ 0. (7)

An example of a c-ETPMS is presented in Fig. 7. Note that the continuous functions a(x), b(x), c(x) can be defined by 
various types of interpolation functions, as discussed further in Section 6.4.

4. Problem statement and approach overview

We aim to optimize an interconnected porous structure using the c-ETPMS for performance optimization. The problem is 
first described within the context of the well-studied compliance minimization problem of linear elasticity analysis, which 
is followed by an overview of the approach.
6
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Fig. 6. Different ranges of parameters a,b, c in (3) determine different solid or pore connections of ETPMS elements. L = [0.5,2] × [0.5,2] × [−5,1].

Fig. 7. c-ETPMS defined by continuous parameter functions: (a) a(x, y, z) = 0.5x +0.25, b(x, y, z) = 1, c(x, y, z) = 0; (b) b(x, y, z) = 0.5x +0.25, a(x, y, z) = 1, 
c(x, y, z) = 0; and (c) c(x, y, z) = 0.5x − 0.75, a(x, y, z) = 1, b(x, y, z) = 1.

4.1. Problem statement

Given a fixed discrete macro-design mesh {�e}N for a design domain � under external loading, as illustrated in Fig. 8, 
we aim to determine an interconnected heterogeneous porous structure defined by a c-ETPMS; that is, φc(a(x), b(x), c(x))

in (7) or φc(s(x)) for short, for its compliance minimization. Note the macro-design mesh is assumed fixed in the study so 
that we have restricted the design space and thereby formulated a well-posed design optimization problem.

This problem is formulated as follows: Find the c-ETPMS φc(s(x))
7
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Fig. 8. Problem of optimal interconnected anisotropic porous structure design.

(Problem : P O ) min
s(x)

C(u, s(x)), compliance minimization,

s.t.

{
α(u,v) = l(v),v ∈ U0, equilibrium equation,
V (φc(s(x)))

|�| ≤ V, volume fraction constraint.
(8)

In the above, s(x) = (a(x), b(x), c(x)) is the design function to be optimized, U0 prescribes an appropriate admissible space, 
and

C(u, s(x)) =
∫

φc(s(x))

ε(u) : D : ε(u) dV , (9)

α(u,v) =
∫

φc(s(x))

ε(u) : D : ε(v) dV , l(v) =
∫
�N

τ · v d�, (10)

where τ is the external loading on boundary �N , ε is the strain in terms of the displacement field u, D is the elasticity 
tensor, and V (φc(s(x))) is the volume of φc(s(x)).

It is very challenging to resolve the above optimization problem directly, and we thus approximate the c-ETPMS, φc(s(x)), 
using a set of discrete ETPMSs {φ(se)}, in which each ETPMS φ(se) has a constant value of parameter se within a cubic cell 
�e . Furthermore, we apply numerical homogenization techniques to approximate the material property of each ETPMS 
element φ(se) to improve the computational efficiency, as also widely conducted in traditional concurrent topology opti-
mization approaches [8–12,14]. The consideration consequently leads to the following new problem formulation:

Find the discrete design variables s = {se} ∈RN×3 satisfying

(Problem : P H ) min
s={se}∈RN×3

C(u, s), compliance minimization,

s.t.

{
α(u,v) = l(v),v ∈ U0, equilibrium equation,
V (φ(s))

|�| ≤ V, volume fraction constraint,
(11)

where φ(s) = {φ(se)}, and

C(u, s) =
∫

φ(s)

ε(u) : DH : ε(u) dV =
∑

e

∫
φ(se)

ε(u) : DH
e : ε(u) dV , (12)

α(u,v) =
∫

φ(s)

ε(u) : DH : ε(v) dV =
∑

e

∫
φ(se)

ε(u) : DH
e : ε(v) dV , l(v) =

∫
�N

τ · v d�, (13)

V (φ(s)) =
∑

e

V (φ(se)) (14)

is the volume enclosed by φ(s), and DH
e is the homogenized elasticity tensor for each ETPMS element φ(se).

The effective elasticity tensor DH
e for an ETPMS element φ(se) has conventionally been evaluated using a numerical 

homogenization technique. As the homogenization process must be performed for each microstructure φ(se) during each 
iterative optimization process, it remains very computationally expensive. We address this issue by further expressing DH

e
as an explicit function of the design parameters se ; that is, DH

e (se), the derivation of which is detailed in Section 5.
This results in the following optimization problem: find the design variables s = {se} ∈RN×3 satisfying
8



M. Li, L. Zhu, J. Li et al. Journal of Computational Physics 425 (2021) 109909
Fig. 9. Flowchart for designing optimization of heterogeneous interconnected porous structures using ETPMS.

(Problem : P D) min
s={se}∈RN×3

C(u, s), compliance minimization,

s.t.

