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Abstract

Numerical coarsening is an approach that constructs coarsened shape (or basis) functions for simulating heterogeneous
structures on a coarse mesh, and seeks the fine mesh solution on a finite dimensional space spanned by these shape
functions. It avoids the challenging issue of conforming meshing, reduces computational costs while maintaining high
simulation accuracy, and has huge potential in the simulation of composites or even complex CAD models in fictitious
domain methods. The C1-continuity of the coarsened shape functions is of vital importance in determining the simulation
quality, such as the continuity of stress solution, but till now has not been developed. In addressing the issue, the study
proposes to construct coarsened shape functions using B-spline patches (piecewise surfaces in 2D or volumes in 3D). By
carefully devising an intermediate interpolation patch that covers the coarse element boundaries, important properties
of C1-continuity and partition of unity are achieved, being able to produce high simulation stability and accuracy. By
being explicitly formulated as two sequent displacement mappings from coarse nodes to the boundary fine nodes and
then to the interior fine nodes, the shape functions are cheaply derived with small efforts in solving a small-size linear
system for each coarse element. Performance of the coarsened shape functions, implemented within the material point
method (MPM), is demonstrated through various numerical examples in comparisons with benchmark results in terms
of stability, simulation accuracy, and computational efficiency.

Keywords: Numerical coarsening; Coarsened shape functions; C1-continuity; B-spline patch; Coarsened material point
method (cMPM);

1. Introduction

Heterogeneous structures, such as alloys or reinforced composites, have found tremendous applications in automotive
industry, aerospace and mechanical engineering [1, 2, 3, 4, 5, 6]. Additionally, heterogeneous structures can also be used
to describe complex CAD models or cellular models in their physical simulation in fictitious domain methods that avoid
tedious or unstable process of defeaturing or conformal mesh generation [7, 8, 9, 10, 11]. An efficient and reliable simula-
tion of the physical behavior of a heterogeneous structure is thus a fundamental issue in applied mechanics. However, the
fine-scale material heterogeneities and/or tiny geometric features of the structure make an outstanding numerical method
pretty challenging, particularly in cases of nonlinear large deformations. Classical finite element method (FEM) [12] or
even the recent finite cell method (FCM) [11, 13] requires a mesh fine enough to resolve the fine-scale heterogeneities
so as to capture the proper behavior of a heterogeneous structure for the overall solution computation or element matrix
integration, leading to prohibitive computational loads. Developing an appropriate approach that balances computational
accuracy and efficiency is pressingly required.

Numerical coarsening, or extended multiscale finite element method (EMsFEM), has been promised as a powerful
approach to address the challenges of heterogeneous structure simulation [14, 15, 16, 17]. Different from the widely
studied numerical homogenization [18, 19], which usually assumes scale separation and periodic distribution, numerical
coarsening tries to construct coarsened shape (or basis) functions to represent the solution on a coarse mesh [14, 15, 16].
The shape functions are constructed for each coarse element, and the fine mesh solution is sought on a finite dimensional
space spanned by these shape functions [20, 21]. Continuity of the coarsened shape functions, or more specifically its
continuity across the element boundaries, is of vital importance in determining the quality of the simulation solution. For
example, it is crucial in producing a continuous stress/strain field with no post-process required, achieving better accuracy
and higher convergence rate [22], or a key factor in avoiding cell-crossing artifact in the material point method (MPM)
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for nonlinear large deformations [23, 24]. Besides, it’s also required for several numerical analysis problems involving
second derivatives of the unknown function in the potential energy, such as the Kirchhoff-Love shell theory [25] and strain
gradient elasticity [26, 27]. However, although a variety of coarsened shape functions have been proposed [20, 21, 17, 28]
and the importance of C1-continuity has been frequently addressed, no coarsened shape function of C1-continuity has
been developed as far as we know. The topic is to be addressed in this study for the challenging case of the nonlinear
deformation of heterogeneous structures.

In this study, novel coarsened shape functions of C1-continuity are constructed using B-spline surfaces/volumes in
2D/3D (or B-spline patches for short) for simulations of nonlinear heterogeneous structures. They are used together
within a material point method (MPM) framework, called cMPM, to demonstrate their performances, considering the
MPM’s robustness in avoiding element distortions in nonlinear large deformations. The study has the following contri-
butions:

• Coarsened shape functions of C1-continuity are constructed for the first time as free-form B-spline patches, being
able to capture the fine-scale heterogeneities within the coarse element that allows high simulation accuracy and
continuous stress/strain solution fields.

• The coarse element possesses additional DOFs along its boundaries, besides those on its vertices, whose number
can be set to balance different requirements of simulation accuracy or efficiency.

• The coarsened shape functions are matrix-valued to account for the anisotropy of the coarse element. They satisfy
the important property of partition of unity, which avoids some un-physical simulation results.

• The coarsened shape functions are derived for each coarse element as two sequent mappings from coarse nodes to
the boundary fine nodes, and then to the interior fine nodes. The process is very cheaply achieved with only small
efforts in solving a small-size linear system.

• Using the coarsened shape functions, a cMPM for simulating nonlinear heterogeneous structures is devised. It
has an efficiency improvement with an order of magnitude and eliminates the cell-crossing artifact inherent in
conventional MPM caused by the discontinuous derivatives of shape functions [23, 24].

• Performance of the coarsened shape functions is demonstrated through various numerical examples in comparisons
with benchmark results in terms of stability, simulation accuracy, and computational efficiency.

The remainder of this paper is organized as follows. Related work is discussed in Section 2. The problem and
preliminaries on coarsened B-spline patch shape functions are described in Section 3. Their construction is then outlined
in Section 4, and detailed in Section 5. Properties of the shape functions are discussed in Section 6, and their extension
to 3D, combination with the MPM are presented in Section 7. After demonstrating extensive numerical examples in
Section 8, we conclude the study in Section 9.

2. Related work

2.1. Simulation of heterogeneous structures
Simulation of heterogeneous structures can be achieved in several different ways to reduce the computational loads

while capturing proper physical behavior. The multigrid/multilevel approaches use the residual equation on a coarse mesh
to relax the error [29, 30]. Nevertheless, most multigrid methods simply consider geometric prolongation/restriction
operators and may have low simulation accuracy when dealing with high-contrast materials. Substructuring applies
static condensation for each coarse element (or superelement) to eliminate the internal degrees of freedom [31, 32]. It
achieves higher simulation accuracy for heterogeneous structures but produces a denser global stiffness matrix and is
only applicable to linear elastic models.

The numerical homogenization methods replace each coarse element with an averaged effective property by solving
a local characteristic simulation problem [18, 19]. The multilevel FEM (FE2) conducts the analysis through an itera-
tive transition between fields (stress and strain) in the macroscale and microscale until reaching convergence [33, 34].
However, both methods are based on an assumption of scale separation and periodicity, which does not apply to general
heterogeneous structures as studied here. Several strategies for removing this assumption are proposed, e.g. high-
order computational homogenization approaches [35, 36] or direct FE2 [37]. Among these approaches, a second-order
two-scale computational homogenization procedure [38] with C1-continuous solution is devised by taking the C1 2D
triangular finite elements as the macroscale discretization and the C0 quadrilateral finite elements as the discretization of
microscale RVE (representative volume element).

Numerical coarsening, tries to construct on a coarse mesh material-aware shape functions for each coarse element
that closely capture the deformation of its interior heterogeneity [14, 15, 16], instead of using the classical polynomial
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shape functions. They have demonstrated high simulation accuracy for heterogeneous structures of non-separated scales.
The coarsened shape functions are usually represented in a piecewise linear form [15, 20] and derived via a spectral
expansion [14, 16] or a constrained optimization problem [20]. EMsFEM [39, 40] constructs the numerical shape func-
tions by solving the static equilibrium equation for each coarse element, which has been successfully applied to small
strain analysis [41], dynamic analysis [42, 43], and geometric nonlinear analysis [44, 45] of heterogeneous materials,
and linear, periodic, oversampling, and oversampling periodic boundary displacement constraints [46] are proposed for
the local static equilibrium.Most of these previous approaches generally have no geometric continuity across the element
boundaries, e.g. discontinuous Galerkin methods [47], or only have C0-continuity via value blending along the element
boundary [15], or being softly imposed as optimization constraints [20]. Recently, global continuous deformation or
C0-continuity is achieved by interpolating common boundary of adjacent coarse elements from curved bridge nodes
(CBN) [21]. The idea of boundary interpolation is to be extended in this study to devise coarsened shape functions of
C1-continuity. Note that high-order multiscale shape functions are also proposed based on p-FEM [48, 49], but they
only have C0-continuity across the coarse element boundaries. As a consequence, these approaches are prone to cause
separations/overlaps between coarse elements, or to produce discontinuous stress/strain fields, or to cause cell-crossing
artifact in MPM [24].

In addition, the basic geometric properties of shape functions, such as the partition of unity, are seldom explored
in previous studies, and thus they may inevitably produce un-physical results [50]. To better exploit the anisotropic
behavior of the complex heterogeneous objects, matrix-valued shape functions are introduced to account for interactions
among quantities along different axes [20]. A similar matrix form is also adopted in this study.

