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Explicit Topology Optimization of Voronoi Foams
Ming Li, Jingqiao Hu, Wei Chen, Weipeng Kong, and Jin Huang

Abstract—Topology optimization can maximally leverage the
high DOFs and mechanical potentiality of porous foams but faces
challenges in adapting to free-form outer shapes, maintaining
full connectivity between adjacent foam cells, and achieving high
simulation accuracy. Utilizing the concept of Voronoi tessellation
may help overcome the challenges owing to its distinguished
properties on highly flexible topology, natural edge connectivity,
and easy shape conforming. However, a variational optimization
of the so-called Voronoi foams has not yet been fully explored. In
addressing the issue, a concept of explicit topology optimization
of open-cell Voronoi foams is proposed that can efficiently and
reliably guide the foam’s topology and geometry variations under
critical physical and geometric requirements. Taking the site (or
seed) positions and beam radii as the DOFs, we explore the
differentiability of the open-cell Voronoi foams w.r.t. its seed
locations, and propose a highly efficient local finite difference
method to estimate the derivatives. During the gradient-based
optimization, the foam topology can change freely, and some
seeds may even be pushed out of shape, which greatly alleviates
the challenges of prescribing a fixed underlying grid. The foam’s
mechanical property is also computed with a much-improved effi-
ciency by an order of magnitude, in comparison with benchmark
FEM, via a new material-aware numerical coarsening method on
its highly heterogeneous density field counterpart. We show the
improved performance of our Voronoi foam in comparison with
classical topology optimization approaches and demonstrate its
advantages in various settings.

Index Terms—Topology optimization, microstructures, Voronoi
foams, 3D printing, full connectivity, high simulation accuracy.

I. INTRODUCTION

POROUS foams have attractive and distinguishing prop-
erties of lightweight, high stiffness-ratio, energy absorp-

tion, flexibly tailored rigidity and so on [1]–[4]. Topology
optimization is very effective in maximally leveraging the
high DOFs and mechanical potentiality of porous foams [5],
[6], in constructing the optimized cell configurations and cell
distribution within the design domain.

However, most of the previous topology optimization ap-
proaches were built up on voxel-like structure: the foams
are described via voxel density distributions, specific porous
cells are distributed (nearly) periodically within a prescribed
axis-aligned regular grid, and the simulation and optimization
are conducted with the regular grid [5], [6]. These simplify
modeling, simulation, and optimization, but also restrict the
topology optimization’s potential in tightly adapting to a
free-form outer shape, reliably maintaining full connectivity
between adjacent cells, and convincingly predicting the foam’s
physical properties. Novel topology optimization approaches
are in high demand to resolve these issues.

On the other hand, utilizing the concept of Voronoi tes-
sellation for porous foam design seems very promising [7],
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[8]. We particularly focus on open-cell foams in this study
as their open interior allows for ease of material clearance
after fabrication; natural open-cell foams are often idealized
as edges of Voronoi cells [9]. This Voronoi-based foam
representation naturally inherits many merits from the Voronoi
diagram. For instance, the conventional density-based topology
optimization may lead to dangling parts after thresholding, and
this limitation can be easily resolved by this representation be-
cause the edges of the Voronoi diagram are always connected
(if no additional clipping). Besides, the relationship between
seeds and edges in Voronoi diagram is localized, which helps
develop efficient optimization algorithm. We clip the result
from the unconstrained Voronoi diagram by an input free-form
surface, which results in a foam structure tightly adapting to
the input shape following a similar strategy in [7].

However, the extensive topology variations of Voronoi
foams have not been much explored – conducting a reliable
and efficient topology optimization of open-cell Voronoi foams
to meet critical physical requirements is still a challenging
task. Although being widely explored, most previous ap-
proaches on Voronoi foam design tended to fix the number
(or density) of the seeds, even their locations, and could not
optimize it w.r.t. mechanical goal in a variational way [7],
[10]–[13]. The recent excellent work of Lu et al. [14] and
Feng et al. [15] only focused on the topology optimization of
close-cell foams in 3D; differences between these approaches
are to be detailed in Section II-C.

In this study, we develop an explicit topology optimization to
construct an open-cell foam of optimized mechanical perfor-
mance, under clear topology and geometry control parameters,
using the site (or seed) positions and beam radii; See also
Fig. 1. It has the following main contributions:

1) We provide explicit control parameters with extensive de-
sign space to simultaneously optimize a foam’s topology
and geometry, always resulting in a free-form foam of
full connectivity inside of the object. The approach is also
able to tune the foam cell number automatically, which
was seldom observed in previous studies of biscale-
topology optimization or cell-tiling-based optimization.

2) We simulate with high accuracy the deformation of the
extremely complicated porous foams by a numerical
coarsening approach. It solves the equilibrium equa-
tion about its high-resolution heterogeneous density field
without the assumption of scale separation and reduces
the computational costs by an order of magnitude com-
pared with benchmark FEM results.

3) We explore deeply the differentiability of 3D open-cell
Voronoi foams w.r.t. its seed locations, and the associated
gradient-based topology optimization framework. The
gradient is computed via a local finite difference ap-
proach, without efforts of expensive Voronoi construction,
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Fig. 1. The procedure of explicit topology optimization. The domain is first embedded within a coarse background mesh. Then, starting from an initial
Voronoi foam described by the design variables of seeds and radii, the foam is efficiently simulated using material-aware coarsened bases and repeatedly
updated by the gradient computations. The final optimized Voronoi foam is shown on the rightmost.

and significantly improves the efficiency.
4) We devise a synchronized explicit and implicit foam

representation for topology optimization of conforming
Voronoi foams. It forms a seamless pipeline that conducts
the modeling, simulation, and gradient computation on a
uniform implicit representation, avoiding the unstable and
time-consuming model conversions between modeling
and simulation.

The proposed approach applies to a wide range of physics-
based porous foam optimization. We specifically focus on a
widely studied stiffness maximization for proof of concept,
and also for representative performance comparisons.

The remainder of the study is arranged as follows. Related
work is discussed in Section II. The idea and overview of
the Voronoi foam optimization is explained in Section III.
After a problem formulation in Section IV, approaches on the
optimization and simulation are explained in Sections V and
VI. Extensive numerical examples are given in Section VII,
followed by the conclusion in Section VIII.

II. RELATED WORK

We discuss the related work on simulation, optimization of
porous foams, and the free-form foam design.

A. Foam simulations

The property of a porous foam can be directly predicted
using the classical FE method by tessellating it into a discrete
volume mesh. However, its geometric structure is too compli-
cated which poses severe challenges to its reliable FE mesh
generation and efficient solution computation.

Typically, a foam is simulated via numerical homogeniza-
tion [16], [17]. It is achieved via two levels of FE computations
- coarse-level and fine-level wherein the simulation results
on each foam cell are used in parallel to predict the overall
performance in the coarse-level, and vice versa. The approach
replaces each foam cell with an effective elasticity tensor
via the asymptotic [18] or energy-based approximations [17],

assuming scale separation and periodic cell distribution. In
contrast, the Voronoi foams studied here have cutout or full-
solid covering shells, which seriously breaks the assumption.
Applying directly these approaches may reduce the simulation
accuracy. The reduced order model (ROM) was recently
proposed to simulate the porous foams [19]. It shares the same
spirit with the approach in representing the shape function
as a matrix transformation [20]. Yet it is designed for lattice
structures consisting of well-defined unit cells and is not
directly applicable for the studied Voronoi foam. Note that
it is not very reasonable to simulate our foam as an assembly
of beam elements [21] as the foam involves smooth blends
between the beams or even covering solid shells.