⎧⎨
⎩

K(s)u = f, u ∈Rn, equilibrium equation,
V (s)
|�| ≤ V, volume fraction constraint,

se ∈ Is, interconnection constraint,
(15)

where Is = I s or I sp is the parameter range defined in Lemma 1, prescribing the conditions on the solid or pore intercon-
nection, u ∈ Rn is the vector of nodal displacements to be computed, f represents the vector of external loading, and K(s)
is the overall stiffness matrix assembled cell by cell,

K(s) =
N∑

e=1

K(se) =
N∑

e=1

∫
�e

BT DH
e (se)B dV , (16)

for the strain–displacement matrix B, the target compliance

C(u, s) = uT K(s)u =
∑

e

uT
e K(se)ue, (17)

and V (s) = ∑
e V (se) is the sum of the volume enclosed by an ETPMS element φ(se).

4.2. Approach overview

As illustrated in Fig. 9, the overall approach for the design optimization of heterogeneous interconnected porous struc-
tures using ETPMS consists of three main steps. First, offline parametric homogenization is conducted, building on previous 
studies of PGD, which ultimately expresses the effective elasticity tensor DH (se) for an ETPMS cell as an explicit function 
with respect to the design parameter se .

Next, a biscale design optimization is performed to derive the optimal discrete ETPMS parameters {se, �e ∈ �}. Com-
pared to previous biscale parameter/topology optimization approaches, the studied optimization problem exhibits at least 
two challenges. First, the computational domains are varied during the optimization process, as described by an implicit 
function under different control parameters instead of the fixed computational domain that has popularly been studied 
previously. A remeshing process for elasticity analysis would thus be costly, and we deal with this issue by introducing a 
characteristic function so that a fixed computational domain is used during the optimization iterations. Second, a nontrivial 
range of design variables is prescribed for each cell �e so that a valid ETPMS cell can always be generated, as indicated in 
Lemma 1. This results in a large number of nontrivial optimization constraints and adds substantial difficulty in computing 
an optimized solution. In contrast, previous studies on design optimization have simply involved a single variable per ele-
ment, or have used multiple variables under trivial lower and upper bounds on each one [14]. The numerical techniques of 
constraint aggregation and adjoint-based sensitivity computation are introduced to resolve the issue.

Finally, once the discrete shape vector s = {se} is obtained, a perfectly smooth porous structure is constructed by inter-
polating the discrete shape parameters {se}, consequently yielding the target c-ETPMS φc(s(x)).

The details underlying the approach are explained further below.

5. Computing parametric homogenized material properties using PGD

The homogenized property DH
e of a microstructure φ(se) inside a cell �e is determined by its configuration; specifi-

cally, the shape parameter se . We construct the property DH (se) explicitly in terms of se by building on previous work on 
PGD [15].
9
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Fig. 10. Macro- and microscale in the homogenization theory.

5.1. Problem of parametric homogenization

Numerical homogenization provides a two-step approach for calculating the effective material property corresponding to 
a representative volume element (RVE), assuming that the RVE size is relatively sufficiently small as a homogenized point 
on the macroscopic scale. Consider the porous structure � in Fig. 10. Let �e be the X-th cell with respect to �, or the 
cell coordinate on the macroscale, and ε be the cell size. Let y be the coordinate of a point inside �e on the microscale, 
and x the coordinate of the point in the macroscale. Correspondingly, we obtain the association between the micro- and 
macro-coordinates:

x = X + y, 0 ≤ y ≤ ε. (18)

For the linear elasticity problem under investigation, the homogenization theory aims to approximate the elasticity tensor 
DH (�e) for each cell �e by equalizing their strain energy at the macro- and micro-scales, as stated below.

Lemma 2. [31,8,32] Let Di jpq(�e, y) be the elasticity tensor at every micro-point y for a microstructure φ(se) within a cell �e . For 
each specific pair of 1 ≤ i, j, k, l ≤ 3, each component of the homogenized elasticity tensor DH

ijkl(φ(se)) can be approximated as

DH
ijkl(φ(se)) = 1

|φ(se)|
∫

φ(se)

(Di jkl(φ(se),y) − Di jpq(φ(se),y)
∂μkl

p

∂yq
)dy, (19)

where the summation convention is used here and henceforth, and each periodic unit strain displacement μkl is obtained by satisfying∫
φ(se)

(Di jkl(φ(se),y) − Di jpq(φ(se),y)
∂μkl

p

∂yq
)
∂vi

∂y j
dy = 0, (20)

for all periodic v.