2.2. Cell-crossing artifact in MPM
The material point method (MPM) [23, 51] bypasses the mesh distortion issue due to the absence of a conforming

mesh, and consequently outperforms the conventional mesh-based approaches (e.g. FEM) when dealing with large
deformations. However, the conventional MPM [23, 51] undergoes the cell-crossing artifact [24, 52] when particles
cross the cell boundaries, and this artifact arises from the discontinuous derivatives of C0 linear shape functions in
conventional MPM [23]. Various approaches have been proposed to deal with the cell-crossing artifact.

The generalized interpolation material point (GIMP) method [24] resolves the cell-crossing artifact by representing
each particle as a characteristic function instead of an infinitesimal point. Based on the former, C1-continuous GIMP
weighting functions are constructed. The convected particle domain interpolation (CPDI) [53] further uses fully tracked
particle domains that deform with the deformation gradients, and takes them as parallelograms, quadrilaterals, triangles,
or polygons [54] in 2D, and tetrahedrons or polyhedrons [55] in 3D, to reduce the gaps and overlaps between particles.
However, these methods require a large computation load for mesh-generation or remeshing (as the particle domains are
distorted), which is not consistent with the spirit of meshfree methods.

The total Lagrangian MPM (TLMPM) [56] efficiently overcomes the artifact by not resetting the background mesh.
However, it is susceptible to mesh distortions since the mesh ”moves” with particles, similar to the FEM. The dual
domain MPM (DDMPM) [57] is proposed to develop C1-continuous shape functions for unstructured grids by first
mapping the particle stresses to the grid nodes and then interpolating them to obtain a continuous stress field. The
B-spline MPM (BSMPM) approach [58, 59], which directly adopts high-order B-spline basis functions, eliminats the
cell-crossing artifact. It is straightforward to implement and has a higher convergence rate than that of the conventional
MPM. Similar to BSMPM, smooth B-spline patch shape functions are proposed in this study to address the cell-crossing
artifact while greatly improving the computational efficiency due to its employed coarse mesh.

3. Problem and preliminaries

3.1. Dynamic simulation of heterogeneous structures
The problem formulation of the dynamic simulation of a heterogeneous nonlinear elastic structure is first described.

Note that a 2D description is used throughout this study.
Given a continuum body Ω ∈ R2 of heterogeneous nonlinear elastic material (Neo-Hookean in this study), its gov-

erning equations in an updated Lagrangian description are given by:

Dρ
Dt
+ ρ∇ · v = 0, in Ω

ρa = ∇ · σ + ρb, in Ω

u = ū, on ΓD

t = t̄, on ΓN

(1)
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Table 1
Summary of important notations used in this study

Dh : A fine background mesh
De : A fine element in Dh

Xe : The connectivity of De

DH : A coarse background mesh
Dα : A coarse element in DH

Xα : The connectivity of Dα

Xαf : Fine nodes of Dα

Xαb : Boundary fine nodes of Dα

Xαi : Interior fine nodes of Dα

Qα : Displacement vector of coarse nodes in Xα

qα : Displacement vector of fine nodes in Xαf
ΦI(x) : The coarsened shape function at coarse node I
Φα,I(x) : The representation of ΦI(x) on Dα

Φα,Iw (x) : The components of the matrix-valued Φα,I(x)
Φα(x) : The coarsened element shape function of Dα

pα : The control matrix for Φα(x)

where Dρ
Dt denotes the material time derivative of the mass density ρ, ∇ denotes the gradient operator with respect to

the current configuration, b is the body force vector, v, a, and σ represent the velocity vector, acceleration vector, and
Cauchy stress tensor [60] that all depend on displacement vector u. In Eq. (1), the first two equations represent the
conservation equations of mass and momentum, and the other two equations represent the Dirichlet boundary ΓD of
prescribed displacements ū and the Neumann boundary ΓN under exerted tractions t̄.

Following the principle of virtual work and representing the displacement u through a discrete vector Q, Eq. (1) is
computed by solving the following discrete equilibrium equation incrementally at time t + ∆t using the previous results
at time t,

f
(
Q̂t+∆t

)
= 0, (2)

in terms of the solution vector Q̂t+∆t at time t + ∆t, the vector of out-of-balance forces f
(
Q̂t+∆t

)
is defined as,

f
(
Q̂t+∆t

)
:= fext,t+∆t + fint,t+∆t −Mt at+∆t, (3)

where fext,t+∆t and fint,t+∆t are the vectors of nodal external and internal forces at time t + ∆t, at+∆t is the vector of nodal
accelerations at time t+∆t, and Mt is the mass matrix at time t. Note that fint,t+∆t and at+∆t depend on Q̂t+∆t, while fext,t+∆t

is assumed deformation-independent for simplicity, and thus it does not depend on Q̂t+∆t.
Due to the material nonlinearity, Eq. (2) is solved using the Newton-Raphson iteration method by solving the fol-

lowing linear equation in the k-th Newton-Raphson iteration,

(k−1)K (k)∆Q = (k−1) f , (4)

where (k)∆Q = Q̂t+∆t − (k−1)Qt+∆t is the vector of incremental displacements to be computed, (k−1)Qt+∆t is the solution
vector computed in the (k − 1)-th iteration, (k−1)K and (k−1) f are respectively the dynamic stiffness matrix and the out-of-
balance force vector evaluated at (k−1)Qt+∆t and computed based on the backward Euler time integration,

(k−1)K = (k−1)Kt+∆t +
Mt

∆t2 , (5)

(k−1) f = fext,t+∆t + (k−1)fint,t+∆t −Mt


(

(k−1)Qt+∆t −Qt
)

∆t2 −
vt

∆t

 , (6)

where (k−1)fint,t+∆t is the internal force vector, (k−1)Kt+∆t is the tangent stiffness matrix, and Mt is the lumped mass matrix.
More details can be found in [61, 62].

The solution to the above elasticity simulation problem is usually computed following the classical Galerikin method [25],
expressing the solution as a linear combination of the shape functions. Different types of shape functions have been de-
veloped, for example, the linear or B-spline ones on a fine mesh in Figs. 1(a),(b), the coarsened as piecewise linear
patches on a coarse mesh in Fig. 1(c) [21], or the proposed B-spline patches on a coarse mesh in Fig. 1(d). Utilizing
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Fig. 1. Four different types of shape functions: linear, quadratic B-spline, CBN, and the proposed coarsened B-patch shape functions.

Fig. 2. Von Mises stress fields obtained by the MPM using the linear, quadratic B-spline, CBN, and proposed coarsened shape functions, as shown in
Fig. 1, on the black plane of a cube shearing example in (a). More details are referred to Section 8.1.1.

Fig. 3. A series of quadratic B-spline basis functions in 1D.

these shape functions for the simulations (within the MPM framework) may produce radically different stress distribu-
tions in Fig. 2; the result in (b) was the benchmark. Either the linear shape functions in (a) or their coarsened version
in (c), of only C0-continuity, produced a perturbed stress field and consequently incorrect results. In comparison, the
B-spline types in (b) and (d), of C1-continuity, were able to produce continuous stress fields and better results. Note the
coarsened ones in (d) also much reduced the computational cost for large-scale problems.

Although numerical coarsening approaches using linear or even higher order shape functions [48, 49] have been
developed, these shape functions are at most of C0-continuity across element boundary. Simply extending ideas on linear
shape functions to higher order ones does not necessarily produce proper coarsened shape functions of C1-continuity.
They are to be addressed in this study by carefully designing B-spline patch shape functions, as explained below.

3.2. Fine solution using B-spline basis functions
The B-spline basis functions are widely used in CAD with properties of global continuity and partition of unity [63,

64]. Fig. 3 plots a series of quadratic B-spline basis functions. They are adopted in expressing the coarsened shape
functions.

Given a structure Ω in Eq. (1), we embed it in a fine regular background mesh Dh = {De, e = 1, 2, . . . ,m} of elements
De and nodes I (Fig. 4(a)). The coarse mesh, fine mesh, and the associated elements involved in this study are all shown
in Fig. 4.
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Fig. 4. Fine and coarse meshes: (a) in the fine mesh Dh, the connectivity Xe of a fine element De contains 16 nodes (black); (b) in the coarse mesh
DH , the connectivity Xα of a coarse element Dα contains 16 coarse nodes (orange). Note that on Dα = X × Y , a set of ñ = n × n fine nodes Xαf are
classified into boundary fine nodes Xαb (filled circles) and interior fine nodes Xαi (hollow circles). There are 3 × 3 non-zero B-spline basis functions
existing in each knot span. n = 7 in the figure.

A quadratic uniform B-spline basis function BI(x) is defined at a node I of coordinate (xI , yI) as follows,

BI(x) = BI(x, y) = N(
x − xI

h
) N(

y − yI

h
), (7)

where h is the fine element size and N(·) is the 1D quadratic B-spline basis function,

N(ξ) =


1
2ξ

2 + 3
2ξ +

9
8 , −

3
2 ≤ ξ ≤ −

1
2 ,

−ξ2 + 3
4 , − 1

2 ≤ ξ ≤
1
2 ,

1
2ξ

2 − 3
2ξ +

9
8 ,

1
2 ≤ ξ ≤

3
2 .

(8)

Some facts on the B-spline basis functions are first given below for their later usage in coarsened shape function
construction.

Lemma 1. In a 2D element De ∈ Dh, 16 non-zero quadratic B-spline basis functions exist, and each is associated with
one of the 16 nodes on or adjacent to it. These basis functions are C1-continuous across the element boundaries.

The collection of these nodes is referred to as the connectivity of element De, denoted by Xe.

