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Abstract

Numerically predicting the performance of heterogeneous structures without scale separation is a challenging task owing
o the critical requirements related to computational scalability and efficiency that must be satisfied. In addition, adopting a
ufficiently fine mesh to consider the small-scale heterogeneities results in prohibitive computational costs, whereas neglecting
hem tends to drastically over-stiffen the rigidity of the structure.

Thus, this study proposed an approach for constructing new material-aware shape (basis) functions per element for a
oarse discretization of the structure considering each curved bridge node (CBN) that is defined along the boundaries of the

elements. Rather than formulating their derivation by regarding them as a nonlinear optimization problem, the shape functions
were constructed mapping the CBNs to the interior nodes and were subsequently presented in an explicit matrix form as a
product of Bézier interpolation and boundary–interior transformations. The CBN shape function captures the heterogeneity
of the coarse element with greater flexibility, overcomes the important and challenging issues of inter-element stiffness and
displacement discontinuity across interfaces between coarse elements, and improves the analysis accuracy by several orders of
magnitude. Moreover, they satisfy the basic geometric properties of shape functions, thereby avoiding non-physical analysis
results. Furthermore, the performance of the proposed approach was tested and demonstrated through extensive numerical
examples, including a 3D industrial example of billions of degrees of freedom, and comparisons with results obtained from
classical approaches were made.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Heterogeneous structures comprise varied material properties at different locations within their interior structure,
nd can be found in different types of natural objects, such as human bones and organs [1], or in fabricated
bjects, such as engineered alloys, polymers, and reinforced composites [2]. The numerical prediction of the physical
erformance of such heterogeneous structures is a perpetual and fundamental problem in engineering design [3];
oreover, satisfying the critical requirements on computational scalability and efficiency remains a significant

hallenge when attempting to develop elaborate numerical methods [4–9]. Classical finite element (FE) methods
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can capture the behavior of structures (only elasticity is studied here) if a sufficiently fine mesh is adopted to
consider the small-scale heterogeneities [10]; however, it results in prohibitive computational costs, particularly
when the structures possess highly complex geometries and material distributions. In contrast, neglecting these fine
heterogeneities tends to result in the issue of inter-element stiffness [11,12], which renders the structure deformation
considerably more rigid than in reality.

A possible strategy to address the issue involves the use of parallel computation based on domain decomposition
methods (DDM) [13–15]. Another approach involves significantly reducing the scope of the problem using a coarse
grid via a geometric multigrid [16] or algebraic multigrid [17,18]. However, these methods are not efficient in the
case of structures containing large heterogeneities or high contrast of materials, particularly when the subdomain
interface intersects the heterogeneities. Further details can be found in [19–21].

The application of multiscale methods to predict the behavior of heterogeneous structures is on the rise. Typically,
the analysis is achieved via two levels of FE simulations – macroscale and microscale – wherein the analysis results
on each microstructure are used in parallel to aid in the prediction of the overall performance of the structure in
the macroscale, and vice versa. Numerical Homogenization is a typical mean-field multiscale analysis approach
that replaces each microstructure with an effective elasticity tensor using the calculation results obtained from the
microstructure analysis via the asymptotic [22–24] and energy-based approaches [25,26]. The heterogeneous coarse
mesh element is replaced as an averaged homogenized material under a set of classical mechanical tests: stretching
horizontally and vertically, and shearing. The multi-level FE method (FE2) is another important multiscale approach,

herein the FE analysis is conducted iteratively via transiting between fields (stress and strain) in the macroscale and
icroscale until convergence [27–29]. The FE2 approach can capture microscopic heterogeneous information with

reater accuracy, although the computational costs are considerable. Both approaches of numerical Homogenization
nd FE2 usually assume scale separation, that is, the length scale of the microstructure is much lower than that of
he structural length scale. However, this assumption is not valid when considering the analysis of heterogeneous
tructures without scale separation, which is the focus of this study. Consequently, researchers have developed
arious approaches to address this issue, including the high-order computational Homogenization [30–32], fiber-
ased Homogenization [33], and direct FE2 [34]. A comprehensive literature review on FE2 can be found in [35],
nd that on multiscale in [3].