Equation (20) can be rewritten in the following form

A(μkl,v) = L(v), (21)

for all kinematically admissible v, where

A(μkl,v) =
∫
�e

Di jpq(�e,y)
∂μkl

p

∂yq

∂vi

∂y j
dy, L(v) =

∫
�e

Di jkl(�e,y)
∂vi

∂y j
dy, (22)

with periodic boundary conditions.
The aim of the parametric homogenization is to compute the displacement μkl(y) in (21) as a function of the space co-

ordinate y and ETPMS control parameter se , denoted by μkl(y, se). Accordingly, the numerical homogenization problem (21)
is transformed into a parametric form: find solution μkl(y, se) such that

Ase (μ
kl,v) = Lse (v), (23)

where

Ase (μ
kl,v) =

∫ ∫
D̄i jpq

∂μkl
p

∂yq

∂vi

∂y j
dydse, Lse (v) =

∫ ∫
D̄i jkl

∂vi

∂y j
dydse,
Is φ(se) Is φ(se)

10
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in which D̄ is the elasticity tensor of the solid material, and Is = I1 × I2 × · · · × Im is the range of the shape parameter 
se = (s1, s2, · · · , sm), without considering the interconnection of solid elements or pores in this case. For example, se =
(s1, s2, s3) = (ae, be, ce) for an ETPMS element.

In our PGD-based approach, each parametric displacement field μkl(y, se) is to be approximated as a sum of the products 
of decomposed functions in the following form:

μkl(y, se) ≈
M∑

i=1

(μ̄kl)i(y, se), for (μ̄kl)i(y, se) := di(y)gi
1(s1)gi

2(s2) · · · gi
m(sm), (24)

where di(y) is a piecewise polynomial function of the spatial coordinate y, and each gi
j(s j) ∈ L2(I j) is a function of the 

parameter s j ∈ I j . The corresponding test function v in (23) is also represented in the separated form as in (24).
Accordingly, the parametric homogenization approach consists of two main steps:

1. Solve (23) offline to obtain the parametric displacement fields μkl(y, se).
2. Compute online to obtain DH (s0

e ) for a certain shape parameter s0
e , by substituting μkl(y, s0

e ) into (19).

The successful derivation of the solution to (23) must overcome two main challenges: conducting FE analysis on the var-
ied domain φ(se), and an efficient numerical approach for computing the PGD solution in the form given in (24). Numerical 
approaches for addressing these two issues are explained in the following.

5.2. Conversion from varied domain to fixed domain

The solution μkl(y, se) to (24) is defined over a varied computational domain φ(se), and a classical approach would 
involve a costly repeating re-meshing process. We resolve this issue by converting the varied domain φ(se) into a fixed 
domain using the characteristic function. Specifically, we rewrite (23) in the following equivalent form:

Ase (μ
kl,v) = Lse (v), (25)

where

Ase (μ
kl,v) =

∫
Is

∫
�e

H(φ(y, se)) · D̄i jpq
∂μkl

p

∂yq

∂vi

∂y j
dydse,

Lse (v) =
∫
Is

∫
�e

H(φ(y, se)) · D̄i jkl
∂vi

∂y j
dydse,

in which H is the Heaviside function, and in practice, it is replaced by its regularized version as

H(φ(y, se)) =

⎧⎪⎨
⎪⎩

1, φ(y, se) > γ ,
3(1−ε)

4 (
φ
γ − φ3

3γ 3 ) + (1+ε)
2 , −γ ≤ φ(y, se) ≤ γ ,

ε, φ(y, se) < −γ ,

(26)

where γ is a small-valued parameter that controls the magnitude, and ε is a small positive number to prevent singularity 
of the global stiffness matrices during FE analysis. We use γ = 0.005 and ε = 10−9 in this study.

Although μkl and v can be represented as the separated form as in (24), the integration function in (25) must be 
computed in the high-dimensional space �e × Is because H is a function with respect to all y and s j , j = 1, ..., m. This 
requires excessive time because of the curse of dimensionality, which can be resolved by separating the variables x and s j

in the characteristic function H , thereby yielding H in the following separated form:

H(φ(y, se)) ≈
∑

i

Hi
y(y)Hi

s1
(s1)Hi

s2
(s2) · · · Hi

sm
(sm). (27)

The separation of the characteristic function H can be achieved using high-order singular-value decomposition (HO-
SVD) [33], as explained below. Thereafter, the variables are separated in the integral in (25) and the high-dimensional 
integration is to be computed as the sum of products of certain low-dimensional integrations, which incurs substantially 
lower computational costs.
11
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5.3. Variable decomposition of characteristic function

Let χ denote a variable in {x, y, z, s1, . . . , sm}, and we sample nχ points for each variable χ . Consequently, we have a 
total of 

∏
p∈P np points in the domain e × Is1 × · · · × Ism , which yields a tensor H ∈Rnx×ny×nz×ns1 ×···×nsm computed via

Hi1,i2,i3,i4,··· ,im+3 = H(xi1 , yi2 , zi3 , s1i4
, · · · , smim+3

). (28)

HO-SVD aims to approximate the function H as products of functions in a lower dimension by approximating its values 
at these sample points of tensor H. Specifically, it first approximates H in the following Tucker product form:

H ≈ S ×1 U x ×2 U y ×3 U z ×4 U s1 ×5 · · · ×m+3 U sm , (29)

where S , with size k1 × k2 × · · ·km+3, is the core, and each U (χ) ∈Rnχ ×kχ is the matrix corresponding to the variable χ .
Let U