Proof. The 1D quadratic B-spline basis function N(ξ) has a local support covering 4 1D elements adjacent to it, as
shown in Fig. 3. Thus, the 2D quadratic B-spline basis function BI(x) in Eq. (7) has a local support covering 4 × 4 = 16
2D elements De adjacent to it. It can then be deduced that 16 non-zero shape functions BI(x) exist in De, and each is
associated with a node on or adjacent to it. Proof of the C1-continuity is referred to [63]. □

Based on the B-spline basis functions in Eq. (7) and the classical Galerkin method [25], the displacement solution
u(x) to Eq. (1) is expressed as a linear combination of the shape functions BI(x),

u(x)
(2×1)
= Be(x)

(2×32)
qe

(32×1)
, x ∈ De, (9)

where qe of size (32 × 1) is the vector of the x- and y-displacements of the 16 nodes Xe of De, and Be(x) of size (2 × 32)
is the matrix of the B-spline basis functions BI(x) in De,

Be(x)
(2×32)

=

[
B1(x) 0 B2(x) 0 . . . B16(x) 0

0 B1(x) 0 B2(x) . . . 0 B16(x)

]
. (10)

A discrete nodal displacement qe accordingly gives the overall solution to Eq. (1). For the studied heterogeneous
structures, capturing the proper behavior of the fine-scale heterogeneities requires a highly resolved mesh Dh (or a
small h), and consequently high computational loads. On the contrary, a coarse mesh (or a large h) ignores the details
and much reduces the accuracy. To effectively balance the computational efficiency and accuracy, we are to construct
for each coarse element a set of material-aware coarsened shape functions as free-form B-spline patches, as explained
below.
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Fig. 5. Quadratic uniform B-spline surface Φα,Iw (x) on coarse element Dα. The black lines on the surface denote the knot spans that divide the surface
into sections. One knot span is defined by 3 × 3 control values (cf. knot span in dark gray and control values in blue). n = 5 in the figure.

3.3. Coarsened shape functions using matrix-valued B-spline patches
Notations are first defined. Given a heterogeneous structure Ω, we embed it in a coarse regular background mesh

DH = {Dα, α = 1, 2, . . . ,M} of coarse elements Dα and coarse nodes I. For a coarse element Dα, let Xα denote its
connectivity. From Lemma 1, the number of coarse nodes in Xα is 16, or r = |Xα| = 16; see also Fig. 4(b).

Without loss of generality, let Dα = [0, 1] × [0, 1], or coarse element span H = 1. Within Dα a tensor product
X × Y of two uniform knot vectors X = {x1, x2, . . . , xn+p+1} and Y = {y1, y2, . . . , yn+p+1} is introduced, where p = 2 is the
polynomial degree.

The knot vectors X and Y define a set of ñ = n × n (ñ > r) quadratic uniform B-spline basis functions Bk(x) , k =
1, 2, . . . , ñ associated to each of the ñ fine nodes Xαf at the centers of knot spans. There are 3 × 3 non-zero B-spline basis
functions existing in each knot span. We divide fine nodes Xαf into nb = (n − 4)2 boundary fine nodes Xαb and ni = ñ − nb

interior fine nodes Xαi , for later usages, based on whether they are shared by knot spans from adjacent coarse elements
or not.

We are now ready to introduce our matrix-valued coarsened shape function using B-spline patches, which has a local
support covering 16 coarse elements adjacent to it. On a coarse element Dα, for each coarse node I ∈ Xα, the coarsened
shape function ΦI(x) on Dα, denoted by Φα,I(x), is written as a 2 × 2 matrix,

Φα,I(x)
(2×2)

=

[
Φ
α,I
1 (x) Φ

α,I
2 (x)

Φ
α,I
3 (x) Φ

α,I
4 (x)

]
. (11)

where each component Φα,Iw (x), w = 1, 2, 3, 4 is a free-form quadratic B-spline surface on Dα, or a linear combination of
B-spline basis functions {Bk(x)} in the following matrix form,

Φα,Iw (x)
(1×1)

=
[
B1(x) B2(x) . . . Bñ(x)

]
pα,Iw
(ñ×1)

, w = 1, 2, 3, 4, (12)

where pα,Iw is a (ñ × 1) control vector to control the shape of Φα,Iw (x), as plotted in Fig. 5.
Accordingly, the overall coarsened shape function Φα,I(x) in Eq. (11) becomes,

Φα,I(x)
(2×2)

= Bα(x)
(2×2ñ)

pα,I
(2ñ×2)

, (13)

where pα,I is a (2ñ × 2) control matrix forΦα,I(x) and Bα(x) is the matrix form of the ñ B-spline basis functions Bk(x) in
Dα,

Bα(x)
(2×2ñ)

=

[
B1(x) 0 B2(x) 0 . . . Bñ(x) 0

0 B1(x) 0 B2(x) . . . 0 Bñ(x)

]
. (14)

By assembling the shape functions Φα,I(x) for all the r coarse nodes I ∈ Xα, the coarsened element shape function
Φα(x) of Dα, having a size of (2 × 2r), is represented as,

Φα(x)
(2×2r)

=
[
Φα,1(x) Φα,2(x) . . . Φα,r(x)

]
= Bα(x)

(2×2ñ)
pα

(2ñ×2r)
, (15)
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Fig. 6. Flowchart for constructing the coarsened shape functions: (a) employ a coarse regular background mesh with proper coarse nodes (in orange),
(b) build an IIS that covers all the boundary fine nodes (in black) for each coarse element, (c) based on the obtained coarse–boundary mapping,
construct the boundary–interior mapping by solving a local static equilibrium on the fine mesh, (d) construct the B-spline patch shape functions for
each coarse element, (d) conduct simulation using the shape functions, which results in a continuous stress field.

where pα denotes a (2ñ × 2r) control matrix for the coarsened element shape function Φα(x). In addition, its derivatives
are computed as,

∂Φα(x)
∂x

=
∂Bα(x)
∂x

pα,
∂Φα(x)
∂y

=
∂Bα(x)
∂y

pα. (16)

Remark 1. Instead of a diagonal matrix, a general 2 × 2 matrix form is used for Φα,I(x) in Eq. (11), so as to better
couple different dimensions and handle the anisotropy [20, 21].

Remark 2. In contrast to the open knot vectors usually used in IGA [63, 64], there are no repeated knots in the knot
vectors X and Y. This is particularly set to facilitate the C1-continuity between multiple patches, as to be addressed in
Section 5.1.

Remark 3. The B-spline basis functions are used in two scenarios in this study: (1) being defined at the fine nodes for
constructing our B-spline patch shape functions in Eq. (15); (2) being defined at the coarse nodes for constructing the
intermediate interpolation surface in Section 5.1.

4. Overview on coarsened B-spline patch shape function construction

A specific control matrix pα provides a concrete set of coarsened shape functionsΦα(x) in Eq. (15). The value should
fulfill the following critical requirements: (1) owning C1-continuity across the coarse element boundaries; (2) meeting
the basic geometric property of partition of unity to avoid un-physical results; (3) capturing the deformation behavior of
the heterogeneous element Dα. Such properties have not been fully satisfied previously and are to be achieved in this
study.

4.1. Basic idea
Our construction of the coarsened shape functions is based on the following observations, as also indicated in Fig. 6.
Firstly, for each heterogeneous coarse element, the shape functions essentially build a coarse–fine mapping from the

coarse nodal displacements, which are DOFs in computing the overall solution to the problem in Eq. (1), to the fine nodal
displacements, which describe the overall solution at any point. We see the mapping as two sequent mappings from the
coarse nodes to the coarse element’s boundary fine nodes and then to its interior fine nodes. The strategy not only allows
for an easy and efficient implementation but also facilitates achieving the C1-continuity. Additional coarse nodes can also
be introduced, besides the element vertices, which can be set to balance different requirements of simulation accuracy or
efficiency. Fig. 6(a) illustrates a typical coarse element set up in this study; more details are referred to Section 5.
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Secondly, for the shape functions’ C1-continuity between different coarse elements across their common boundaries,
we introduce for each coarse element an intermediate interpolation surface (IIS for short) that covers all the boundary
fine nodes; see also Fig. 6(b). The IIS itself has a higher-order continuity, and identical values with those of its adjacent
coarse elements around the boundaries, which ultimately ensures the shape functions’ C1-continuity. Sampling from the
IIS gives the (displacement) values on the boundary fine nodes, whose matrix form builds the coarse–boundary mapping.
In addition, the IIS has the property of partition of unity, which, together with that of B-spline basis functions, ultimately
results in the property of our constructed coarsened shape functions.

Thirdly, given the values at boundary fine nodes obtained above, for the shape function’s awareness of the interior het-
erogeneities within the coarse element, we are to construct the boundary–interior mapping by solving a local static equi-
librium problem on the fine mesh; see also Fig. 6(c). The product of the mapping with the constructed coarse–boundary
mapping above ultimately produces the desired coarse–fine mapping, and consequently the target shape functions on the
coarse element with the desired properties; see also Fig. 6(d). It can then be used within a classical simulation framework
(MPM here), resulting in a reliable structure deformation and particularly a continuous stress field; see also Fig. 6(e).

4.2. Mathematical formulations and overview
Let Qα be the coarse nodal displacements (or DOFs) to be computed at coarse nodes Xα of a coarse element Dα.