Being embedded within a coarse background mesh, a porous
foam can be taken as a heterogeneous structure and simu-
lated via numerical coarsening with no assumption of scale
separation [22], [23]. We here construct material-aware shape
(or “basis”) functions to reflect finely the material distribution
within each coarse element, which has shown great potential
in improving the simulation effectiveness of heterogeneous
structures [24], [25]. Weighted piecewise-trilinear shape func-
tions were initially introduced [24]. Later on matrix-valued
form was devised to capture the complicated non-linear and
anisotropic stress-strain behavior with an improved accuracy
[25], achieved via solving a relatively expensive optimization
problem. Very recently, the shape functions in an explicit form
of matrix product were introduced [20], which overcomes the
challenging issue of inter-element stiffness and ensures the
fine-mesh solution continuity. We further extend the approach
in this study to simulate Voronoi foams on general background
polyhedral meshes. The approaches share a similar spirit with
the finite cell method (FCM) [26] using higher-order FE shape
functions on a background mesh.

B. Foam optimizations

Optimization of porous foams has been widely studied
via topology optimization or parametric optimization [5], [6].
The topology optimization is conducted separately in a single
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scale or concurrently in a biscale optimization [27]–[31].
When in a single scale, it requires imposing local volume
constraints to generate bone-like foams [30], or constraints
of solid and void sizes [32], [33]. These constraints were
tediously designed manually and raised additional difficulty
in its optimization convergence. Strategy using stress trajec-
tory guided density initialization [34], [35] was proposed to
resolve the convergence issue. More recently, Hu et al. [36]
developed porous thin-shell structures by engraving patterns
on thin-shell structures and optimizing the pattern parameters
(e.g. size and orientation). When in biscale, maintaining the
geometric connection between adjacent cells comes out as
a fundamental challenge. Huge research efforts have been
devoted to resolving them [27], [37]–[39], but they have
no effective shape control ability due to the intrinsic low-
level voxel-based shape representations. Geometrically invalid
structures were usually found in the optimized structures that
may contain broken, slender, or small-void regions; see the
examples in Section VII-B. The recent approach of MMC
(Moving Morphing Components) [40] conducted the topology
optimization using simple geometric primitives, which shares
the same spirit of the study.

Utilizing fixed types of parametric cells for foam optimiza-
tion has also been studied. The cell parameter distribution
was optimized for improved performance or to follow certain
material properties or stress directions [41]–[44]. Various types
of cells were explored, for planar rod networks [45], for
strongly controlled anisotropy [46], or based on TPMS (Triply
Periodic Minimal Surfaces) [47], [48]. Tozoni et al. [49]
optimized rhombic family for irregular foams conforming
to an arbitrary outer shape. These approaches have ease in
generating foams of full connectivity, at a cost of limited
design choices. Great efforts have been devoted to extending
the cell types via de-homogenization [17], [27], [41], [50].

C. Free-form foam design

Most of the above approaches work on a regular grid
within a biscale framework linking the design domain and the
foam cells. Their extensions to free-form shapes are generally
achieved in three different ways: (1) assuming a sufficiently
fine cell size and ignoring the cell-shape gap; (2) via cell
clipping which may destroy the integrity of the boundary
cells [7]; (3) deforming foam cells to fit in a conforming hexa-
hedral mesh [49], [51]–[53], where the cells may be extremely
deformed. Recently, Wu et al. [31] proposed an excellent
approach of conforming foam design in consecutive steps
of material optimization and conforming foam generation.
TPMS, as a special type of foam, can naturally maintain full
connectivity after boolean operations with outer shapes [47],
[48], [54], but is limited in its restricted topological options.
A memory-efficient implicit representation of the foams was
also presented recently [55].

Designing an open-cell foam for free-form shapes has also
been widely studied. They were mostly achieved by aligning
with a pre-optimized density, stress, or material fields [7], [8],
[11], [56], [57]. Most of them focused on 2D or 2.5D case [8],
[56], [57]. An efficient 3D procedural modeling process was

introduced for open-cell foam construction with smoothly
graded properties [7], [11]. A variational optimization will
improve the convergence and the resulted foam performance.
Lu et al. [14] achieved this with maximal cell hollowing
and minimum stress by an adaptive Monte Carlo optimization
approach. Its huge computational costs and closed cells limit
industrial applications. Very recently, Feng et al. [15] proposed
an attractive concept of differentiable Voronoi diagrams via a
continuous distance field approximation. The approach demon-
strated its high efficiency and nice ability in anisotropy and
locality control. It however only produced close-cell foams
in 3D. Differently, the proposed approach focuses on open-
cell foams. In addition, it for the first time allows automatic
tuning of the seed number and makes technical contributions
to analyzing the foam’s differentiability with respect to the
seeds, a very efficient local gradient approximation, and a
much-accelerated simulation compared with direct FEM.

III. IDEA AND OVERVIEW

We begin our exposition with the basic idea of the explicit
topology optimization for the design of Voronoi foams.

For explicit shape control, we use the edges of the Voronoi
diagram with certain radii to form a Voronoi foam. The
Voronoi seeds and the radii are called geometry-based design
variables. The representation allows for intricate structure
control with full connection even at extremely low volume
fractions, compared with the voxel-based or lattice-based
representation. Confining the Voronoi foam within a free-form
outer shell naturally leaves out a shape-adapting foam.

Under such Voronoi tessellations for open-cell foam design,
the topology optimization is to optimize the foam’s stiff-
ness along with volume constraints and shape regularization
requirements w.r.t the geometry-based design variables, that
is, the seed positions and the beam radii. To reliably and
efficiently solve the above problem, one must carefully address
the following technical challenges:

• How to simulate the mechanical behavior of a Voronoi
foam composed of many slender beams accurately.

• How to compute the derivatives about the edges (i.e.
beams) in the Voronoi diagram w.r.t the design variables
efficiently.

• How to efficiently adapt the key parameters like cell
number and foam topology under various constraints
reliably.

Three technical points are proposed for the challenges:
a synchronized explicit and implicit form for modeling a
Voronoi foam, a numerical coarsening approach for its sim-
ulation, and an efficient local finite difference approach to
compute the gradients to guide the optimization. We coin the
framework as the concept of explicit topology optimization.

Based on the above idea, the problem of explicit topol-
ogy optimization of a Voronoi foam is formulated as a
variational optimization problem. It is solved following the
classical topology optimization framework and proceeds as
Algorithm 1, as also illustrated in Fig. 1. The algorithm
first embeds the domain with a coarse background mesh for
downstream simulations (Step 1), and initializes the design
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variables of seeds X and radii r (Step 2). The variable
values are repeatedly updated until convergence following
the consequent steps: density function computation (Step 4),
property simulation (Step 5), gradient computation (Step 6),
and design update (Step 7). Finally, the optimized Voronoi
foam is constructed from X, r,Ω and output (Step 9). More
technical details are explained below.