Substructuring is another aspect that is studied for the analysis of heterogeneous structures [36,37], wherein
ll the structures are considered a set of substructures connected by boundary nodes between the coarse elements
hat are referred to as super-elements. Thereafter, according to a local FE formulation of each coarse element, a

atrix condensation strategy ultimately produces a linear equation regarding the super-elements, whose solution
onsequently yields the global solution in the fine mesh. Although Substructuring yields a high-accuracy solution,
t faces two primary challenges that prohibit its industrial applications. First, the local analysis problem per coarse

esh element involves solution computations to excessive numbers of linear equation systems, which increases
osts. Moreover, in contrast to the fine-scale analysis problem, it produces a dense global stiffness matrix with more
on-zero elements; an example is shown in Fig. 10. In addition, the Substructuring approach is only applicable to
inear problems.

Constructing tailored material-aware shape (or “basis”) functions has shown great potential in terms of analysis
f heterogeneous structures of non-separated scales, and is also referred to as the multiscale FE method [38,39].
hese approaches substitute classical FE shape functions per coarse mesh element with newly constructed complex
nes that have been obtained by performing fine scale calculations. Moreover, these approaches overcome two
rimary challenges: closely capturing the heterogeneity of the coarse element and maintaining the global solution
ontinuity in the fine mesh. Most previous studies have focused on the first challenge, and have articulated the
hape function construction as a spectral expansion [38,39] or constrained nonlinear optimization problem [12,21].

ore recently, Le et al. developed a novel Coarse Mesh Condensation Multiscale Method (CMCM) approach
or a better solution approximation via second-order strain fields [21]. Although the previous approaches could
artially overcome the inter-element stiffness caused by the use of linear shape functions in conventional FE
ethods, generally, the produced shape functions cannot satisfy the basic property of partition of unity (PU),

hereby resulting in deformations of non-physical behaviors. To resolve the issue, a set of discontinuous and
atrix-valued shape functions were derived by Chen [12], where the basic geometric properties of shape functions
ere imposed as constraints in an optimization problem. However, these studies have been unable to completely

ddress the issue of the global solution continuity. Further discussion on the previous approaches is presented in
ection 5.
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Table 1
Summary of important notations in this paper.

Ωα : Coarse element
ωαe : Fine element, simplified as ωe
MH : Coarse mesh, set of discrete coarse elements in the whole domain
Mh : Global fine mesh, set of discrete fine elements in the whole domain
Mα,h : Local fine mesh, set of discrete fine elements in Ωα

M : Number of coarse elements of MH

m : Number of fine elements of Mα,h

Xc : Corner nodes of local fine mesh Mα,h

Xb : Boundary nodes of local fine mesh Mα,h

Xi : Interior nodes of local fine mesh Mα,h

Xr : Bridge nodes as subset of Xb of local fine mesh Mα,h

Q : Vector of displacements of all CBNs of MH

Qα : Vector of displacements of all CBNs of Ωα

qs : Vector of displacements of nodes in Xs , where s could be b, i
q : Vector of displacements of nodes in Mα,h , including qi and qb
Kα : Stiffness matrix of a coarse element Ωα

kα : Stiffness matrix of a local fine mesh Mα,h

Ψ : The Bézier interpolation matrix relating Qα to qb
Mα : The boundary–interior transformation matrix relating qb to qi
Ne(x) : The basic bilinear shape function on point x of a fine element ωe
Nh (x) : Assembly of all Ne(x) in local fine mesh Mα,h

Nα(x) : The CBN shape functions of a coarse element Ωα

Id,1 : An all-one vector with size of d × 1
Id : An identity matrix with size of d × d

In this study, to realize the linear elasticity analysis of heterogeneous structures of non-separated scales, an
pproach that introduces a new concept of curved bridge nodes (CBNs), induced from a subset of the boundary

nodes, is proposed. In addition, suitable extensions of the CBN-based analysis to nonlinear elastic problems (of
the neo-Hookean model) were discussed. In contrast to previous approaches that focused on corner nodes, the CBN
analysis approach can accommodate more DOFs in analysis via the construction of a parametric cubic Bézier
urve or surface [40] along the interfaces between the coarse elements. Consequently, it generates an explicit set of
ew CBN shape functions, which overcome the challenging issue of inter-element stiffness and ensure the global
olution continuity in the fine mesh scale. Moreover, the basic geometric properties of shape functions are also
atisfied, thereby avoiding non-physical analysis results. Furthermore, the analysis accuracy and efficiency of the
roposed approach is tested using various numerical examples, including a 3D industrial example of billions of
OFs, and compared with certain classical approaches.