A linear combination of the coarsened shape function Φα(x) in Eq. (15), via the coarse node solution Qα, gives the
displacement u(x) at any point x ∈ Dα,

u(x) = Φα(x) Qα = Bα(x) pα Qα, x ∈ Dα. (17)

On the other hand, considering Dα = X × Y , together with its fine nodes Xαf , as a fine mesh, the fine nodal dis-
placements qα at fine nodes Xαf can be globally computed from the structure Ω or locally from Dα. A high-fidelity
displacement û(x) on any point x ∈ Dα can also expressed as a linear combination of the B-spline basis functions Bα(x)
in Eq. (14), via the qα, as follows,

û(x) = Bα(x) qα, x ∈ Dα. (18)

Taking into account Eqs. (17) and (18), the coarsened element shape functionΦα(x), or the control matrix pα, is best
to satisfy the following equation,

qα
(2ñ×1)

= pα
(2ñ×2r)

Qα

(2r×1)
. (19)

Equivalently, the control matrix pα, which originally determines the coarsened shape functions in Eq. (15), maps the
coarse nodal displacements Qα to the fine nodal displacements qα.

Based on the idea explained above, pα is to be reformulated as two sequent mappings from the coarse nodes to the
boundary fine nodes, and then to the interior fine nodes. Mathematically, pα is derived as a product of coarse–boundary
mapping matrix Ψα of size (2nb × 2r) and boundary–interior mapping matrix Mα of size (2ñ × 2nb) for the coarse node
number r, fine node number ñ and boundary fine node number nb, that is,

pα
(2ñ×2r)

= Mα

(2ñ×2nb)
Ψα

(2nb×2r)
, (20)

where matrix Ψα, Mα consequently maps the coarse nodal displacements Qα to the boundary fine nodal displacements
qb through an IIS construction, and then to the interior fine nodal displacements qi via solving a local static equilibrium
problem. This yields

qα =Mα qb, qb = Ψ
α Qα. (21)

Constructions of the two mappings are detailed next.

5. Details on coarsened shape function constructions

5.1. Coarse–boundary mapping
As explained in Section 4, the core to construct the coarse–boundary mapping Ψα lies in the construction of an IIS

that covers the coarse element’s boundary fine nodes. We are to construct for a coarse element Dα the IIS, say Iα(x), in
a form as follows,

Iα(x) =
r∑
I

ψI(x) QI , (22)
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Fig. 7. B-spline coarse element: (a) the IIS is set as quadratic B-spline basis functions on the 16 coarse nodes (in orange) around the coarse element
Dα, and the connectivity Xα contains r = 16 coarse nodes; (b) inserting new coarse nodes so that L = H/2 generates a coarse element containing
r = 25 coarse nodes.

Fig. 8. Boundary B-spline coarse element: (a) we construct a B-spline curve for each element edge based on the four coarse nodes (in orange) along
its direction, and extrude it along its adjacent curves to obtain an extruded IIS for each coarse element Dα; the connectivity Xα contains r = 12 coarse
nodes; (b) inserting new coarse nodes so that L = H/2 generates a coarse element containing r = 16 coarse nodes.

where QI denotes one displacement component in the coarse nodal displacement vector QI , as introduced in Eq. (17),
and ψI(x) denotes a specific basis function. Collecting both x and y components, we have the matrix form,

I
α(x) =

[
ψ1(x) 0 ψ2(x) 0 . . . ψr(x) 0

0 ψ1(x) 0 ψ2(x) . . . 0 ψr(x)

]
Qα

= ψα(x) Qα,

(23)

where matrix ψα(x), Qα are respectively of size (2 × 2r) and (2r × 1).
Sampling the matrix ψα(x) at each boundary fine node xk, k = 1, 2, . . . , nb, and arranging them row by row, we have

the desired coarse–boundary matrix Ψα,

Ψα =


ψα(x1)
ψα(x2)
. . .

ψα(xnb )

 , (24)

which maps the coarse nodal displacements Qα to boundary fine nodal displacements qb (in Eq. (21)).
Different placements (i.e. number and locations) of the coarse nodes Xα determine different basis functions ψα(x),

and consequently, the IIS and matrix mapping Ψα. Two typical coarse elements are devised and explained below.

5.1.1. B-spline coarse element
In this strategy, the IIS is set as quadratic B-spline basis functions defined on the 16 coarse nodes around the coarse

element Dα. Note the connectivity Xα of Dα contains r = 16 coarse nodes according to Lemma 1.
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More specifically, as illustrated in Fig. 7(a), we pick up the 16 coarse nodes (in orange), and each of them has a
corresponding B-spline basis BI(x) in a form as Eq. (7). Replacing ψI(x) in Eq. (22) with the newly constructed BI(x)
gives the desired IIS.

More DOFs for a coarse element can be introduced for accuracy improvement, by inserting new coarse nodes using
the h-refinement strategy in IGA [64], for example, by inserting coarse nodes at the centers of both the elements and
edges, as illustrated in Fig. 7(b). In this case, the coarse node has a span L = H/2.

5.1.2. Boundary B-spline coarse element
In this strategy, we construct a B-spline curve for each coarse element edge and extrude it along directions of its

adjacent curves, which produces an extruded IIS that locally covers boundary fine nodes Xαb .
Suppose Ci(x), i = 0, 1, 2, 3, is the quadratic B-spline curve associated with the i-th edge ei. The four control points

for curve Ci(x) are taken as the displacements (DOFs) on the coarse nodes along its edge direction; see also Fig. 8(a).
Note all together a coarse element Dα contains r = 12 coarse nodes, or the connectivity of r = |Xα| = 12, according to
Lemma 1.

Accordingly, given a boundary fine node xk with the edge e0 closest to it, as illustrated in Fig. 9(a), the value of the
extruded IIS at xk is defined as,

Iα(xk) = C0(x0) + (1 − a) [C1(x1) −C1(X0)] + a [C2(x2) −C2(X1)], (25)

where e1 and e2 are the two edges adjacent to edge e0, X0 and X1 are the two endpoints of edge e0, xi, i = 0, 1, 2 are the
projection points of xk onto edges ei, and the weight a is the relative distance fraction given by,

a =
||xk − x1||2 −

s
2

H − s
, (26)

where H is the coarse element span and s is the fine knot span.
We comment on the cases that the fine nodes are shared by different edges during the above IIS construction. First,

for the corner vertices shared by two edges, for example, X0 shared by edges e0 and e1, we may have C0(X0) , C1(X0)
due to the non-interpolation property of a B-spline curve. This issue is resolved by taking their average value at X0.

Second, given a coarse element Dα, we have four boundary fine nodes around each corner vertex of it. During the
extruded IIS construction, they are shared by two adjacent edges; see Fig. 9(b). Because of the setting of weight a in
Eq. (26), Eq. (25) is guaranteed to give an identical IIS value no matter which edge the value is computed based on.

Similarly, as in the case of the B-spline coarse element, to improve the simulation accuracy, new coarse nodes can
be inserted at the centers of the edges. In this case, the connectivity Xα contains r = 16 coarse nodes; see Fig. 8(b). The
coarse node has a span L = H/2.

When using either B-spline or boundary B-spline coarse element, the IISs for adjacent coarse elements have the
same sampling values on their common boundary fine nodes, as summarized below. This is important in ensuring the
C1-continuity of the constructed shape functions, as well detailed in Section 6.

Lemma 2. Given two adjacent coarse elements Dα,Dβ prescribed above of the same type, we have

Iα(xk) = Iβ(xk), (27)

where Iα(x) and Iβ(x) are the associated IISs constructed above, and xk are the common boundary fine nodes around
the common edge. Accordingly, the two coarsened shape functions Φα(x) and Φβ(x) in Eq. (15) share the same control
values corresponding to the common boundary fine nodes.

Proof: the result is clear noticing that the IISs for adjacent coarse elements share a common part around the common
boundary fine nodes; See also Fig. 10. □

5.2. Boundary–interior mapping
The boundary–interior mapping matrix Mα maps the boundary fine nodal displacements qb to interior fine nodal

displacements qi by solving a local boundary-constrained static equilibrium within the coarse element Dα. It takes knot
spans as the analysis mesh, B-spline basis functions at fine nodes as shape functions, and the mapped values qb from Qα

in Eq. (23) as Dirichlet boundary conditions.
Instead of solving this local problem using the full Newton-Raphson method for converged displacements of interior

fine nodes, it is found that only applying the first iteration of the Newton-Raphson method greatly improves the efficiency
while maintaining very close accuracy. The static equilibrium equation is thus built as,

K̃α qα = f̃ext,α + f̃int,α, (28)
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Fig. 9. The extruded IIS’ samplings at (a) a regular boundary fine node xk and (b) a special boundary fine node xk shared by two adjacent edges.

Fig. 10. The common part of the IISs for adjacent coarse elements Dα and Dβ, covers the 2n common boundary fine nodes (black) when using (a)
B-spline or (b) boundary B-spline coarse element. The 12 and 8 filled orange nodes in (a), and (b) are respectively the common coarse nodes shared
by Dα and Dβ.

where K̃α denotes the tangent stiffness matrix, f̃ext,α and f̃int,α are the external and internal force vectors, respectively.
Considering the boundary fine nodes Xαb and interior fine nodes Xαi as retained and truncated nodes respectively,

Eq. (28) can be rewritten as [
Kb Kbi

Kib Ki

] [
qb

qi

]
=

[
fb

fi

]
, (29)

where Kb, Ki, Kbi, Kib are the associated sub-matrices of K̃α, fb and fi are the sub-vectors of out-of-balance force. By
solving the equation in the second-row of Eq. (29) for qi, while assuming that fi = 0, the following is obtained,

qi = −K−1
i Kib qb. (30)

Consequently,

qα =
[

I
−K−1

i Kib

]
qb =Mα qb, for Mα =

[
I

−K−1
i Kib

]
, (31)

where I is the identity matrix of size (2nb × 2nb) and Mα is the desired boundary–interior mapping matrix for Dα having
a size of (2ñ × 2nb).