In step 4, we construct an implicit function to represent the
Voronoi foam structure and produce a smooth foam under ex-
plicit geometry-based control variables. The implicit represen-
tation avoids the unreliable and very time-consuming geometry
operations in explicitly constructing the Voronoi foams and
generating simulation mesh, and allows for continuous FEM
integration of high accuracy.

In step 5, a novel numerical coarsening for foam simulation
is proposed. It conducts the simulation on the embedding
coarse mesh constructed in Step 1, and still achieves high
simulation accuracy by tailoring a set of polyhedral material-
aware shape functions for each coarse element. The process
works directly on the implicit foam representation, avoids
error-prone boundary conforming fine mesh generation, and
greatly reduces the computational costs.

In Step 6, we adopt finite difference and customize a three-
point-based distance approximation approach to accelerate the
gradient computation, utilizing the locality property of the
Voronoi tessellations. It consequently alleviates the overall
computational efforts by several orders of magnitude. Based
on the gradient information, the foam is updated using the
method of GCMMA (Generalized Convex Method of Moving
Asymptotes) [58].

Algorithm 1 Explicit topology optimization of a Voronoi foam
Input: Design domain Ω, initial seed locations X and radii r, target
volume fraction v, a weight ω that balance the foam’s compliance
and regularity.
Output: The optimized Voronoi foam of optimized compliance (and
regularity) under constraints of volume fraction.

1: Construct a background coarse mesh to embed domain Ω.
2: Initialize values of the seeds X and radii r.
3: repeat
4: Compute for the current seeds and radii its density function

that represents a smooth Voronoi foam (intersected with Ω of
certain thickness).

5: Conduct the simulation on the foam via a novel numerical
coarsening approach.

6: Compute the gradients of the compliance and constraints
with respect to X and r via a local finite difference strategy.

7: Update the seeds X and radii r via GCMMA based on the
gradients.

8: until reaching convergence.
9: Outputs: seeds X and radii r and the associated Voronoi foam.

IV. MATHEMATICAL FORMULATION

A. Implicit modeling of Open-cell Voronoi foams

In this study, an open-cell Voronoi foam is defined as
edges (of certain radii) of Voronoi cells, confined within the
model’s interior. Blending the implicit functions of all the
beams introduced by the Voronoi edges, or together with the

outer shell, we have an implicit representation of the Voronoi
foam defined as a density field. Details are explained below.

Each Voronoi foam ΩV (X, r) is composed of two parts: the
inner part and the boundary part. For the inner part, we first
compute the Voronoi diagram from the seeds X = {Xi, i =
1, . . . , Ns} in a large enough bounding box, then clip all its
edges using the outer free-form shape Ω. The j-th remaining
edge is turned into a beam with the radius r̄j averaged from
the neighboring seeds:

r̄j =
∑
i∈Xj

ri/|Xj |, (1)

where Xj is the set of neighboring seeds of edge j, |Xj | is the
number of seeds. The radii on seeds are collected in a vector
r. The image in Fig. 2(a) indicates the situation.

(a) Multiple beams (b) Single beam

Fig. 2. The definition of beams: (a) A beam radius is defined from its adjacent
seeds; (b) A single beam description.

Corresponding to a Voronoi edge of vertices v1,v2, a beam
ϕ is defined which consists of a cylinder with radius r̄ and
height ∥v2 −v1∥ and two half-sphere ends with radius r̄; see
Fig. 2. The implicit form ϕ̃ of the beam ϕ is defined as follows,

ϕ̃(x) = ϕ̃(x,v1,v2, r̄) = r̄ − d(x,v1,v2), (2)

where d(x,v1,v2) represents the minimum distance from the
point x to the edge v1,v2,

d(x,v1,v2) =

 ∥b∥, if a · b ≤ 0,
∥g∥, if 0 < a · b < a · a,
∥e∥, if a · b ≥ a · a,

(3)

for

a = v2−v1, b = x−v1, e = x−v2, g = (I− 1

∥a∥2
a⊗a)b.

(4)
The implicit representation of the whole open-cell Voronoi

foam is the union of the implicit functions of all beams
after smoothing using Kreisselmeier-Steinhauser (KS) func-
tion [33],

Φ(x) =
1

p
ln

 n∑
j=1

ep·(ϕj(x)−ϕmax)

+ ϕmax, (5)

where ϕmax = max(ϕ1, . . . , ϕn) for the beam number n, and
p = 16 in this paper. KS function makes the description func-
tion Φ(x) compact and differentiable w.r.t. x. The different
structures constructed using the union function and the KS
function are compared in Fig. 3.

The boundary part related to the outer shape Ω is also
represented in an implicit form ϕΩ(x). When a closed shell
is required, Eq. (5) is directly extensible by taking ϕΩ(x) as
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an additional beam. Otherwise, we include the intersections
between the outer shapes and the Voronoi faces, where each
face thickness is the average of the radii of the two seeds that
determine the face. For simplicity, we will not distinguish the
Voronoi foams with or without a shell.

The Voronoi foam ΩV (X, r) is ultimately described as a
density field by a regularization Heaviside function H(Φ(x)),

H(Φ(x)) =


1, if Φ(x) > ϵ,
3(1−α)

4

(
Φ
ϵ
− Φ3

3ϵ3

)
+ (1+α)

2
, if − ϵ ≤ Φ(x) ≤ ϵ,

α, otherwise ,
(6)

where ϵ controls the magnitude of regularization, α = 1e−6

by default is a small positive number to avoid a singular global
stiffness matrix [59].

(a) max (b) KS (c) difference

Fig. 3. Comparison between direct boolean and implicit beam blending.

The Voronoi foam design problem takes seeds and radii X, r
as design variables for performance optimization. Its analytical
and discrete formulations are explained below. We focus on
the most popular problem of stiffness optimization [5].

B. Problem formulation as an optimization problem

Given seeds X and radii r, the material volume V (X, r) of
the Voronoi foam is

V (X, r) =

∫
Ω

H(Φ(x)) dV. (7)

The admissible space that constrains the volume of the Voronoi
foam, denoted A, is defined as

A =
{
(X, r) | V (X, r)/V0 ≤ v, X ≤ X ≤ X, r ≤ r ≤ r

}
,

(8)
where V0 is the volume of design domain and v is a prescribed
volume fraction. The lower and upper bounds of X, i.e. X,X,
are set according to the axis-aligned bounding box of Ω
or from user prescription. The bounds of r, for simulation
accuracy, are set so that the width of a beam at least spans
two fine mesh elements, i.e.

r ≥ 2 la, (9)

where la is the average edge length of fine mesh.
It should be noticed that for a model, seed number and

beam radii determine a lower bound of the volume fraction if
all the seeds are inside the model. Therefore, improper values
of these parameters will bring infeasible settings. Fortunately,
our method may move seeds out of the model and greatly
alleviate the difficulty of setting parameters.

The domain containing the Voronoi foam is equipped with
a non-uniform material by mapping the density H(Φ(x)) to
the fourth-order elastic tensor D(x):

D(x,X, r) = H(Φ(x))D0, (10)

where D0 is the constant elastic tensor in the solid regions.
D(x) is correspondingly nearly zero in the void regions not
covered by the beams.