χ
i be the approximate function in terms of one-dimensional linear FE bases and Uχ

i be the i-th coefficient column 
vector of Uχ for i = i1, . . . , im+3. Thus, we have the following decomposed form approximating H :

H ≈
k1∑

i1=1

· · ·
km+3∑

im+3=1

si1,··· ,im+3 U
x
i1
(x)U

y
i2
(y)U

z
i3
(z)U

s1
i4

(s1) · · · U
sm
im+3

(sm). (30)

Algorithm 1 Numerical approach for PGD.
1: Initialize Set the solution μ = 0, iteration step N=0, approximation error err_iter=1, and provide the maximal iteration step max_iter and tolerance 

error tol.
2: while err_iter > tol and N < max_iter do
3: N = N + 1 //Increase the iteration step.
4: Initialize Set d = 0, g j = 1, j = 1, · · · , m, and the error err = 1.
5: while err > tol do
6: dr = d, gr

j = g j , j = 1, · · · , m // Record the origin values for the fixed-point check.
7: Find d for all δd such that

A(d
m∏

j=1

g j) = L(δd
m∏

j=1

g j) − A(μN−1, δd
m∏

j=1

g j).

8: Find gk (k = 1, · · · , m) sequentially for all corresponding δgk such that

A(d
m∏

j=1

g j) = L(dδgk

∏
j �=k

g j) − A(μN−1,dδgk

∏
j �=k

g j).

9: err = ||dr − d|| + ∑m
j=1 ||gr

j − g j || //Check if the fixed point is reached.

10: end while
11: μ = μ + d ∏m

j=1 g j . //Enrich the solution.

12: err_iter = ||d|| · ∏m
j=1 ||g j || //Check if the solution converge.

13: end while
14: Return μ.

5.4. Numerical solution of PGD

Each parametric displacement field μkl(y, se) is to be approximated using the PGD form as in (24). For simplicity, the 
superscript of μkl(y, se) is abbreviated; that is, μkl(y, se) is represented as μ(y, se).

The computation of PGD solution (24) can be achieved by an enrichment process together with a fixed-point strategy 
following [15]. Specifically, we determine the solution in the i-th step using the results from (i − 1)-th step in the following 
form:

μ(i)(y, se) = μ(i−1)(y, se) + d(y)

m∏
j=1

g j(s j), (31)

where d(y) and g j(s j) ( j = 1, . . . , m) are to be determined in the i-th enrichment procedure.
Substituting (31) into (23) results in

A(d
m∏

g j,v) = L(v) − A(μ(i−1),v), (32)

j=1

12
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Fig. 11. Comparison between components of elasticity tensors computed via our parametric homogenization approach without using HO-SVD and via the 
numerical homogenization approach for the ETPMS element.

Fig. 12. Comparison between components of elasticity tensors computed via our parametric homogenization approach using HO-SVD and via the numerical 
homogenization approach for the ETPMS element.

where the test function v is also separated as,

v = δd
m∏

j=1

g j +
m∑

k=1

dδgk

m∏
j=1, j �=k

g j, (33)

in which δd and δgk are test functions for d and gk( k = 1, . . . , m), respectively.
An iterative fixed-point procedure is applied for each enrichment step to compute d and gk, k = 1, . . . , m iteratively, one 

by one, by fixing the values of the other functions. The pseudo-code of the numerical approach for PGD is presented in 
Algorithm 1.

5.5. Performance of parametric homogenization

The proposed PGD-based parametric homogenization approach was implemented in MATLAB 2018b, and run on a PC 
with a 3.6 GHz Intel Core i7 CPU and 16 GB RAM. On this basis, the efficiency and accuracy of the parametric homogeniza-
tion were analyzed for a base material with Young’s modulus E = 1 Pa and Poisson’s ratio ν = 0.33.

We first investigate the computational efficiency. Consider a specific case, in which we computed a five-term PGD solu-
tion for an ETPMS element with parameters a, b ∈ (0.6, 1.4) and c ∈ (−0.2, 0.2). This required 4.2 and 8.7 h with or without 
using HO-SVD, respectively. Thereafter, evaluating the effective elasticity tensor (19) only took an average of 0.04 s. For com-
parison, directly performing the numerical homogenization was estimated to take approximately 694 h, or approximately 
29 days for a sample of 50 × 50 × 200 or a total of 5 × 105 points (ae, be, ce); each sample took approximately 5.16 s for an 
ETPMS with a mesh size of 20 × 20 × 20.

The computational accuracy was also analyzed for a set of sampling points by comparing the obtained homogenized 
elasticity tensors using our approach with or without HO-SVD against those obtained using numerical homogenization, 
measured in terms of their Euclidean distance. High approximation accuracy was observed, even when using HO-SVD ap-
proximation, where the relative errors were always below 6%. Figs. 11 and 12 also show the results at certain sampling 
points. Note that, in this example, only a five-term PGD solution was computed under the computational budget. Higher-
order approximation accuracy is expected to be achieved when using more PGD terms.