Remark 4. The knot spans in some coarse elements may not contain any particle, especially for those truncated by
structure boundary. The special case may result in a singular matrix Ki in Eq. (30). A small value ϵ = 1e−5 is added in
the diagonal of Ki to handle the issue in the implementation.

6. Properties of the coarsened B-spline patch shape functions

The proposed coarsened shape functions have important properties of C1-continuity, partition of unity, and awareness
of interior material distribution, as detailed below.
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Fig. 11. A pair of C1-continuous quadratic uniform B-spline patches Φα and Φβ (light gray and dark gray), abbreviations of Φα,Iw and Φβ,Iw on coarse
elements Dα and Dβ of the coarsened shape function ΦI

w (one component). Let pαi, j and pβi, j, i, j = 1, 2, . . . , n be their control values, respectively

of the control vectors pα,Iw and pβ,Iw in Eq. (12). The control values corresponding to the common boundary fine nodes are shown as blue points (i.e.,
pαn−1, j/pβ1, j and pαn, j/pβ2, j).

6.1. C1-continuity
The C1-continuity is mainly derived from the property of the IIS constructed in Section 5, as described below.

Theorem 3. Given two adjacent coarse elements Dα and Dβ, letΦα,Iw (x) andΦβ,Iw (x) be the two adjacent B-spline patches
on Dα and Dβ of the coarsened shape function ΦI

w (one component) constructed above for a coarse node I. We have
that Φα,Iw (x) and Φβ,Iw (x) are C1-continuous, i.e. they share the same values and first derivatives along their common
boundary, as depicted in Fig. 11. The coarsened shape function ΦI

w (or ΦI) is thus C1-continuous across the coarse
element boundaries.

Proof : The C1-continuity can be proved from the fact that the two adjacent coarse elements share the same IIS values
on their common boundary fine nodes, together with the dependence of the B-spline surface boundary on surrounding
control values. More details are explained in Appendix A. □

Fig. 12 shows the derivatives of the first component ΦI
1(x) of ΦI(x) at a coarse node shared by four coarse elements.

Continuous derivatives are observed, demonstrating its C1-continuity.

6.2. Partition of unity
The proposed coarsened shape functions satisfy the partition of unity (PU) property, which enables the transla-

tion invariance, and conservation of mass and linear momentum [60]. An 1-vector of size a is denoted by ea =
[1, · · · , 1, · · · , 1]T below.

The PU of the coarsened shape functions entails the IIS’ PU in Eq. (22). This is obvious for the B-spline surface in
the case of the B-spline coarse element. The case of boundary B-spline coarse element is then explained. By making
coarse nodal displacements equal to 1, i.e. QI = 1, then Ci(x) = 1 holds due to the PU of the B-spline curve. The
extruded IIS’ PU is thus satisfied, as

Iα(xk) = 1 + a(1 − 1) + (1 − a)(1 − 1) = 1. (32)

The coarse–boundary mapping matrix Ψα will map 1-vector e2r to e2nb ,

e2nb = Ψ
α e2r. (33)

Consequently, the PU property of coarsened element shape function Φα(x) is derived from Eq. (33),

Φα(x) e2r = B(x) Mα Ψα e2r

= B(x) Mα e2nb

= B(x) e2ñ

= e2,

(34)

where equation Mα e2nb = e2ñ holds since any row (or column) of the tangent stiffness matrix in Eq. (29) represents an
equilibrium force system, and equation B(x) e2ñ = e2 comes from the PU of B-spline basis functions [64].
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Fig. 12. Plots of the derivatives ∂ΦI
1(x)/∂x and ∂ΦI

1(x)/∂y of ΦI
1(x) at a corner coarse node shared by four coarse elements. Their continuity

demonstrates the C1-continuity of our coarsened shape functions.

Fig. 13. The four components of the coarsened shape function Φα,I (x) at the right top corner coarse node, with a circular hard filling in the coarse
element.

Fig. 14. The first components Φα,I1 (x) of the coarsened shape functions Φα,I (x) at a right top corner coarse node, with different material distributions
(circular/square hard filling) in the coarse element or different fine node numbers n per direction.

Remark 5. The proposed coarsened shape functions do not satisfy the Lagrange property (or the Kronecker delta prop-
erty), since the employed B-spline surface is non-interpolating at coarse nodes. The absence of the Lagrange property
makes the enforcement of the Dirichlet boundary conditions difficult. Plane Dirichlet boundaries are assumed for sim-
plicity in the numerical examples in Section 8. More complex cases may be resolved through the weak enforcement
approaches [65].

6.3. Awareness of material heterogeniety
In contrast to the conventional linear/B-spline shape function, the coarsened shape function ΦI(x) for a node I has

an asymmetric 2 × 2 matrix value, which better captures the anisotropy of the heterogeneous structure inside [20].
Fig. 13 shows the four componentsΦα,Iw (x) of the coarsened shape functionΦα,I(x) on a coarse element Dα containing

a circular hard filling within its interior, at the right top corner coarse node I. They are able to capture the interior material
distributions. It can also be observed that the diagonal components Φα,I1 (x) and Φα,I4 (x) play major roles in the function
values, while the off-diagonal components Φα,I2 (x) and Φα,I3 (x) regulate the interpolations by coupling different axes.

Fig. 14 also shows the first component Φα,I1 (x) of the coarsened shape function on coarse elements with different fine
node number n per direction. A larger n allows a finer exposure of the interior material.
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Fig. 15. Flowchart of the entire simulation process (per time step) for heterogeneous nonlinear structures using the proposed coarsened shape functions.

7. Extensions

We discuss below the extension of the coarsened shape functions to 3D cases and their application to the MPM
framework for nonlinear deformations.

7.1. Extension to 3D cases
Derivation of the 3D coarsened shape functions follows the same procedure as that in 2D described above. Their

main differences are summarized below.
Firstly, the coarsened shape function Φα,I(x) at a coarse node I on a 3D coarse element Dα takes a form of 3 × 3

matrix,

Φα,I(x) =


Φ
α,I
1 (x) Φ

α,I
2 (x) Φ

α,I
3 (x)

Φ
α,I
4 (x) Φ

α,I
5 (x) Φ

α,I
6 (x)

Φ
α,I
7 (x) Φ

α,I
8 (x) Φ

α,I
9 (x)

 , (35)

where each component Φα,Iw (x), w = 1, 2, . . . , 9 is a quadratic B-spline volume [64] taking its control values as the
displacements on the ñ fine nodesXαf for ñ = n3. We also mention here that the fine nodesXαf are divided into nb = (n−4)3

boundary fine nodes around the 6 element faces and ni = ñ − nb interior fine nodes.
Secondly, the 3D boundary–interior matrix Mα in Eq. (20) is derived via solving a 3D static equilibrium on the fine

mesh Dα.
Thirdly, the 3D coarse–boundary matrix Ψα also has two types of coarse elements: B-spline and boundary B-spline

coarse elements. The former is straightforward and we mainly explain the latter. Similarly, as in the 2D case, we
construct a B-spline surface for each element face and extrude each along its adjacent surfaces to obtain a compact
extruded intermediate interpolation volume (IIV for short) that covers boundary fine nodes Xαb ; see also Fig. 16(a).

Fig. 16. (a) The extruded IIV of a boundary B-spline coarse element Dα. (b) The extruded IIV’s sampling at a boundary fine node xk .
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Fig. 17. Flow diagram per time step of our cMPM, where each particle carries the physical quantities, such as the position xt
p, mass mp, volume

V t
p, velocity vt

p, deformation gradient Ft
p, Cauchy stress σt

p, and body force bt
p. The ΦI

p = Φ
I (xt

p) represents the value of the coarsened shape
function ΦI (x) at particle p, and the Φ̄I (xt

p) denotes the averaged scalar shape functions of ΦI
p for mass extrapolation. In (d), the particles crossing

cell boundaries after grid resetting are marked in red.

Suppose S i(x) , i = 0, 1, . . . , 5 is the quadratic B-spline surface associated to the i-th face f i. Given a boundary fine
node xk, let f 0 be the closest face to it, as illustrated in Fig. 16(b). The value of the extruded IIV at xk is defined as

Iα(xk) = S 0(x0)+
1 − a

2
[S 1(x1)−S 1(xe1)]+

1 − b
2

[S 2(x2)−S 2(xe2)]+
a
2

[S 3(x3)−S 3(xe3)]+
b
2

[S 4(x4)−S 4(xe4)], (36)

where f i, i = 1, 2, 3, 4 are the four faces adjacent to face f 0, ei, i = 1, 2, 3, 4 are the four edges of face f 0, xi, i =
0, 1, 2, 3, 4 are the projection points of xk onto face f i, xei, i = 1, 2, 3, 4 are the projection points of point xi onto edges
ei. The weights a and b are the relative distance fractions given by,

a =
||xk − x1||2 −

s
2

H − s
, b =

||xk − x2||2 −
s
2

H − s
. (37)

Note also that a coarse element Dα contains r = 56 or r = 98 coarse nodes with coarse node span L = H or L = H/2
respectively, according to Lemma 1.