Then, for a user-specified load τ , its associated static
displacement u under the test function v in Sobolev vector
space H1

0 (Ω) is characterized by an equation involving the
strain vectors [Lu], [Lv]:

a(u,v,D) = l(v), ∀v ∈ H1
0 (Ω), (11)

where

a(u,v,D) =

∫
Ω

[Lu]T D(x,X, r) [Lv] dV, (12)

and

l(v) =

∫
ΓN

τ · v dS. (13)

As the goal, we hope the overall deformation of the Voronoi
foam ΩV (X, r) is small while simutaneously maintaining cer-
tain shape regularity. Therefore, we introduce two terms about
compliance and shape. The compliance C(X, r,u) measuring
the elastic potential of the body, as widely adopted in topology
optimization, is set as the physical objective,

C(X, r,u) =
1

2

∫
Ω

[Lu]TD(x,X, r)[Lu] dV. (14)

The shape regulation energy S(x) is to regularize the
Voronoi cells to approximate regular polyhedrons

S(X) =

Ns∑
i=1

wXi
||Xi −Xc

i ||2, (15)

that is, the sum of the Euclidean distances between seed Xi

and the centroid Xc
i of each Voronoi cell Vi weighted by

wXi
[60]. wXi

= 1 is simply adopted here.
Finally, we get the constrained optimization problem:

min
(X,r)∈A, u

J(X, r,u)

s.t. a(u,v,D) = l(v), ∀v ∈ H1
0 (Ω),

(16)

where the design target J(X, r,u) is set as the weighted sum
of the physical objective and the shape regularization term,

J(X, r,u) = (1− w) C(X, r,u) + w S(X). (17)

Notice here that different measures of physical performances
or shape regularizations can be introduced for different de-
sign purposes, and the target foams can be derived similarly
following the procedure described below.
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C. Discretization

To discretize the displacement, strain, or stress fields, one
can of course directly tessellate the foam by a boundary
conforming fine mesh. However, we build a fixed background
(linear tetrahedral) mesh D = {De, e = 1, 2, · · · , N} to cover
the shape Ω, i.e. Ω ⊂ D. This choice brings two merits:
avoiding the very time-consuming and error-prone generation
of boundary conforming meshes and ensuring convergence of
optimization by simulation on a fixed mesh.

In each tetrahedral element De, the density He is set to the
average of H(x) on its four nodes,

He(X, r) =

4∑
k=1

H(Φ(vk
e ,X, r))/4, (18)

for vk
e being the coordinate of k-th node in element De.

Giving the vector of discrete displacements Q on the nodes
of background mesh D, we collect the displacements on the
nodes of e-th element De as Qe, then the displacement on
any point of x ∈ De can be interpolated as

u(x) = Ne(x)Qe, (19)

where Ne(x) denotes the element linear bases (shape func-
tions) on the nodes of e-th element. The element stiffness ma-
trix Ke can be further derived following a classical Galerkin
FE method,

Ke(X, r) = He(X, r)

∫
De

[LN]T D0 [LN] dV. (20)

The global stiffness matrix K(X, r) can be simply assem-
bled by summing Ke(X, r). Now, the equilibrium equation
Eq. (11) is discretized into the following equation

K(X, r)Q = f , (21)

where f is discretized load τ . Solving above equation to get
the displacement vector Q, the compliance C is computed
from

C(X, r,u) ≈ 1

2
∥Q∥2K(X,r) = C(X, r,Q). (22)

V. GRADIENT-BASED OPTIMIZATION

After discretizing Eq. (16), we get the optimization problem:

min
(X,r)∈A, Q

(1− w)C(X, r,Q) + wS(X)

s.t. K(X, r)Q = f .
(23)

To eliminate the equilibrium state constraint, we treat Q as the
function of (X, r) via Q(X, r) = K−1(X, r)f , and view C
as function of (X, r), i.e. C(X, r) ≜ C(X, r,Q(X, r)). Now,
the above problem is turned into

min
(X,r)∈A

(1− w)C(X, r)) + wS(X). (24)

A. Optimization solutions

Eq. (24) is to be solved following a numerical gradient-
based approach. Both the topology and geometry of the
Voronoi foams ΩV (X, r) are optimized simultaneously in
this study. The GCMMA optimizer [58] is carefully chosen.
It approximates the original nonconvex problem through a
set of convex sub-problems by using the gradients of the
optimization objective and constraints with respect to the
design variables X and r derived below.

According to the chain rule and an adjoint approach [61],
the sensitivity of the objective function C(X, r) is derived as
follows:

∂C(X, r)

∂a
= −1

2
QT ∂K

∂a
Q = −1

2
QT

∑
e

∂Ke

∂a
Q. (25)

According to Eq. (20), we have

∂Ke(X, r)

∂a
=

∂He(X, r)

∂a

∫
De

[LN]T D0 [LN] dV, (26)

and
∂He(X, r)

∂a
=

1

4

4∑
k=1

∂H(Φ(vk
e ,X, r))

∂a
, (27)

where a denotes a component of the variables Xi or ri.
One can easily identify two obvious challenges in the above

procedure: First, the derivatives ∂H/∂a (in Eq. (27)) are
related to the Voronoi diagram, whose differentiability is not
clear and a direct finite-difference based computation is ex-
tremely expensive. Second, the complex geometry of the foam
structure entails fully resolved finite element mesh, bringing
about a huge number of DOFs in Q and the prohibitive cost
of solving the large linear system for Q (in Eq. (25)).

The second issue is to be addressed in Section VI. The first
issue is addressed below, where we explore its differentiability
and develop an efficient numerical computation approach by
exploiting the local property of the Voronoi diagram.

B. Differentiability analysis of Voronoi edge w.r.t to seeds

For a given parameter a as a component of X, r, the
derivative ∂H/∂a boils down to terms about ∂H/∂Φ, ∂Φ/∂ϕj

and ∂ϕj/∂a via the chain rule from the implicit expression of
H in Eq. (6). However, it is not always valid as it implicitly
assumes the topology of the underlying Voronoi diagram
remains unchanged within a small variation of seed points,
which is however not always true. The minimal distance
ϕj(x0,X, r) is continuous but not always differentiable about
a seed point Xi at a specific vertex point x = x0. Consider
the example in Fig. 4, where we plot the curve ϕ(x0,X, r),
a distance function from a point x0 (in green) to the Voronoi
foam ΩV (X, r), w.r.t. a seed Xi. The distance function is
always continuous. We notice the curve has some critical
situations: when four seed points (three in black and one in
red) share a circumscribed circle, the beam (in blue) that x0

is closest to is jumping from one to another.
The distance function ϕ(x0,X, r) is however not always

differentiable with respect to seeds X in two situations: the
above critical situation, and when x0 is on the Voronoi edge.
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Fig. 4. The distance curve from a watching point (in green) to a Voronoi
foam. The third figure below shows a critical situation in which four seeds
(three in black and one in red) share a circumscribed circle. The beam that
x0 is closest to is in blue.

Luckily, the number of such singular points is small and can
be easily smoothed out [33]. The result is concluded below.

The distance function ϕ(x0,X, r) is continuous but not
always differentiable w.r.t seed points Xi at finite number of
points: 1. ϕ(x0,X, r) takes its value at a critical point of
ΩV (X, r) where four or more seed points share a common
circumscribed circle/sphere. 2. x0 is on the Voronoi edge.