. Problem statement and approach overview

To provide a clear explanation, a 2D linear elastic body is mainly used to describe the approach for analysis.
ts extensions to a 3D case and to nonlinear models are described later in Section 4. Important notations are also
ummarized in Table 1).

.1. Linear elasticity analysis of heterogeneous structures

As illustrated in Fig. 1(a), let Ω ⊂ Rd for dimension d = 2 be a heterogeneous solid structure under study,
which may comprise different elasticity tensors D(x) at different locations x ∈ Ω . The linear elasticity analysis of
Ω is described by a displacement vector for each point x as u(x) = (u(x), v(x))T . Further, the strain vector ε(x,u)
s defined as a linear approximation to the Green’s strain, and is represented in vector form as

ε(x,u) = (ε11, ε22,
√

2ε12)T , (1)

nd the stress vector σ (u) is defined via Hooke’s law,

σ (x) = (σ , σ ,
√

2σ )T
= D(x) ε(u). (2)
11 22 12
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Fig. 1. (a). Structure Ω , coarse mesh MH
= {Ωα

}, local fine mesh Mα,h
= {ωαe , e = 1, 2, . . . ,m}. (b). Fine mesh nodes are classified

into three classes: corner nodes Xc , boundary nodes Xb , and bridge nodes Xi , where Xc ⊆ Xr ⊆ Xb .

Fig. 2. Curved bridge nodes (CBNs in orange) introduce additional nodes between adjacent bridge nodes (in black), and are considered as
analysis DOFs in the proposed CBN heterogeneous structure analysis approach. The CBNs may or may not be coincident boundary nodes
depending on the settings of fine mesh size or bridge nodes. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

The linear elasticity analysis of Ω aims to determine the displacement u that satisfies⎧⎨⎩ −divσ (u(x)) = g, in Ω ,
σ (u(x)) · n = τ , on ΓN ,

u(x) = u0, on ΓD,

(3)

where ΓD is a fixed boundary of a prescribed displacement u0, ΓN is the loading boundary of an external loading
τ , and g is the body force.

The differential form in Eq. (3) can also be stated as a weak form to induce its FE analysis. Thus, the displacement
u ∈ H 1(Ω ) satisfies

a(u, v) = l(v), ∀ v ∈ H 1
0 (Ω ), (4)

where

a(u, v) =

∫
Ω

σ (u) · ε(v) dV =

∫
Ω

ε(u)T D(x) ε(v) dV, (5)

nd

l(v) =

∫
Ω

g · v dV +

∫
ΓN

τ · v d S, (6)

1 1
here H (Ω ) and H0 (Ω ) are the usual Sobolev vector spaces, and v represents the test vector function.

4
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2.2. Preliminary: bridge nodes and shape functions

The FE analysis of the linear elasticity problem in Eq. (3) or (4) is typically conducted on a discretized
omain of Ω . Two different meshes were considered in this study, as indicated in Fig. 1(a). The coarse mesh
MH

= {Ωα, α = 1, 2, . . . ,M} contains a set of disjoint discrete heterogeneous coarse elements Ωα of large
size. Each coarse element Ωα further consists of a local fine mesh Mα,h

= {ωαe , e = 1, 2, . . . ,m}, composed
f disjoint homogeneous fine elements ωαe of much smaller size, which together induce the global fine mesh
Mh

= {ωαe , e = 1, 2, . . . ,m, α = 1, 2, . . . ,M}.
Further, each FE is formed by a set of nodes. For a particular local fine mesh Mα,h and a coarse element Ωα ,

their corresponding nodes can be classified into three different subsets depending on their locations: sets of corner
nodes, boundary nodes, or interior nodes, denoted as Xc, Xb, Xi , respectively. This is shown in Fig. 1(b).

Herein, the concept of bridge node set as a subset of the boundary node set is introduced, which is denoted as
Xr and defined as follows

Xc ⊆ Xr ⊆ Xb. (7)

For a particular segment determined by a pair of adjacent bridge nodes in Xr , a set of equally spaced nodes are
inserted, which, coupled with the bridge nodes themselves, form the set of CBNs. As explained in Section 3.1,
these nodes aid in the downstream task in high-order interpolation curve construction. Although the bridge nodes
may acquire the corner nodes, or a subset of the boundary nodes, the CBNs do not have to be coincident with the
boundary nodes. For example, as shown in Fig. 2 , different relationships between bridge nodes and CBNs can be
observed under different fine mesh size settings of 10 × 10 to 9 × 9 in (c), or choices of bridge nodes.