6. Numerics behind optimization

The modeling advantages of the ETPMS come at the cost of challenges in terms of its efficient optimization of Problem 
P D in Eq. (15) owing to its implicitly defined and varied computational domain and the large number of validity constraints 
on the ETPMS cells. A numerical approach for resolving this issue is explained in this section.
13
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6.1. Optimization approach

First, consider the connection constraint of the solid or/and porous regions for an ETPMS, as stated in Lemma 1 and 
indicated by P D in Eq. (15):

se ∈ I s, or se ∈ I sp.

We rewrite the constraints as follows for ease of explanation:

0 ≤ ḡe,i(a,b, c) ≤ α, 1 ≤ i ≤ l, 1 ≤ e ≤ N,

or

0 ≤ ḡ ≤ α,

where l = 4 or 7 is the constraint number for an ETPMS element in Lemma 1.
The per-element validity requirement involves numerous constraints, and thus, the associated optimization problem (15)

is very challenging to compute efficiently. In fact, we can reduce the large number of constraints into a single equivalent 
one as follows:

max ḡ = max
1≤i≤l, 1≤e≤N

(ḡe,i) ≤ α.

Considering that the max function is not differentiable, we approximate it further using the p-norm function

max ḡ = max
1≤i≤l, 1≤e≤N

(ḡe,i) ≈ ‖ḡ‖p = (
∑

(ḡe,i)
p)

1
p ,

and ‖ḡ‖p approaches max ḡ as p goes to infinity.
To account for the difference between max ḡ and ‖ḡ‖p when the value of p is not infinitely large, we further rewrite 

the consolidated constraint max ḡ ≤ α as

(
∑

(ḡe,i)
p)

1
p ≤ (

∑
αp)

1
p ,

which can be re-arranged as

(
1

lN

∑
1≤i≤l, 1≤e≤N

(ḡe,i)
p)

1
p ≤ α,

where N is the number of elements, l = 4 or 7 is the constraint number for an ETPMS element involved in Lemma 1. 
Specifically, l = 4 if only the interconnection of the solid part is required, or l = 7 if the interconnection of both the solid 
part and the void part is required.

A larger p enforces the per-element constraints more strictly, while simultaneously increasing the nonlinearity of the 
problem. When a too-small p is taken, the optimization may converge to a result where the interconnection constraints 
are not satisfied for a few elements. On the other hand, when a too-large p is taken, the optimization may fail to reach 
a converged result. In our examples, we set p = 64 after testings, which is large enough to keep the interconnection con-
straints for all elements and simultaneously the optimization reach good convergency. Consequently, we obtain the following 
consolidated optimization problem.

The optimization problem in (15) is reformulated in the following form using a p-norm: find the design variables s =
{se} ∈RN×3 satisfying

(Problem : P p) min
s∈RN×3

C(u, s), compliance minimization,

s.t.

⎧⎪⎨
⎪⎩

K(s)u = f, u ∈Rn, equilibrium equation,
V (s)
|�| ≤ V, volume fraction constraint,

( 1
lN

∑
(ḡe,i)

p)
1
p ≤ α, interconnection constraint.

(34)

The solution is computed using the classical optimization approach GCMMA [34,35].

6.2. Offline pre-computations

Even with the offline PGD-based parametric homogenization, the computational costs remain very intensive as various 
function integrations are involved, particularly in computing the effective elasticity tensor and stiffness matrix for each 
ETPMS element. These computations are called up to millions of times during all optimization iterations. They are further 
accelerated by means of the strategy of offline pre-computation and online interpolation.
14
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Fig. 13. The values of the elasticity tensors and their derivatives at the grid points are pre-computed in the parameter space. Their values at a general point 
are interpolated during optimization.

Elasticity tensor DH
ijkl pre-computation The elasticity tensor DH

ijkl(φ(se)) is defined by (19); that is,

DH
ijkl(φ(se)) = 1

|�e|
∫
�e

(H(φ(se)) · D̄i jkl(φ(se),y) − H(φ(se)) · D̄i jpq(φ(se),y)
∂μkl

p

∂yq
)dy. (35)

In spite of the solution μkl
p being obtained in the PGD form as in Eq. (24), the integration in DH

ijkl involves the varied 
domain φ(se) or its associated Heaviside function, and must be numerically conducted with un-ignorable efforts using, 
for example, Gaussian integration. Conducting the integration millions of times is highly intensive. In our pre-computation 
strategy, we first evenly sample a set of points within the range I = I s or I sp provided in Lemma 1, and subsequently 
compute the values of the tensors DH

ijkl(φ(se)) on the grid points. The tensor values on the other points are then evaluated 
by interpolation, as illustrated in Fig. 13.