C. Numerics in derivative computations

The required derivatives Eq. (27) in solving prob-
lem Eq. (16) build up a Jacobian matrix of huge size n×4Ns,
where n is the vertex number of background mesh D and 4Ns

is the number of design variables. The number can reach as
high as 1 billion (1M×10K) for the cube example in Fig. 18.
It requires great computational effort even though the matrix
is sparse. Further noticing that the distance function consists
of a large number of beams, a direct computation for each
derivative, either analytically or via finite difference, would
be even prohibitive.

The efficiency is to be greatly improved here by exploring
the locality of the Voronoi diagram. Firstly, the 2-ring criteria
of Voronoi diagram tells that only seed points in a 2-ring
around x0 influence the density on x0 [7]. Accordingly, we can
generate the Voronoi diagram locally by carefully picking up
these local seeds. It also much reduces the number of beams
ϕj(x) to be used in the overall distance function computation
in Eq. (6).

Fig. 5. Three-point distance approximation without explicit Voronoi tessella-
tion. The signed distance is approximated as r̄j − dj for the beam radius r̄j .

We further develop a three-point distance approximation
approach to improve the distance computation efficiency by

only considering the three nearest points to a given vertex
x0. It is assumed that the beam radii are approximately the
same. Accordingly, as indicated in Fig. 5, let bj be the beam
determined by the three seeds X1,X2,X3, and dj the distance
from x0 to bj . We set the value of the distance field at x0

approximately as r̄j −dj where r̄j is the averaged radii to the
three points.

It can be roughly estimated that the approximated minimal
distance has a maximal error |r2 − r1| to its true value where
r1, r2 are the minimal distances of the vertex x0 to its Voronoi
diagram and its Voronoi foam. Accordingly, the density at x0

will not change, or ρ̃ = ρ, when r2 ≤ 2r1.

Algorithm 2 Derivative computation of density field function
Inputs: Voronoi foam ΩV (X, r), a tetrahedral vertex x0;
Outputs: Derivative of the distance function H(Φ(x0,X, r))
in Eq. (6) w.r.t. a seed Xi;
(1) Select the k-nearest seeds around x0 and the associated
distance functions that may influence the density value at
point x0 based on the 2-ring criteria. Collect the influencing
distance functions as ϕj(x,X, r), j ∈ J .

(2) Compute the derivative of ϕj(x0,X, r), j ∈ J w.r.t. Xi

via finite difference by updating the density for a seed point
variation as follows:

• Let r1 = min({rk}) and r2 = max({rk}). If r2 ≤ 2r1,
update the density at point x0 via three-point approximate
approach;

• Otherwise, update the density at point x0 via locally
reconstructing the Voronoi foam for the k seeds.

VI. FOAM SIMULATION VIA NUMERICAL COARSENING

Simulating the Voronoi foam with high accuracy is very
challenging because of its complex interior structure. There
are many numerical coarsening methods, and one of the state-
of-the-art methods [20], which shows advantages over previous
approaches, is taken here. This method also takes the strategy
of material aware bases [25].

A. Preliminaries

As in Section IV-C, the conventional FEM evaluates the
element stiffness matrix Ke on fine tetrahedral elements and
assembles them into the global stiffness matrix K. However,
in the numerical coarsening method proposed in this section,
we use the counterparts Kα on coarse elements instead of Ke

to constitute K.
Two kinds of meshes are involved here: (1) the coarse

polyhedral mesh DH = {Dα, α = 1, 2, · · · ,M}, (2) the
refined tetrahedral mesh Dα = {Dα

e , e = 1, 2, · · · , eα}
engulfed by each coarse polyhedral element. Figs. 6 and 7
present the coarse mesh DH and fine mesh Dα for a 2D case.
The number of fine elements N =

∑M
α=1 e

α is much greater
than that of coarse elements here, i.e. M ≪ N . Two kinds
of nodes are also involved, namely (1) nodes defined along
boundaries of coarse elements, abbreviated as coarse nodes,
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with their displacements QH , (2) boundary nodes and interior
nodes of fine tetrahedral mesh, with their displacements qb

and qi, as indicated in Fig. 7.

Fig. 6. Given a domain Ω, a background mesh DH composed of coarse
elements Dα is generated for numerical coarsening. DH contains Ω.

Fig. 7. Node definition. Boundary nodes and interior nodes are defined on
the fine elements Dα

e , and coarse nodes are defined along the boundaries of
the coarse element Dα. The coarse nodes do not have to be coincident with
boundary nodes.

In our numerical coarsening method, coarse polyhedral
mesh is used for simulation. For retaining sufficient accuracy,
each coarse node is associated with a basis function (shape
function) aware of the material inside, as indicated in Fig. 8.
Significant efficiency improvement can be achieved owing to
the smaller amount of DOFs.

Specifically, given the vector of discrete displacements QH

on coarse nodes, we collect the displacements on coarse nodes
of α-th coarse element Dα as Qα. The displacements on a
point x ∈ Dα can be interpolated as

u(x) = Φα(x) Qα, (28)

where Φα(x) is the material-aware element basis function we
use, defined on coarse nodes of Dα.
Φα(x) is essentially a linear composition of linear bases on

the fine mesh:

Φα(x) = Nα(x) Ψα, (29)

where Nα(x) denotes the assembly of linear bases on the
fine mesh of Dα, and Ψα is the transformation matrix from
displacements Qα of coarse nodes to those qα of fine nodes,

qα = Ψα Qα. (30)

Substituting Eq. (29) and Eq. (30) into Eq. (28), we have

u(x) = Φα(x) Qα = Nα(x) qα, (31)

i.e. the interpolated displacements are essentially obtained by
linear shape functions on fine mesh.

Thus, the coarse element Dα stiffness matrix Kα is given
by Eq (20) using Φα instead of Nα, i.e.

Kα(X, r)

=

∫
Dα

[LΦα]T D(x,X, r) [LΦα] dV

=

eα∑
e

He(X, r)

∫
Dα

e

(Ψα)T [LNα]T D0 [LNα] Ψα dV

= (Ψα)T
(

eα∑
e

He(X, r)

∫
Dα

e

[LNα]T D0 [LNα] dV

)
Ψα

= (Ψα)T kα Ψα,
(32)

where kα is the high fidelity stiffness matrix for the fine mesh of Dα.
In like wise, the gradient of the element stiffness matrix in Eq. (26)
is computed in coarsened simulation as

∂Kα(X, r)

∂a

= (Ψα)T
(

eα∑
e

∂He(X, r)

∂a

∫
Dα

e

[LNα]T D0 [LNα] dV

)
Ψα

= (Ψα)T
∂kα

∂a
Ψα.

(33)

B. Shape functions as node value mapping

The remaining critical issue is the construction of trans-
formation matrix Ψα, which takes into account the material
inside. The material distribution changes with (X, r), so Φα

(i.e. Ψα) needs to be updated accordingly. Unlike [25], the
approach in [20] does not require solving global harmonics on
the fine mesh, so it is much faster and adopted here. However,
the voxel coarse mesh with curved bridge nodes (CBNs) as
coarse nodes is adopted in [20] for regular shapes, which
cannot tightly approximate the free-form domain. For higher
simulation accuracy, we extend the approach to handle more
general coarse elements (e.g. tetrahedrons, or more versatile
polyhedrons).