Shape functions act as the basis functions in FE analysis, whose linear combinations are used to describe a
deformation of structure under study. First the definition on the local fine mesh Mα,h must be understood. For a
particular master FE ωe with four corner nodes within the range (x, y) ∈ [−1, 1] × [−1, 1] and numbered from 1
to 4, the scalar bilinear shape function Ni (x) is defined as

Ni (x) : Ω → R, Ni (x) =
1
4

(1 + xi x)(1 + yi y) , i = 1, 2, 3, 4. (8)

Accordingly, the solution u(x) to problem (3), (4), is interpreted as a linear combination of the shape functions,
r in a matrix form, as follows:

ue(x) = Ne(x) qe, x ∈ ωe, (9)

here qe is the displacement vector of dimension 8 × 1, and Ne(x) is the matrix form of Ni (x) of dimension 2 × 8,

Ne(x) =

[
N1(x) 0 N2(x) 0 N3(x) 0 N4(x) 0

0 N1(x) 0 N2(x) 0 N3(x) 0 N4(x)

]
. (10)

Consequently, the partition of unity (PU) and Lagrange property are satisfied for Ni (x), i = 1, 2, 3, 4, that is,

Ne(x) I8,1 = I2,1, and Ni (x j ) = δi j , (11)

here Id,1 is an all-one vector with size d × 1, and δi j is the Kronecker delta function.
In addition, the property of node interpolation directly originates from the Lagrange property as

Ne(x j ) qe = qe, j , (12)

here qe, j is the displacement of qe on a node x j .
The bilinear shape functions derived above can be defined on the global fine Mh or coarse MH meshes.

egarding Mh , the shape functions can be defined on a homogeneous fine element ωαe , and serve as a basis for the
ne displacements, thereby effectively approximating the target solution. However, its numerous fine elements result

n high computational costs. In contrast, on coarse mesh MH , the shape functions are defined on a heterogeneous
oarse element Ωα , which results in a considerable loss in solution accuracy. Thus, this study aimed to resolve these
ssues via the construction of a set of material-aware shape functions for the CBNs, as discussed in the following
ections.
5



M. Li and J. Hu Computer Methods in Applied Mechanics and Engineering 392 (2022) 114582

L
A

c

w
e

w
s

d
d
c
i
r
t

Fig. 3. Shape functions under different construction strategies.

Fig. 4. Analysis results using the different shape functions defined in Fig. 3.

2.3. Approach overview

Following the classical Galerkin FE method [41], shape functions act as bases to produce the overall displacement
with respect to a vector of discrete nodal values. However, rather than choosing the corner nodes, the CBNs
were introduced here and set as the coarse nodes for increased analysis DOFs and improved flexibilities of shape
descriptions.

In this study, a set of material-aware CBN shape functions Nα(x) was constructed for each coarse element Ωα .
et Q be the vector of discrete displacements on CBNs in MH to be determined, and Qα be its component on Ωα .
ccordingly, the displacement on Eq. (3) can be obtained as

u(x) =

M∑
α=1

Nα(x) Qα. (13)

To improve the ability of describing the heterogeneity of fine mesh, the CBN shape function Nα(x) was
onstructed as a piecewise-bilinear function (in 2D) defined over the local fine mesh Mα,h(x),

Nα(x) = Nh(x) Φ̃, (14)

here Φ̃ is a matrix of DOFs to be determined for the purpose of closely capturing the heterogeneity of the coarse
lement, and Nh(x) is a matrix of the fine-mesh shape functions Ne(x) in Mα,h :

Nh(x) =

m∑
e=1

Ne(x), x ∈ Ωα, (15)

here
∑

denotes the assembly sum within the numerical FE assembly process that conducts the summation on the
ame location. Subsequently, for a specific point x0, the value of Nh(x0) can be directly evaluated.