Stiffness matrix Ke(se) pre-computations The stiffness matrix for an ETPMS element is defined by (16),

Ke(se) =
∫
�e

BT DH (se)B dV . (36)

Note that each �e is a 1 × 1 × 1 cubic cell and B is the same for all such integrations via mapping �e to [0, 1]3. Thus we 
obtain ∫

[0,1]3

BT DH (se)B dV =
i=6, j=6∑
i=1, j=1

DH
i, j(se)

∫
[0,1]3

BT
i B j dV , (37)

where DH
i, j(se) is the i-th row, j-th column element of the matrix form of DH (se), and Bi is the i-th row of B.

In this manner, we pre-compute 
∫
[0,1]3 BT

i B j dV offline for i = 1, . . . , 6, j = 1, . . . , 6 such that the integrations over the 
cubic unit cell can be efficiently computed via (37).

6.3. Sensitivity computation

A key process in computing the solution to the optimization problem P p in Eq. (34) is determining the sensitivities of 
the objective function and the volume fraction and connection constraints with respect to the design variables. These are 
derived as follows.

As the shape parameters only affect the corresponding ETPMS element, we first obtain

∂Ki(si)

∂se
= 0,

∂V (si)

∂se
= 0, if i �= e, (38)

where se represents one of the design variables ae, be, ce of an ETPMS element associated with the unit cell �e .
Using the adjoint method [36], the sensitivity of the objective function is determined as

∂C

∂se
= − ∂

∂se

N∑
uT

i Ki(si)ui = −
N∑

uT
i

∂Ki(si)

∂se
ui = −uT

e
∂Ke(se)

∂se
ue, (39)
i=1 i=1
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Fig. 14. Selected interpolation points for smoothing adjacent ETPMS elements used to construct c-ETPMS from set of discrete ETPMS elements.

where

∂Ke(se)

∂se
= ∂

∂se

∫
�e

BT DH (se)B dV =
∫
�e

BT ∂DH (se)

∂se
B dV . (40)

The sensitivity of the effective elasticity tensor can also be derived analytically following a similar concept to that in [37],

∂DH
ijkl(�e)

∂se
= − 1

|�e|
∫
�e

(
ei

⊗
e j − ∂μi j

∂y

)
∂ H(φ(y, se))

∂se
D

(
ek

⊗
el − ∂μkl

∂y

)
dy, (41)

where ei , e j , ek and el are unit basis vectors and 
⊗

denotes the tensor product.
Note that the above equation involves the gradients of the Heaviside function H(φ(y, se)), specifically its regularized 

smooth version defined in Eq. (26). The integration must be conducted numerically using an extremely fine sampling of 
Gaussian points, which is computationally expensive. In our numerical examples, we compute these values from the offline 
computed DH in Section 6.2 instead.

Moreover, the sensitivity of the volume constraint is determined as

∂V

∂se
= ∂

∂se

N∑
i=1

V (si) =
N∑

i=1

∂V (si)

∂se
= ∂V (se)

∂se
. (42)

The element volume V (se)

V (se) =
∫
�e

H(φ(y, se)) dy, (43)

can be computed efficiently by determining the relative location (interior or exterior) of the sampling Gaussian points, of 
a specific number 2003 in our case, with respect to an ETPMS element φ(se) by evaluating the values of the associated 
implicit function at these points. Similarly, the sensitivities are pre-computed on a set of sampled grid points. Their values 
on the other points are evaluated by means of online interpolation.

The sensitivity of the connection constraint is straightforward to derive and is not explained further here.

6.4. Smoothness between adjacent elements

The optimization process described above generates a set of discrete optimized ETPMS elements determined by the 
parameters se = {(ae, be, ce)}. To enable a smooth transition between the adjacent ETPMS elements, the parameter functions 
a(x), b(x)andc(x) are further constructed, each of which interpolates the discrete control parameters {ae}, {be}, and {ce}, 
respectively. Existing interpolation techniques include radial basis function interpolation, the natural neighbor approach, 
and linear interpolation. The natural neighbor approach with C1 continuity is applied in this case. Meanwhile, to preserve 
the shapes of the optimized pore structures, 27 interpolation points are selected from each cell, as illustrated in Fig. 14. 
These points are generated from a cube with size 2ls , where ls is a positive real value close to but less than 0.5.

Fig. 15 presents the generated structures before and after the smoothing operation for l = 0.49 of a specific parameter c. 
A small difference in the structural appearance and parameter distribution can be observed.

A parameter shape filter, which is commonly applied in topology optimization [36], is also used in this case to smooth 
the variations between adjacent ETPMS elements at each optimization iteration. The filter updates the shape parameter 
as the weighted average of the adjacent shape parameters to prevent abrupt changes. In particular, the filter operates by 
modifying the design variables as

s̃e =
∑

i∈Ne
ωiesi∑
ω

, (44)

i∈Ne ie
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Fig. 15. Porous structures (first row) and associated distributions of shape parameter c (second row) before/after smoothing and their difference.