In our approach, Ψα in Eq. (29) is derived as a product of
boundary–interior transformation matrix Mα and boundary
interpolation matrix ψα, as,

Ψα = Mα ψα, (34)

where ψα and Mα maps the displacements from the coarse
nodes Qα to the boundary nodes qb and then to the full fine
nodes qα. The construction of the two transformation matrices
is explained below.

C. Boundary–interior transformation matrix

Firstly, Mα is derived from the local FE analysis on the
fine mesh of Dα just following procedures in Section IV-C,
with the equilibrium equation[

kb kbi

kib ki

] [
qb

qi

]
=

[
fb
0

]
, (35)

where kb,ki, kbi, kib are the sub-matrices of the fine tetra-
hedral mesh stiffness matrix kα, and fb the vector of exposed
forces on the boundary nodes.
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Fig. 8. Surfaces of the shape function component Φ11(x), on four coarse nodes along one polyhedral edge, including the corner nodes (black) and the
additional control nodes (orange). All the surfaces exhibit flatter variations above the area with stiffer beams, while dropping rapidly over the void area (filled
with the extra-soft material to avoid numerical singularity), reflecting structure deformation and its material-awareness.

We have the relation of qi = (−k−1
i kib)qb from the second-

row of Eq. (35). Accordingly, we have the transformation from
displacements qb of the boundary nodes to those qα of the
full fine nodes,

qα =

[
qb

qi

]
= Mαqb, (36)

and resulted boundary–interior transformation matrix Mα has
the form

Mα =

[
Ib

−k−1
i kib

]
, (37)

where Ib is the b× b identity matrix.

D. Boundary interpolation matrix

The boundary interpolation matrix ψα builds interpolated
displacements qb of all the boundary nodes from those Qα of
coarse nodes, i.e.

qb = ψ
αQα. (38)

It was designed for standard voxels in [20] and is extended
here for tetrahedral elements and general polyhedral elements
via a generalized Bézier surface patch called S-patch.

An S-Patch produces an interpolating multi-sided Bézier
patch from nodal values on a polygonal face [62]. Given a
p-sided polygon P , let wk(x), 1 ≤ k ≤ p, be its generalized
barycenter coordinate base functions.The basis function Bd

i⃗
(x)

is the polynomial expansion of (
∑n

k−1 wk(x))
d giving a set

of basis functions of degree d,

Bd
i⃗
(x) =

(
d

i⃗

) p∏
k=1

(wk(x))
ik, , |⃗i| = d, (39)

in which
(

d

i⃗

)
is the multi-nominals expansion coefficient,

index i⃗ = (i1, ..., ip) is a vector containing p non-negative
integers, |⃗i| is the sum of indices in i⃗. Fig. 9 illustrates the
multi-indices for polygons with five or six edges.

Accordingly, displacement of any point x on the S-Patch is
interpolated as

q(x) =
∑
|⃗i|=d

Qα
i B

d
i⃗
(x), (40)

where Qα
i is the displacement of i-th control points on the S-

patch. Evaluating displacements qb on all the boundary nodes
of a coarse element Dα gives the boundary interpolation
matrix ψα.

Note here the fine tetrahedral meshes of adjacent coarse
elements may not be identically matching along their common

Fig. 9. Labeling of control points for multi-sided S-patches of depth d = 2,
where three control points (001001), (100100), and (010010) overlap (right).

boundary, which simplifies background mesh generation. This
may lead to displacement discontinuities along the common
boundaries. It can generally be ignored due to the high
resolution of the fine meshes, and can also be improved using
higher-order fine-mesh shape functions [19].

VII. RESULTS AND EVALUATIONS

In this section, we evaluate the performance of our approach
for Voronoi foam design using various examples.

We check the optimization convergence based on the relative
target change value in the latest 5 iterations [63]. For k-th
iteration,

ch(k) =


1.0, if k < 5,

ch(k − 1), if k ≥ 5 & Ver > 1e−4,
|max(J)−J̄|

J̄
, otherwise ,

(41)

where Ver = (V (X, r)/V0 − v)/v, J = (J(k− 4), . . . , J(k)),
J̄ = |J|/5, and |J| =

∑k
k−4 J(i) for the design target

J = (1 − w)C(X, r) + wS(X). Notations are also referred
to Section V.

In the numerical examples below, we use C to denote
the associated computed compliance and Cb to denote the
benchmark compliance computed using FEM on a fine mesh.
The metric Cb is used to measure the structural stiffness of the
resulted foam, and a smaller one indicates a better property.
Besides, in some examples, the simulation accuracy is also
estimated by the error as follows,

r =
(C − Ct)

2

C2
t

. (42)

In the tests, all the femur models in Fig. 1 have covering
shells, and all the other examples do not. The beam blends are
not rendered in most results for rendering efficiency. We set
weight w = 0.5 in Eq. (17) for the femur model, and w = 0.1
for the other examples.
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TABLE I
COMPARISONS BETWEEN OUR APPROACH AND OTHER ALTERNATIVES ON A 2D BRIDGE MODEL IN FIG 10 AND 3D FEMUR MODEL IN FIG. 11

.

Infill s-Infill BTO Lattice Ours Our Fixed-Seeds
Free topology variation • • • - • -

free-form adaption • • - - • •
Full connection - • - • • •

No gray element - - - • • •
Effective simulation - - - - • •

Compliance on 2D model (Fig. 10)1 ↓ 409.8 401.8 1.3e13 766.7 661.8 759.1
Compliance on 3D model (Fig. 11)1 ↓ 125.1 137.1 104.82 89.3

1 the ↓ indicates the lower the better. 2 result from the conforming approach [31].

Fig. 10. Comparisons between different optimization approaches. Gray
elements were observed for Infill, s-Infill and BTO, which may result in foams
without full connectivity; Fixed topology was used for Lattice and Fixed-
Seeds, which resulted in foams of worst properties. More comparisons are
explained in Table I. Here, C is the compliance at convergence. Results from
Infill and s-Infill were generated in 1, 000 iterations.

Fig. 11. Comparisons with related approaches Infill and Conforming. Unde-
sired broken parts or protrusions were observed in sections of shapes obtained
by Infill (the left two, respectively of 120, 412 and 286, 566 hexahedral
elements). Ours produced a foam of valid geometry and best property (the
rightmost); the middle right is the results produced by Conforming with higher
compliance (worse performance).

Fig. 12. Different FE meshes during optimization, from left to right: our
coarse mesh, a tet-mesh 8x finer than the coarsest, a hex-mesh similar to the
coarsest one, the finest one (as reference) similar to our fine mesh.

A. Explanations on other alternatives

We evaluate the approach’s performance by its comparisons
with other alternatives via topology optimization, fixing cell

types, or different simulations. It includes:

• Infill: density-based topology optimization under con-
straints on local material volume in the proximity of each
voxel [30]. Matlab code from https://www.dropbox.com/
s/77bmh3lnf5qxdjs/Infill.m was adopted.

• s-Infill: improved version for infill, where the initial
density is set from the stress field derived from the full
solid domain [34]. Matlab code from https://github.com/
Junpeng-Wang-TUM/Infill plus was adopted.

• BTO: density-based concurrent biscale topology opti-
mization that simultaneously optimizes both the mi-
crostructures and their global distribution. Matlab code
from [64] was adopted.

• Lattice: solely size optimization of a hierarchical lat-
tice structure composed of the same type of substruc-
tures [42].