However, the construction of effective shape functions is hindered by at least two known challenges: the
isplacement discontinuity across the coarse element interface and the inter-element stiffness [11,12]. The interface
iscontinuity issue originates from the fact that the shape functions are usually constructed locally without
onsidering the adjacency of the coarse elements, and thus, they may acquire different values along the common
nterface [12]. Meanwhile, the inter-element stiffness issue originates from the use of linear interpolation when
econstructing the global fine-mesh displacements from the discrete coarse nodal displacements [11,12], and thus,

he boundary tends to be stiffer than it actually deforms in fine scale.

6
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Consider, for example, the results in Figs. 3 and 4, where different shape functions, acquiring different values
Φ̃, are respectively generated for comparison. The shape functions and the direct FE analysis results obtained using
the fine Mh or coarse MH meshes are shown in Figs. 3(a),(b) and Fig. 4(a),(b) as benchmarks. Three differently
constructed shape functions are further generated, and the results are shown in Fig. 3(c),(d),(e). Consequently, they
yield contrasting analysis results, as shown in Fig. 4(c),(d),(e). As evident, the construction without continuity
consideration causes interface overlap and discontinuity in Fig. 4(c). In addition, the inter-element stiffness is
observed in Fig. 4(d) as well, which results in stiffer deformation than the benchmark in the fine-scale, as in
Fig. 4(a).

In an effort to further address the above-mentioned challenges, this study aimed to develop a new class of
material-aware shape functions, referred to as CBN shape functions. For a particular master coarse element, this was
achieved by considering the shape function construction as a process for mapping the coarse DOFs (or displacements
on CBNs) to the local fine displacements per coarse element, rather than formulating it as a constrained nonlinear
optimization problem.

First, the cubic Bézier interpolation curves were constructed using the CBNs along the coarse element’s
boundaries, which ensured the continuity of the global displacement in fine mesh and also improved its accuracy by
allowing for greater deformation flexibilities. Second, the boundary nodal displacements were mapped to those on
the interior nodes, thereby building on the intrinsic physical properties and closely capturing the heterogeneities of
the coarse element. Finally, the shape functions were derived in an explicit matrix form as a product of two matrix
transformations: the Bézier interpolation and the boundary–interior transformations, while the basic geometric
properties of shape functions were preserved.

In summary, the derived shape functions present the following properties.

1. Defined with respect to CBNs with flexible analysis DOFs, thereby overcoming inter-element stiffness while
maintaining the global displacement smoothness.

2. Expressed in an explicit matrix form as a product of two transformations: Bézier interpolation and the
boundary–interior transformations, thus avoiding complex nonlinear optimization costs.

3. Preserving the basic geometric properties of shape functions: node interpolation, translation and rotation
invariance, and thus avoiding non-physical analysis behaviors.

4. Applicable to nonlinear analysis problems, although at the cost of certain accuracy loss.

. Construction of CBN shape functions

Considering Fig. 1, let Ωα be a master coarse element, Mα,h its local fine mesh, and Xr the given bridge node
et. Further, as mentioned, the CBN shape functions Nα(x) are achieved as a product of two matrix transformations:
he Bézier interpolation transformation and the boundary–interior transformation.

.1. Construction of Bézier interpolation transformation

The Bézier interpolation transformation constructs a map from the discrete displacements on the CBNs Qα

o those on the boundary nodes in Xb. The higher-order interpolation of the Bézier curve facilitates greater
ontrol flexibility while maintaining favorable geometric properties of PU and translation/rotation invariance. Fig. 5
llustrates the difference between different interpolation strategies.

A cubic Bézier curve P(t) is considered here in the following form [40],

P(t) =

3∑
i=0

ψi (t) Pi , for ψi (t) = C i
nt i (1 − t)3−i , (16)

here ψi (t) is a cubic Bernstein basis, Pi ∈ R2 is the control point, and C i
n is the binomial coefficient.

Further, Pi are the values of P(t) at node t = i/3 for i = 0, 1, 2, 3, or,
P(0) = P0, P(1/3) = P1, P(2/3) = P2, P(1) = P3. (17)
7
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Fig. 5. Different interpolation strategies produce different boundary curves, where the higher order cubic Bézier curves exhibit greater
flexibility.