7.2. Usage in nonlinear deformation
The proposed coarsened shape functions are particularly conducted within the material point method (MPM) frame-

work due to the latter’s ability to handle large deformations, coined coarsened MPM (cMPM).
The MPM is a hybrid Eulerian/Lagrangian approach that uses a set of material points (or particles) to represent the

structure Ω, and a background mesh (or grid) to represent a temporary computational domain. The MPM procedure
primarily consists of four phases to solve the equilibrium in Eq. (2): particle to grid (P2G), grid updating, grid to particle
(G2P), and grid resetting, as illustrated in Fig. 17.

Performance of the MPM heavily depends on the continuity of its shape functions [60]. The conventional MPM [23,
51] employs C0 linear shape functions and consequently suffers from the cell-crossing artifact [24, 52] as the particles
(the red ones in Fig. 17(d)) cross the cell boundaries, which may induce a perturbed stress field and even affect the
convergence of an implicit solver. Many approaches have been proposed to remedy this artifact, and among them,
B-spline MPM (BSMPM) [58, 59] resolves this by employing smooth B-spline basis functions. Similar to BSMPM,
our proposed B-spline patch shape functions satisfy C1-continuity as explained in Section 6.1. On the other hand,
the coarsened shape functions are constructed based on a coarse mesh, which greatly reduces the analysis DOFs from a
multiscale aspect. Building upon this, the present cMPM approach conducts the MPM simulation on a coarse background
mesh and replaces the B-spline basis functions with our C1-continuous coarsened shape functions in Eq. (15).

The overall calculation process in outlined in Fig. 15.Some comments are made below. First, the coarsened shape
functionΦα, or the control matrix pα, is computed per time step by updating the boundary–interior mapping matrix Mα,
as the material distribution changes. Second, the coarse–boundary mapping matrixΨα is the same for all coarse elements
and thus only computed once at the beginning of the algorithm.
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Table 2
Simulation statistics of each example of nonlinear material, including the number of particles, material parameters (density ρ, Young’s modulus E and
Poisson’s ratio ν), numbers of coarse elements and coarse nodes, time step, and average timing per time step.

Example Fig particles
ρ (kg/m3),
E (Pa), ν

coarse
element type elems, nodes ∆t (s)

timing (s)
(per timestep)

Cube shearing 18(a) 216.0K 1e3, 1e5, 0.4 boundary B-spline 216, 2.9K 0.01 25.9
Bending beam 20(a) 674.1K 10, -, 0.3 boundary B-spline 1.0K, 12.0K 0.025 77.5
Lattice bar-1 23(a) 992.7K 10, 1e5, 0.4 boundary B-spline 2.0K, 20.8K 0.025 142.4
Lattice bar-2 23(a) 992.7K 10, 1e5, 0.4 B-spline 2.0K, 23.8K 0.025 345.1

Heterogeneous cube 25(a) 68.9K 10, -, 0.3 boundary B-spline 80, 1.5K 0.01 22.2
Wire rope 33(a) 4.9M -, -, - boundary B-spline 11.2K, 100.6K 0.0002 799.3

- denoting parameters with multiple values, whose details are given in Section 8.

8. Numerical examples

Performance of the coarsened shape functions is demonstrated through a variety of numerical examples on a PC
with Intel Core i7-11700 2.5 GHz CPU and 64GB RAM. The cMPM was implemented in C++, using Eigen [66] for
linear algebra operations, Intel TBB for parallelization, and AMGCL [67] for linear system solving. Planar Dirichlet
boundaries were assumed for easy enforcement. Unless specified otherwise, the coarse node span L = H/2 and fine
node number n = 7 per direction were set by default. The performance statistics and problem parameters for all the
tested examples are presented in Table 2. The quadratic B-spline MPM (BSMPM) using fine mesh Dh was taken as the
benchmark.

The accuracy was assessed by measuring the L2 norm error of computed displacement and stress as,

ru =

√√∫
Ω
∥u − û∥22 dΩ∫
Ω
∥û∥22 dΩ

, rσ =

√√∫
Ω
∥σ − σ̂∥22 dΩ∫
Ω
∥σ̂∥22 dΩ

(38)

where û and u denote the benchmark and computed displacements, σ̂ and σ denote the benchmark and computed von
Mises stresses respectively. Its performance is extensively tested and compared with related classical approaches, such
as BSMPM on nonlinear simulation and EMsFEM on multiscale simulation.

8.1. Performance in simulating heterogeneous nonlinear materials
In this section, we tested the performance of the proposed coarsened shape functions in simulating heterogeneous

nonlinear materials based on the cMPM framework in Section 7.2.

8.1.1. Effect of C1-continuity in nonlinear simulation
The coarsened shape functions are of C1-continuity. This was further tested by observing the stress distribution

obtained by cMPM, and its ability in eliminating the cell-crossing artifact. The test was conducted using a simple
homogeneous cube example in Fig. 18(a), which was subject to a shear force on its top face along the negative x-axis
direction with pressure p = 3600 N/m2. The solution was also compared with the results obtained from FEM, MPM
(conventional MPM [23] using linear shape functions), and BSMPM. The fine element size h of MPM/BSMPM was set
equal to the fine knot span size s of the cMPM for fair comparisons, and all other settings (e.g. the particle numbers,
time steps) were consistent as well; the strategy was also applied to comparisons in other subsequent examples.

Figs. 18(b)(c) show the active meshes (excluding elements with no particles) for MPM, BSMPM, and cMPM. Their
stress solutions along a red line (Fig. 18(a)) in the cube are compared in Fig. 19 at time t = 0.01, 0.15, and 0.21 s. At time
t = 0.01 s, before any particle crossed the cell boundary, all four approaches displayed continuous stresses. At t = 0.15
s, shortly after some particles crossed cell boundaries, these crossing particles considerably disturbed the solutions and
caused oscillating stresses in MPM but not in BSMPM. The cMPM using the proposed coarsened shape functions
eliminated the cell-crossing artifact and showed continuous stresses. At t = 0.21 s, with even larger deformations, the
MPM showed more severe oscillations and large accuracy loss while the solutions obtained by BSMPM and cMPM
remained reliable.

Furthermore, the stress solutions on a black plane (Fig. 18(a)) in the cube are compared for four different shape
functions: linear, B-spline, CBN [21], and the proposed coarsened B-spline patch shape functions, and shown in Fig. 2
at time t = 0.21 s. The latter two shared the same mesh sizes for coarse mesh and local fine mesh. It can be observed that
the linear and CBN shape functions produced perturbed stress fields while the B-spline and coarsened shape functions
produced continuous solutions due to their C1-continuity.
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Fig. 18. Cube shearing example: (a) boundary conditions, where a red line along the x-axis and a black plane along the xz-axes were used for observing
the stress fields, (b) fine mesh with 27.0K elements and 34.8K nodes for MPM and BSMPM, and (c) coarse mesh with 216 elements and 2.9K nodes
for our cMPM.

Fig. 19. Plots of the three stress snapshots (0.01, 0.15, and 0.21s) for the red line of the cube example (Fig. 18(a)) for the FEM, MPM, BSMPM, and
our cMPM.

8.1.2. Comparisons with BSMPM
We tested the accuracy and efficiency of our coarsened shape functions (and the cMPM) in simulating heterogeneous

nonlinear materials compared with BSMPM, using a heterogeneous bending beam in Fig. 20(a): having a size of 20×2×2
and containing 40 softer elliptical column inclusions of varied shapes. The Young’s moduli were respectively 1e2 and
1e5 Pa for the inclusions and the remaining. The beam was fixed at its two sides and subject to the self-gravity of
g = 25 m/s2.

Three tests were conducted: cMPM on coarse mesh DH , BSMPM on global fine mesh Dh, and BSMPM on coarse
mesh DH , denoted by cMPM, BSMPM-fine, and BSMPM-coarse for simplicity. The BSMPM-fine was taken as the
benchmark. Figs. 20(b)-(d) plot their corresponding active meshes and Fig. 21 plots their deformations at t = 0.3 and
0.6 s. It was observed that the BSMPM-coarse failed to reflect the deformations of softer inclusions, while cMPM
produced very close deformations to the benchmark due to its capabilities of capturing fine-scale heterogeneities. Their
displacement errors indicated similar phenomena: the maximum error across all time steps was max(ru) = 0.095 and
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Fig. 20. Bending beam example: (a) boundary conditions, (b) part of the fine mesh with 88.2K elements and 115.8K nodes for BSMPM-fine, (c) part
of the coarse mesh with 1.0K elements and 2.6K nodes for the BSMPM-coarse, and (d) part of the coarse mesh with 1.0K elements and 12.0K nodes
for the cMPM.

Fig. 21. Deformation plots of the bending beam (Fig. 20(a)) of the BSMPM-fine (above), BSMPM-coarse (middle), and cMPM (below), at time step
(a) t = 0.3 s and (b) t = 0.6 s. The maximum displacement errors of the BSMPM-coarse and cMPM were 0.095 and 0.016 respectively. The local
magnified views at t = 0.6 s are also provided.