• Conforming: field-directed lattice optimization by align-
ing the beam directions along with optimized principal
stress directions and the boundary of the optimized shape.
Results from [31] were adopted.

• Ours: our parameter-based topology optimization of
Voronoi foams by optimizing both the seeds’ locations
and the beam radii; see Section VI.

• Fixed-Seeds: our approach but fixing the positions of
seeds, i.e. only optimizing their radii.

We also make some comments. (1) Density-based approaches,
such as Infill, s-Infill, BTO, generally have difficulty in shape
control, and tend to produce gray elements or structures
without full connection. Parameter-based approaches, such as
Lattice, Fixed-Seeds, usually produce foams of fixed topology
although our approach is an exception. (2) Simulation based on
numerical homogenization, in comparison with the benchmark
FEM, has much less simulation accuracy. In addition, it only
works well for regular grids and is thus not applicable to
the studied free-form foams. (3) Owning to its implicit repre-
sentation, the proposed approach achieves smooth transitions
among the bars or between the bars and the outer shell, which
was seldom observed in previous studies; see also the close-
up in Fig. 1. (4) Compared with a macro-structure generated
from traditional topology optimization [65], whose compliance
usually tends to be smaller (better), the foam has its own merits
of damage tolerance, allowing the structure to maintain high
stiffness even if some parts are broken, as well as robustness
with respect to force variations [30].
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Fig. 13. Accuracy test: FEM comparison between fine tet-mesh (reference), background coarse hex-mesh, background fine hex-mesh, and ours on background
coarse hex-mesh and ours on background coarse tet-mesh, from left to right. t is the time (seconds) of each simulation and r is the error defined in Eq. (42).

B. Comparisons with other alternatives

The results of comparisons are listed in Table I and detailed
below. Amongst all the approaches, our approach is the unique
that demonstrates the nice properties of free topology varia-
tions, free-form adaption, full connection, no gray elements,
effective simulation, and low compliance (better properties).

2D Comparisons. Consider a 2D bridge problem in a
regular domain in Fig. 10 of target volume fraction 0.4.
Resolutions of the fine mesh and coarse mesh are 320× 640
and 10×20, and the number of seeds is 300. In the tests, Infill
had convergence difficulty and generated large gray areas, due
to its large number of local volume constraints [34]. Approach
s-Infill improved the convergence rates and generated a reliable
infill structure of the lowest compliance; it however induced
unclear gray elements and did not produce foam-like structure.
BTO produced an invalid foam mainly due to its low-accuracy
numerical homogenization, where a huge difference between
C and Ct was observed. Optimizations from Lattice or Fixed-
Seeds generated geometrically valid foams but at a large per-
formance reduction of increased compliance (worse stiffness).
Our method generated a foam of valid geometry and smaller
compliance. Moreover, our method ensures the full connection
and structural smoothness of the resulted foam, as shown in
Fig. 1, which are not available in density-based approaches.

3D Comparisons. Our approach was also tested for 3D
models in comparison with two very related approaches Infill
and Conforming. The femur model in [31] was used, slightly
different from ours in Fig. 1. The target volume fraction was
set to 0.5, and the results were plotted in Fig. 11.

To produce foams of similar beam numbers and beam sizes,
the following settings were taken. Ours had 5, 000 seeds,
2, 001 coarse elements, and all together 697, 570 fine tetra-
hedral elements; w = 0.1 in Eq. (17). Infill was conducted on
two meshes respectively of 120, 412 and 286, 566 hexahedral
elements. Conforming generated a foam of 59, 423 beams
(ours has 59, 099 beams).

Both ours and Conforming generated structures of valid
geometry while Infill produced some undesired broken parts
or protrusions. In addition, ours gave the best foam with the
smallest compliance, demonstrating its high effectiveness. The
time costs per iteration of Conforming, Infill and ours are

respectively: 54.8s1, 56.9s and 396.0s.
Comparisons with direct FEM. We tested the necessary

of using the high-accuracy numerical coarsening during opti-
mization by comparing the performance of the resulted foams
obtained via FEM on four different background meshes shown
in Fig. 12, using the femur model in Fig. 1. The finest is
taken as a reference. Each coarse element’s Young’s modulus
is averaged from those of its interior fine elements, following a
common practice. Table II summarizes the results. Our method
produced almost the same compliance as the reference, both
of Ct = 257.6, and converged fastest in only 91 iterations and
1310.4 seconds, standing out as the most efficient. The other
four mesh cases produced worse performance and were more
difficult to converge.

TABLE II
THE OPTIMIZATION RESULTS USING FEM ON DIFFERENT MESHES FOR

THE FEMUR MODEL IN FIG. 1.

Method #ele #iter ↓ C ↓ Ct ↓ total time
FEMtet 640 -1 173.9 288.2 -1
FEMtet 5,526 180 228.9 265.9 1854.0
FEMhex 666 -1 162.4 298.6 -1
FEMtet 221,586 110 257.6 257.6 5346.0

Ours 640 91 234.6 257.6 1310.4
1 not converged at 200 iterations.

#ele, number of fine elements; #iter, iterations; C, compliance at
convergence; Ct, true compliance computed via FEA; time (in seconds) of

each iteration. The ↓ indicates the lower the better.

The simulation accuracy was also evaluated by comparing
simulation results on the four different meshes, as plotted
in Fig. 13. The approximation errors are r = 0.25, r =
5.6e−3, r = 0.06, r = 7.8e−3. Our CBN-based simulation
showed a very close approximation to the reference. It also
has a much-improved accuracy in comparison with other
numerical homogenization approaches, as extensively studied
in [20].

C. Timings and convergence.

Timings. The computation time is summarized in Table III.
Overall, the simulation time depends on the fine mesh res-
olutions, and the optimization time additionally depends on
the seed number. Benefiting from its local approximation,

1data from [31] for a reference



12

TABLE III
TIMING (IN SECONDS) OF VORONOI TESSELLATIONS (PER-VOR), COMPUTATION OF SIGNED DISTANCE FUNCTIONS (PER-DIST), SIMULATION (PER-SIM),
FINITE DIFFERENCE (PER-DIFF) IN EACH ITERATION, AND OVERALL COST (PER-ITER) OF THE EXAMPLES ON INTEL 11700 CPU. SIZES OF GLOBAL FINE

MESH, COARSE MESH, AND THE NUMBER OF SEEDS ARE ALSO SUMMARIZED.

Model Fig.
(L/M/R) #fine #coarse #seed time

per-vor
time

per-dist
time

per-simu
time

per-diff
time

per-iter
femur 1 221,004 640 500 2.19 3.01 0.71 2.65 8.67
dome 20 206,825 122 122 0.33 0.20 8.49 1.79 10.99

shearing 18 (L) 260,608 512 1,000 1.10 2.17 3.14 3.26 9.79
insole 19 (L) 117,946 411 500 1.24 0.92 1.04 1.31 4.59

Fig. 14. Convergence curves of three test cases: (a) femur in Fig. 1, (b)
shearing cube in Fig. 18, and (c) L-shape model with the Voronoi tessellations
at some steps.

the gradients were efficiently achieved. A direct Voronoi
tessellations based approach would be much more expensive,
for example, 6,035 seconds for the femur model in Fig. 1.