Fig. 16. Design domain and boundary conditions used in numerical tests.

where the weight ωie is expressed as

ωie = rmin − dist(�i,�e), (45)

for the size of the neighborhood or filter rmin, and Ne is the neighborhood of an element e, defined as

Ne = {i | dist(�i,�e) ≤ rmin}. (46)

7. Numerical examples

The approach was implemented in MATLAB 2018b, and run on a PC with a 3.6 GHz Intel Core i7 CPU and 16 GB RAM. 
Its performance was tested in various cases, as outlined in this section. For all cases, the base material was assumed to have 
a Young’s modulus of 1 Pa and Poisson’s ratio of 0.33.

7.1. Overall performance: single-layer cantilever beam example

We first use the single-layer 3D cantilever beam example presented in Fig. 16(a) to demonstrate the performance of the 
approach in various aspects: its comparisons with the results from TPMS, ETPMS elements, and the classical SIMP-based 
topology optimization [38]; the overall optimization procedure; the performance in cases with different volume fractions; 
its hole size control ability; and the influence of the smoothing operations.

In this example, the fixed macro-design area consisted of 60 ×1 ×20 cubic cells. Its left-side face was fixed and a vertical 
downward unit force f was imposed on the edge of the bottom-right corner. The target volume fraction V = 0.5. The ranges 
of the parameters c ∈ [−3, 1] for the TPMS element and a, b ∈ [0.5, 2], c ∈ [−5, 1] for the ETPMS element if not explicitly 
explained. A filter of size rmin = 1.5 was used for all examples. The solid connection was required, while pore connections 
were ignored in this example.

Overall performance The computational results are presented in Fig. 17, including the generated c-ETPMS porous structures, 
benchmark SIMP-based topology optimization [38], TPMS-based structures, gray topology optimization obtained by setting 
the penalty power to 1, and its solid-void counterpart.
17
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Fig. 17. Results of single-layer cantilever beam case for various optimization approaches, where C: total compliance, SA: surface area, and T: computational 
time (iterations).

Fig. 18. Distribution of shape parameters a, b, c of ETPMS elements, where the axes of the ellipses represent the values of the computed a, b along the 
horizontal and vertical directions, and the color represents the value of parameter c.
18
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Fig. 19. Convergence curve in solving the optimization problem (34), where the large number of connection validity constraints is formulated into a single 
one using a p-norm formulation. It takes 68 iterations in 19.27 seconds to obtain an optimized heterogeneous porous structures.

As can be observed from the results, the ETPMS case exhibited smaller total compliance than the TPMS case, which were 
both inferior to that of the gray structure and superior to that of the solid-void structure obtained by topology optimiza-
tion. Converting the gray structure into a solid-void one resulted in a significantly degrade structure. The phenomenon is 
reasonable, as the ETPMS element has more degrees of freedom than the TPMS element. However, as the design variable 
range is confined for solid connections, it consequently demonstrated inferior performance to the gray structure obtained 
from topology optimization.

In addition to the close compliance approximation, note that the ETPMS-based porous structures exhibit the unique 
merits of a smooth network and large open surface area to volume ratio, which are ideal for various medical or biological 
applications; for example, tissue engineering [6]. Moreover, similar to the truss- or lattice-like structures studied previ-
ously [9,10,12–14], the porous structures offer the advantage of improved buckling capabilities.

Fig. 18 also plots the distributions of the obtained parameters (ae, be, ce), where the elliptic hole axes indicate a, b values, 
and the color represents the value of c; see also Eq. (3). According to the figure, also the compliance distributions in Fig. 17, 
the per-element compliance/size variation of the ETPMS porous structure changed more smoothly than those of the TPMS 
structure or the structure obtained from topology optimization. This is believed to have resulted from the additional degrees 
of design freedom of the ETPMS elements with enhanced anisotropy. However, these different structures have similar overall 
compliance distributions as they all had to adapt to the stress distributions for performance optimization.

Optimization procedure The ETPMS-based porous structures can be obtained via computing solutions to problems (34)
or (15) under a single consolidated constraint or a large number of constraints on connection validity. As previously shown 
in Figs. 17(a) and (k), both results produce reasonable ETPMS-based porous structures, and have close target total com-
pliances. We further show here the procedures and intermediate results from the two approaches in Figs. 19 and 20. 
Both approaches iteratively improve the structural compliances until convergence. On the other hand, using the single con-
solidated constraint in (34) takes much less computational time, respectively taking 68 iterations, 19.27 seconds and 29 
iterations and 1009.52 seconds, while simultaneously maintaining the connection requirement.

Different volume fractions The approach can also design heterogeneous porous structures at different volume fractions. Its 
performance was tested using volume fractions of V = 0.6 and 0.7, as illustrated in Fig. 21. The approach was effective in 
both cases, and the larger volume fraction induced a structure with greater material occupation, and consequently, smaller 
overall compliance. In both cases, the total compliances of the obtained porous structures were less than those of the 
benchmark topology optimization results.