Fig. 22. The Green strain diagrams of the bending beam (Fig. 20(a)) of the BSMPM-fine case (above) and cMPM (below) at t = 0.6 s, by showing
components (a) E22 and (b) E12 respectively.

0.016 respectively for BSMPM-coarse and cMPM. We also noticed that the cMPM produced a slightly stiffer deformation
than the BSMPM due to its coarsening. Similar phenomenon was also observed in [20].

The fields of Green strain E of BSMPM-fine case and cMPM are also shown in Fig. 22, specifically including the
normal component E22 of the y-axis and shear component E12 of the x- and y-axes. The detailed anisotropies and
continuous strain distributions of this heterogeneous beam were observed using the cMPM, demonstrating the ability of
the coarsened shape functions in material awareness. Their detailed timing statistics are listed in Table 3, where cMPM
achieved almost 11.0× speedup compared with the BSMPM; it would further increase when the problem scale increases.
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The computing integrals and computing shape functions respectively occupied almost 68.4% and 20.3% in cMPM while
solving linear system occupied almost 88.6% in BSMPM. These results are consistent with the analysis in Section 7.2.

Fig. 23. Lattice bar example: (a) boundary conditions, (b) coarse mesh.

Fig. 24. Deformations of the lattice bar in Fig. 23(a) using the B-spline (left) and boundary B-spline (right) coarse elements, at time step (a) t = 1.0 s
and (b) t = 1.6 s. The maximum displacement errors of the B-spline and boundary B-spline cases were 2.1e−2 and 2.5e−2 respectively.

Table 3
Timing statistics in detail for bending beam (Fig. 20(a)) and lattice bar example (Fig. 23(a)). Total timings (for one time step) and timings of three
computationally expensive parts (in seconds), including the computing shape functions (SFs), computing integrals, and solving linear system (linSys),
are presented.

total
timing

compute
SFs

compute
integrals

solve
linSys

Bending
beam

BSMPM 855.5 - 40.5 758.4
cMPM 77.5 15.7 53.0 5.8

Lattice
bar

B-spline 1 345.1 47.2 265.8 15.8
boundary 1 142.4 37.0 83.8 9.5

1 ”B-spline” and ”boundary” mean the cMPM using B-spline coarse elements and boundary B-spline coarse elements.

8.1.3. Performances at different types of coarse elements
Differences between the proposed shape functions brought by two types of coarse elements were tested here, that is,

the B-spline and boundary B-spline coarse elements explained in Section 5.1. A more complex lattice bar example in
Fig. 23(a) containing many void regions and fine-scale geometry details, was used here. The lattice bar had a size of
8 × 2 × 2, and it was fixed on its left side face and subject to the self-gravity of g = 5 m/s2. As listed in Table 2, the two
cases having all consistent settings except for different types of coarse elements, were set. Fig. 23(b) plots their common
active coarse mesh.

Fig. 24 plots their deformation snapshots at t = 1.0 and 1.6 s. The boundary B-spline case showed close deformation
approximation to the B-spline case, respectively of maximum displacement errors 2.5e−2 and 2.1e−2. On the other hand,
the boundary B-spline case achieved around 3.2 × speedup in computing integrals compared with the B-spline case, as
seen from the timing statistics in Table 3. This phenomenon can be explained by the fact that boundary B-spline had
a decreased coarse node number r per coarse element, or specifically r = 98 and 125 for the two cases respectively.
In summary, the boundary B-spline case improved the efficiency while maintaining very close accuracy to the B-spline
case.
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Fig. 25. Heterogeneous cube example: (a) boundary conditions, (b) deformation plots at t = 0.05 s for BSMPM, and cMPM using first N-R and full
N-R.

Fig. 26. Heterogeneous cube’s (Fig. 25(a)) convergence results of the strain energy (a) the global coarse simulation at t = 0.01 s, (b) the global coarse
simulation at t = 0.05 s, and (c) the local analysis problem of a coarse element under 10 sampled boundary displacement constraints at t = 0.01 s.

8.1.4. Evaluation of non-iterative shape function computation
The coarsened shape functions are computed via a local analysis for each coarse element, as explained in Section 5.2

and included in the overall algorithm in Fig. 15. Although a nonlinear problem, the local analysis is computed using only
the first iteration of the Newton-Raphson method. Its performance is tested against using a full Newton-Raphson method,
respectively denoted by first N-R and full N-R for simplicity. Results from the BSMPM were taken as benchmark.

The heterogeneous cube example in Fig. 25(a) was first used, a simplified version from the example in Fig. 20(a).
The cube was fixed at its bottom face and subject to an upward force of pressure p = 5000N/m2 on the upper face.
Fig. 25(b) plots the largest global deformations at t = 0.05 s. Under the two different local computation strategies, using
the first N-R and full N-R, the cube exhibited similar global deformations, respectively of errors ru = 0.040 and 0.031.
Note that the first N-R strategy is much cheaper for the local analysis, taking around 2.96 s per timestep while the full
N-R taking around 392.20 s.

Detailed iteration processes are further shown in Fig. 26 in terms of the strain energy variations. It was observed
in (a) and (b), respectively at time step t = 0.01, 0.05, either using the first N-R or using the full N-R, we had reliable
convergence at a iteration step as small as 4. In addition, the two strategies both closely approximated the benchmark
results. The nice phenomenon can perhaps be explained from the results in Fig. 26(c) on the iteration history of the local
analysis problem of a coarse element under 10 sampled boundary displacement constraints, where the strain energy has
deduced drastically at the first iteration.

8.2. Comparisons with related EMsFEM approaches
The performance of our C1-continuous coarsened shape functions was compared with closely related EMsFEM

approaches on linear elastic problem. All these approaches construct a set of numerical shape functions for each coarse
element by solving the local problem. Their main difference lies in the forms of constructed shape functions and imposed
displacement constraints in solving the local problem. The approaches include:

• Diagonal [15], adopting piecewise linear shape functions of diagonal matrix-form, and imposing displacement
constraints generated from linear interpolation.
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Fig. 27. Heterogeneous bending beam example: (a) material distributions and boundary conditions, where Young’s moduli were 5e5, 2e4, and 1e5 Pa
for the four middle elliptical column inclusions, other four inclusions on both sides, and the remaining matrix, (b) part of the employed 32 × 4 × 4
coarse mesh.

Fig. 28. Deformations of the bending beam (Fig. 27(a)) for approaches: p-FEM, Diagonal-2, OS-2, CBN, and ours, where the shadow volumes denote
the benchmark deformations.

Fig. 29. The von Mises stress fields of the bending beam (Fig. 27(a)) for approaches: p-FEM, Diagonal-1, Diagonal-2, OS-1, OS-2, CBN, and ours.

• Oversampling (OS) [46], adopting piecewise linear shape functions of matrix-form, and imposing oscillating dis-
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placement constraints generated from the local problem on the oversampling domain.

• CBN [21], adopting piecewise linear shape functions of matrix-form, and imposing displacement constraints gen-
erated from cubic Bézier interpolation.

• Ours, adopting B-spline patch shape functions of matrix-form, and imposing displacement constraints generated
from intermediate interpolation volume (IIV).

Results from the hexhedral FEM (polynomial degree p = 2) using fine mesh Dh were taken as the benchmark.
The comparison results are summarized in Table 4. Ours always produced the closest approximation to the bench-

mark at a relatively expensive cost while Diagonal and OS took the least time at a much accuracy reduction.

Table 4
Simulation statistics: p-FEM, Diagonal, OS, CBN, and ours for the heterogeneous bending beam in Fig. 27(a) and lattice bar in (Fig. 23(a)). The
timings include local analysis (per coarse element) and global coarse simulation, and the unit of timing is seconds.

Example Approach ru rσ #DOF Timing (local) Timing (global)

Bending beam (Fig. 27(a))

p-FEM – – 12.6M – 16609.04
Diagonal-1 0.241 0.327 2.5K 0.02 0.07
Diagonal-2 1 0.085 0.137 29.4K 2.6e−4 0.10
OS-1 0.169 0.269 2.5K 0.19 0.07
OS-2 1 0.090 0.168 29.4K 9.8e−3 0.10
CBN 0.020 0.055 36.9K 0.05 0.25
Ours 0.003 0.048 65.5K 0.34 2.71

Lattice bar (Fig. 23(a))

p-FEM – – 10.2M – 14346.94
Diagonal 0.954 0.700 188.3K 2.3e−4 0.26
OS 0.270 0.269 188.3K 9.2e−3 0.26
CBN 0.013 0.208 132.7K 0.14 2.56
Ours 0.007 0.146 152.4K 0.45 17.77

1 The coarse mesh size for Diagonal-2 and OS-2 was refined to 80 × 10 × 10 for obtaining a comparable number of DOFs as CBN
and ours.

Fig. 30. Error variations of the bending beam (Fig. 27(a)) at different coarse mesh sizes for approaches: Diagonal, OS, CBN, and ours.