Convergence. The convergence curves were plotted in
Figs. 14(a)(b) for two typical tests: femur in Fig. 1 and
shearing cube in Fig. 18. The two cases all showed global
convergences. To watch closely, Fig. 14(c) plots the Voronoi
variations for a concave 2D L-shape during optimization.
Two pairs of exemplar cases were picked up: iter-19 to iter-
20 with compliance increasing and iter-77 to iter-78 with
compliance decreasing. Drastic cell topology variations were
observed for both cases, which may cause inaccurate gradient
computations (see also Sec. V-C) and consequently the un-
smooth convergence. Still, an optimized Voronoi foam was
robustly obtained.

D. Influence of parameter selections

Different initial seeds. We tested the method’s adaptivity
to the numbers and positions of initial seeds using the femur
model in Fig. 1 for four different seed sets: of random
500 seeds (500-1, 500-2) and 1000 seeds (1000-1, 1000-2).
As shown in Fig. 15, very close compliance was observed

Fig. 15. Convergence curves under four different initial seeds, for the femur
model in Fig. 1. Two (500-1, 500-2) contain 500 seeds with different positions,
and another two (1000-1, 1000-2) contain 1000 seeds with different positions.

Fig. 16. Seed positions in four iterations for a case of 1000 seeds, where the
white seeds are interior and the red are exterior. The exterior seeds did not
contribute to the optimization model.

for cases of the same amount of seeds, illustrating the in-
dependence of initial seed positions. Slightly stiffer foams
(with smaller compliance) were generated with 1000 seeds, of
compliances 267.7 and 254.6 respectively for 500 and 1000
seeds.

The approach also demonstrated its capability to adjust
the seed number by automatically moving unnecessary seeds
outside of the outer shape. The seed movements were plotted
in Fig. 16. Consider the 1000-1 case. 680 seeds out of 1000
contributed to the final Voronoi foam, with a volume fraction
from 0.31 to 0.25. Benefiting from this, a rough estimate
of the amount of seeds is sufficient for the users, avoiding
multiple tedious attempts. We also conducted an optimization
again using only the resulted 680 seeds inside the shape and
removed all the outside ones. It finally produced an optimized
foam of almost the same compliance but had only 538 seeds
inside. It is not strange as there can be many solutions for
a foam structure with many delicate micro entities if just a
few requirements are posed (e.g. compliance). The experiment
shows that our method can find various good solutions in
a large design space. This ability implies the possibility of
introducing more constraints and requirements of foam design.
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Different finite difference steps. We tested the method’s
convergence and stability for the femur model under different
finite-difference steps: 0.5x, 1x, 2x, and 4x the average side
length of fine elements. The convergence curves of the com-
pliance C in Fig. 17 showed an overall convergence. The case
of step=1x gave the stiffest foam and was set as default.

Fig. 17. Convergence curves of finite differences under four different steps,
of 0.5, 1, 2, 4 times the average edge length of fine elements, for the femur
model in Fig. 1.

E. Practical applications in different cases

Low volume fractions. We tested the approach’s capacity
under extremely low volume fractions v = 0.02, 0.05, 0.1
using the shearing cube in Fig. 18. The case is very challenging
for voxel-based topology optimization, where each foam cell
needs approximately 1003 voxels to capture the details. The
overall foam needs around 1-billion voxels. It would be too
computationally expensive, not to mention its difficulty in
valid geometry control. Our approach only needs 4, 000 design
variables for the optimization.

Different loading forces. Results were shown in Fig. 19 on
an insole model at three different loadings: real foot pressure,
constant pressure, and constant pressure of 3x higher distri-
bution in the heel or the front [66]. Denser seed distributions
and larger radii appeared in the larger pressure area to maintain
stronger stiffness.

Shape regularization weights. The shape regularization
weight w in Eq. (16) was set of three different values
w = 0.1, 0.5, 0.9, on a dome model of coarse polyhedral
mesh in Fig. 20. The smaller w, the stiffer model with smaller
compliance and worse shape regularization were generated.
This is consistent with our heuristics. The dome model took
more computation time, perhaps because of its denser stiffness
matrix from its polyhedral background mesh.

Failure cases. Our approach may fail in some cases. First, it
may produce large empty regions for shapes of sharp corners
because of the boundary clipping. For example, in the right
ear region in the Armadillo in Fig. 21, most region of the
cusp was cut out, only leaving the intersected Voronoi edges.
Introducing more Voronoi seeds around the region would help
resolve the issue. Second, our numerical coarsening approach
may not well simulate the model that has separate parts very
close to each other. The parts may be embedded in the same
coarse element and thus mistaken as mechanically attached.
Considering separate yet superimposed embeddings for sep-
arate parts provides an option for addressing the issue [24].
These issues are to be explored in our future work.

VIII. CONCLUSION AND FUTURE WORK

We propose an explicit topology optimization method for
open-cell foam design using Voronoi tessellation. Its usage of
synchronized explicit and implicit representation in modeling,
simulation, and optimization offers unique advantages in reli-
able and efficient Voronoi foam optimization. It also answers
two general critical technical questions in implementing the
goal of efficient gradient computation and reliable property
simulation. As the extensive examples demonstrate, at very
reasonable computational budgets, the approach is always able
to produce a foam structure of full connectivity, extensive
topology, and better properties, which were never observed in
conventional voxel-based or lattice-based foam optimization
approaches.

Practical fabricating the designed Voronoi foams may re-
quire additional supports [67]. On the other hand, the ex-
plicit geometric parameters of Voronoi foams, including seed
locations and bar radii, are believed to be able to facilitate
the inclusion of various manufacturing constraints into the
foam optimization, such as bar length, cell size, relative
bar-bar angles, and beam hanging angles, etc. In achieving
the goal, relations between these manufacturing constraints
with the design variables, in particular the seed locations,
have to be derived. A recent work on differentiable surface
triangulation [68] may provide insights into the study.

The approach opens a new avenue for reliable topology
optimization of porous foams by maintaining full connectivity,
resolving the open question in topology optimization [5].
Noticing that any 2D triangulation can be represented through
a perturbation of a weighted Delaunay triangulation, a dual
form of Voronoi tesselation [69]. The approach may thus be
of great generality in producing general open-cell foams. The
topic is to be explored in our future work. At present, it
at least can be extended as follows. First, we are to devise
fully analytical derivatives for a more stable and efficient of
Voronoi foam optimization. Second, the open-cell foam has
a distinguishing property of impact absorption than a close-
cell one. Extending the approach for the associated topology
optimization is to be studied, which must account for the non-
linear large deformations. Third, we will explore approaches in
introducing manufacturing constraints or/and anisotropy [70]–
[72] into the Voronoi foam to improve its performance. In
addition, it is also worthy of research efforts in optimizing
restricted Voronoi foams [73] to produce a “conforming” foam
where no cell clip is required and exploring its performance.
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Fig. 18. Different volume fractions of extremely small values v = 0.02, 0.05, 0.1. Under the shearing boundary conditions, the deformations of the foams with
v = 0.02 at 1st iteration and 100th iteration are plotted at the bottom, respectively of compliances 7.6 and 4.4. The left plots the voxel-based representations
for a typical Voronoi cell at different resolutions.

Fig. 19. Different loading forces, including mimicking real foot pressure,
constant pressure, constant pressure of 3x higher distribution in the heel or
the front. The compliances have been scaled 1e−6 times.
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