Hole size control The approach can control the pore sizes by specifying range of the design parameters {ae, be, ce}. It was 
tested for the following two cases:

Case 1: a,b ∈ [0.8,1.2], c ∈ [−3,1];
Case 2: a,b ∈ [0.8,1.2], c ∈ [−3,1] with an additional constraint on the pore connectivity.
19



M. Li, L. Zhu, J. Li et al. Journal of Computational Physics 425 (2021) 109909
Fig. 20. Convergence curve in solving the optimization problem (15), under a large number of connection validity constraints. It takes 29 iterations in 
1009.52 seconds to obtain an optimized heterogeneous porous structures.

Fig. 21. Different optimized porous structures at different volume fraction constraints.

The obtained structures are depicted in Fig. 22. The stricter range produced a structure with inferior stiffness, or larger 
compliance, which was consistent with our intuition.

Influence of smoothing To determine the influence of the smoothing procedure after obtaining the discrete ETPMS, as de-
scribed in Section 6, we compared the two structures and their properties before and after smoothing in further detail. The 
derived structures are first plotted in Fig. 23.

The computation is based on the homogenization theory, as described in Lemma 2, which assumes periodicity of the 
studied microstructure. However the symmetry of the boundary is no longer satisfied here due to the smoothing procedure. 
The following asymmetric index is first introduced to measure the asymmetry of a microstructure’s boundary, along the 
X-direction,∫

�X
e

|H(φ(x, y, z, s(x, y, z))) − H(φ(x′, y, z, s(x′, y, z)))| dydz∫
X dydz

, (47)

�e
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Fig. 22. Different optimized porous structures were produced when constraints on the solid and pore connectivity were respectively prescribed.

Fig. 23. Optimized ETPMS-based porous structures before and after smoothing.

Fig. 24. Distributions of asymmetry indexes of microstructures in the smoothed porous structure.

Fig. 25. Distributions of relative errors of effective elasticity tensors before and after smoothing.

where �X
e is one boundary face of �e perpendicular to X-axis, and (x′, y, z), (x, y, z) ∈ �X

e are the associated symmetric 
point pair.

The asymmetric index along the Y- or Z-direction is similarly defined. Fig. 24(a), (b) respectively shows the distribution 
of the asymmetric index along the X- or Z-direction of the smoothed optimal porous structure, whose mean values are 
1.17% and 4.56% respectively. The porous structure has one single layer and is symmetric along the Y-direction.

The effective elasticity tensor for each microstructure is computed via numerical homogenization, either before or after 
smoothing, and their relative difference is illustrated in Fig. 25. We also show in Fig. 26 the per-element compliance or 
volume difference before and after smoothing. Close approximation between the results is observed, demonstrating the 
ability to maintain the structural properties.
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Fig. 26. Distributions of relative errors of compliances and volumes before and after smoothing.

Fig. 27. Comparisons between optimized ETPMS-based porous structure and structure obtained from the traditional topology optimization for multilayer 
beam example in Fig. 16(b).

7.2. Further examples

We also tested the performance of the approach in relatively large design domains using the multilayer beam example 
and table example in Figs. 16 (b) and (c), respectively, both at a target volume fraction of 0.5. The boundary conditions of the 
multilayer beam example were specifically designed to produce an optimized structure with different layer configurations.

The optimized structures of the two examples are presented in Figs. 27 and 28 respectively, with their compliances 
and computational times indicated below the figures. For the table example in Fig. 28, our approach and the topology 
optimization produced structures with compliances of 7.24 × 105 and 7.26 × 105, respectively. The former yielded a supe-
rior structure of smaller compliance. This demonstrates the ability of the ETPMS-based approach to maintain the physical 
properties, while simultaneously generating interconnected heterogeneous porous structures.

8. Conclusions and future work

In this study, the concept of ETPMS was introduced to model heterogeneous and anisotropic porous structures via an im-
plicit function of additional shape control parameters. The concept results in a perfectly smooth and fully connected porous 
network, but also comes at the cost of challenges in the effective simulation and optimization. We further resolved these 
issues using a combination of offline and online computations, particularly by using a PGD-based offline parametric homog-
enization technique and some carefully designed optimization techniques. Various numerical examples also demonstrated 
the performance of the approach in producing physically optimized heterogeneous interconnected porous structures.

However, this study exhibits several limitations, which are to be improved in the future. First, the offline parametric 
homogenization constructed on PGD requires substantial implementation efforts, and its associated sensitivity analysis is 
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Fig. 28. Comparisons between the optimized ETPMS-based porous structure and the structure obtained from traditional topology optimization for the 
multilayer table example in Fig. 16(c).

not readily derived and computed. Devising a more mature surrogate model; for example, based on the deep neutral net-
work [23], may help to address this issue. Furthermore, extending the approach to include other types of microstructures 
and additional design variables, such as the rotation angle, may further improve its use and performance in industrial ap-
plications, and is currently under study. Finally, owing to the imposed constraints, the proposed ETPMS approach cannot 
yield a complete void microstructure at any mesh element, which may deteriorate the performance of the resulting porous 
structure. This topic will be explored in future work; for example, by introducing an additional density variable.
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