8.2.1. A heterogeneous beam example of three different materials
The first test was conducted on a heterogeneous bending beam in Fig. 27(a), consisting of three different materials

of different Young’s moduli: 5e5, 2e4, and 1e5 Pa for the four middle elliptical column inclusions, other four inclusions
on both sides, and the remaining matrix. The beam was of 8 × 1 × 1, fixed at its two sides and subject to a downward
pressure p = 1000 N/m2 on its upper face. The coarse mesh was of size 32× 4× 4 (Fig. 27(b)), and the fine mesh was of
size 10 × 10 × 10. We also tested Diagonal and OS approaches at coarse mesh size of 80 × 10 × 10 and local fine mesh
size of 4 × 4 × 4, named Diagonal-2 and OS-2, producing a comparable number of DOFs as CBN and ours for a more
fair comparison. The coarse node had a span of L = H/3 in our approach.
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The global deformations and stress distributions are compared in Figs. 28 and 29; see also Table 4. All of these
approaches showed close deformation approximation to the benchmark. Still, different accuracies were still observed for
Diagonal-1, OS-1, Diagonal-2, OS-2, CBN and ours at relative errors ru of 0.241, 0.169, 0.085, 0.090, 0.020 and 0.003.
On the other hand, large stress discontinuities were clearly observed in the results of Diagonal-1 and OS-1 in Fig. 29
respectively at errors 0.327 and 0.269, which was due to the limited linear displacement constraints at the coarse element
boundaries of Diagonal or oversampling domain boundaries of OS. The phenomenon has been improved in Diagonal-2
and OS-2 but still at large errors of 0.137 and 0.168 respectively. CBN showed more continuous stress distributions
at smaller error rσ of 0.055. However, stress discontinuity was still observed, perhaps due to its C0-continuous shape
functions. Ours demonstrated continuous stress distribution with the smallest error of 0.048.

Fig. 30 also compares performances of the approaches at different coarse mesh sizes: 8× 1× 1, 16× 2× 2, 32× 4× 4,
and 64 × 8 × 8, where the global fine mesh size was unchanged as 320 × 40 × 40. The errors decreased rapidly as the
coarse mesh size increased (producing a smaller-sized local fine mesh). In all settings, our coarsened shape functions
always had the smallest errors.

Fig. 31. Deformations of the lattice bar (Fig. 23(a)) for approaches: p-FEM, Diagonal, OS, CBN, and ours, where the shadow volumes denote the
benchmark deformations.

Fig. 32. The von Mises stress fields of the lattice bar (Fig. 23(a)) for approaches: p-FEM, OS, CBN, and ours.

8.2.2. A complex example of lattice bar
The comparisons were also conducted on a complex lattice bar example in Fig. 23(a), being fixed at its left face and

subject to a downward pressure p = 60 N/m2 on its right face. The example contained many void regions and fine-scale
geometry details, raising more challenges to effective shape function construction. In our approach, the coarse node had
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a span of L = H/3. The sizes of coarse mesh and local fine mesh were 32 × 8 × 8 and 12 × 12 × 12 respectively for CBN
and ours while 128 × 32 × 32 and 3 × 3 × 3 for Diagonal and OS.

The deformations and stress distributions are summarized in Figs. 31 and 32; see also Table 4. Diagonal failed to
produce a reliable deformation, perhaps due to its shape functions’ lack of coupling terms amongst different axes. OS
tended to stiffen the structure due to the employed linear interpolation at oversampling domain boundaries. CBN and
ours exhibited deformations almost identical to the benchmark. In addition, our approach achieved more accurate stress
results and exhibited better continuity in comparison with other approaches.

Fig. 33. Wire rope example: (a) boundary conditions and material distributions, (b) deformation plot using our cMPM at t = 0.0072 s.

Fig. 34. The von Mises stress fields of the wire rope in Fig. 33(a) computed via our cMPM, including diagrams of (a) the global structure, (b) each
individual material and (c) particles of two sections at z = 3 and z = 9.7.

Table 5
Parameters for the three materials in the nonlinear hybrid ropes (Fig. 33(a)), including density (kg/m3), Young’s modulus (Pa), and Poisson’s ratio.

Material Density
Young’s
modulus

Poisson’s
ratio

M-1 (silver) Aluminum alloy 2.7e3 7e10 0.33
M-2 (grey) Grey cast iron 7e3 1.18e11 0.30
M-3 (brown) Alloy steel 7.9e3 2.06e11 0.30

8.3. An example of nonlinear hybrid ropes under contacts
We also tested the performance of the cMPM in handling heterogeneous structures with fine-scale geometric and

material details, even with contacts, on an example of complex hybrid wire ropes in Fig. 33(a). The example had a
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length of 12.7 and a radius of 1, and contained three types of rope bundles of different materials: aluminum alloy (M-1,
silver color), grey cast iron (M-2, grey), and alloy steel (M-3, brown); the material parameters are listed in Table 5. The
ropes were fixed at both its left and right sides, and subject to a downward force 1.5e10N on its top.

In the cMPM approach, 4.9M MPM particles and a coarse mesh with 11.2K elements and 100.6K coarse nodes were
used. It resulted in 1.4M fine elements (knot spans), a size too huge to be conducted on a regular PC using fine mesh
based BSMPM. On average, the cMPM took 799.3 s per time step.

The overall deformation at time step t = 0.0072 s is plotted in Fig. 33(b). And several associated von Mises stress
fields are shown in Fig. 34, including diagrams of (a) the global structure, (b) each individual material, and (c) particles
of the two sections at z = 3 and z = 9.7. Different stress magnitudes were observed in the three different materials: the
softer (M-1) material showed relatively small stress while the stiffer (M-3) material showed larger stress, demonstrating
the coarsened shape functions’ ability to capture the structure’s fine-scale heterogeneities. We also observed that cMPM
effectively handled collisions between these different rope bundles from its inherent automatic no-penetration contact
algorithm, in a similar performance as the MPM.

9. Conclusion

In this study, a type of matrix-valued coarsened shape functions of C1-continuity are proposed and constructed for
the first time as free-form B-spline patches, being able to capture the fine-scale heterogeneities within the coarse element
that allows for continuous stress/strain fields. It much improves the simulation efficiency with an order of magnitude
and simultaneously maintains high simulation accuracy. The coarsened shape functions satisfy the important property of
partition of unity and are efficiently derived via consequent coarse–boundary mapping and boundary–interior mapping,
which only involves small efforts in solving a linear system of small size for each coarse element. The shape functions’
application in MPM-based simulation for nonlinear heterogeneous structures was also implemented and tested, which
demonstrated its reliable performance, high accuracy, and improved efficiency.

While our approach is able to simulate nonlinear heterogeneous structures with high accuracy and efficiency, the
following topics are worthy of future exploration to further alleviate the current limitations. First, the C1-continuous
coarsened shape functions can be applied directly to those numerical analysis problems involving second derivatives
of the unknown function, such as the Kirchhoff-Love shell theory [25] and strain gradient elasticity [26, 27]. Second,
only potential energy but kinetic energy is considered in the local equilibrium problem for constructing the boundary–
interior mapping, which may be improved by introducing substructural inertial effect condensation [68]. In addition, the
approach can still be extended in handling more complicated issues, such as frictional contact, separate parts that are
close to each other [15], weak enforcement of essential boundary conditions [65]. Last by not least, we are also working
on topics on extending the approach to resolve the critical seamless CAD/CAE integration issue [7, 8, 9, 10, 11].
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Appendix A. Proof to Lemma 3

A brief proof is given here. More properties of B-spline are referred to [63]. Consider two adjacent shape functions
Φ
α,I
w and Φβ,Iw on coarse elements Dα and Dβ, abbreviated as Φα(x, y) and Φβ(x, y) here, for 0 ≤ x, y ≤ 1, let pαi, j and

pβi, j, i, j = 1, 2, . . . , n be their control values, respectively of the control vectors pα,Iw and pβ,Iw in Eq. (12). The values of
Φα at edge x = 1 and Φβ at edge x = 0 are respectively given by,

Φα(1, y) =
1
2

n∑
j

N j,2(y)(pαn−1, j + pαn, j),

Φβ(0, y) =
1
2

n∑
j

N j,2(y)(pβ1, j + pβ2, j).

(A.1)
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The first derivatives of Φα at edge x = 1 and Φβ at edge x = 0, w.r.t. parameters x and y, are respectively computed as,

∂Φα(1, y)
∂x

=
1
s

n∑
j

N j,2(y) (pαn, j − pαn−1, j),

∂Φα(1, y)
∂y

=
1
2

n∑
j

∂N j,2(y)
∂y

(pαn−1, j + pαn, j),

∂Φβ(0, y)
∂x

=
1
s

n∑
j

N j,2(y) (pβ2, j − pβ1, j),

∂Φβ(0, y)
∂y

=
1
2

n∑
j

∂N j,2(y)
∂y

(pβ1, j + pβ2, j).

(A.2)

Consequently, the two surfaces Φα and Φβ are C1-continuous if they share the same values and first derivatives along
the common boundary,

Φα(1, y) = Φβ(0, y),

∂Φα(1, y)
∂x

=
∂Φβ(0, y)

∂x
,

∂Φα(1, y)
∂y

=
∂Φβ(0, y)

∂y
.

(A.3)

Combining Eqs.(A.1), (A.2), and (A.3), the C1-continuity condition between the pair of adjacent surfaces Φα and Φβ
becomes,

pαn−1, j = pβ1, j, pαn, j = pβ2, j, j = 1, 2, . . . , n, (A.4)

which means the last two rows of the control values of Φα and the first two rows of the control values of Φβ, or equiva-
lently their control values corresponding to the common boundary fine nodes, are equal; See blue points in Fig. 11.

It is clear from Lemma 2 that the above conditions hold, and consequently the two shape functions Φα and Φβ are
C1-continuous. □
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