In addition, P(t) exhibits the properties of the translation and rotation invariance for a constant angular velocity θ̂
f dimension 2 × 2,

3∑
i=0

ψi (t) = 1, θ̂ × P(t) =

3∑
i=0

ψi (t) θ̂ × Pi , (18)

regarding the cross product ×, which were used in delivering such properties of the CBN shape functions.
Now, consider the approach for constructing the Bézier transformation matrix. Following the idea of FE

isplacement expression in Eq. (9), P(t) can be rewritten in the following matrix form,

P(t)
(2×1)

= ψ(t)
(2×8)

P
(8×1)

, (19)

or

P = [P0,P1,P2,P3]T , (20)

nd

ψ(t) = ψ0(t) ⊗ I2 =
[
1 t t2 t3

] ⎡⎢⎢⎣
1 0 0 0

−3 3 0 0
3 −6 3 0

−1 3 −3 1

⎤⎥⎥⎦ ⊗ I2 (21)

=

[
ψ0(t) 0 ψ1(t) 0 ψ2(t) 0 ψ3(t) 0

0 ψ0(t) 0 ψ1(t) 0 ψ2(t) 0 ψ3(t)

]
,

here the Kronecker product ⊗ with identity matrix I2 (with size of 2 × 2) is used to match the dimensions of
he column vector P.

Suppose E is a line segment bounded by a pair of adjacent bridge nodes in Xr , and t(·) is a function that
e-parameterizes E into a parametric curve in a range of [0, 1]. Then, by inserting two additional equally spaced
odes along E , or at t = 1/3, 2/3, in total, the four associated CBNs can be obtained.

Let QE be the vector of the x, y displacements at the four CBNs. Considering QE as the control point in the
ubic Bézeir curve function (19), the interpolation displacement function uE (x) along segment E is obtained as

uE (x)
(2×1)

= ψ E (t(x))
(2×8)

QE
(8×1)

, (22)

where ψ E (t(x)) is in a form as Eq. (21).
From Eq. (17), it is evident that evaluating uE (x) at the four CBNs in E provides the four control points QE .

onsequently, the relation can be derived on the full boundary nodes in Xb.
Consider a specific boundary node x0 in Xb located at segment E . Evaluating ψ E (t(x)) at x0 provides the

orresponding interpolated displacement ψ E (t(x0)). Thus, following a similar FE assembly process, the interpolation
atrix of x0 can be obtained

ψ̄(x0) =

∑
ψ E (t(x0)), x0 ∈ E . (23)
(2×6r ) E

8
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b

Thereafter, iterating x0 for all the boundary nodes in Xb, the following is obtained

qb
(2b×1)

= Ψ
(2b×6r )

Qα

(6r×1)
, (24)

where the Bézier interpolation matrix is

Ψ
(2b×6r )

=
[
ψ̄(x0), x0 ∈ Xb

]
, (25)

and subsequently, their corresponding bases ψ̄(x0) are listed individually in terms of rows, with Qα being the vector
of all displacements on CBNs of Ωα .

The dimension 6r of Qα is evident owing to the r line segments from the r bridge nodes, which together possess
3r CBNs, and are thus of a dimension 6r considering its x-, y-components.

3.2. Construction of boundary–interior transformation

For the vector qb of the boundary displacements in Eq. (24), a boundary–interior transformation was constructed
to map it to the interior displacements. Let kα be the associated stiffness matrix on the local fine mesh Mα,h .
Consequently, all DOFs were reordered to partition them into internal and boundary entries indexed by i and b,
denoted as vectors qi ,qb. Their relation is determined by the following FE equilibrium equation[

kb kbi

kib ki

] [
qb

qi

]
=

[
fb

0

]
, (26)

where kb, ki , kbi , kib are the associated stiffness sub-matrices of kα , and fb is a vector of exposed forces on the
oundary nodes.

Considering the second-row

qi
(2i×1)

= Mα

(2i×2b)
qb

(2b×1)
, for Mα

(2i×2b)
= −k−1

i
(2i×2i)

kib
(2i×2b)

. (27)

Accordingly, the vector of the displacements on Mα,h is obtained as

q
(2i+2b)×1

= [qb,qi ]T
= M̃α

(2i+2b)×2b
qb, (28)

where M̃α is the desired material-aware boundary–interior transformation matrix

M̃α

(2i+2b)×2b
= [ I2b

2b×2b
, Mα

2i×2b
]T , (29)

for a 2b × 2b identity matrix I2b.

3.3. Shape functions in a matrix form

Substituting Eqs. (24) into Eq. (28) further results in

q
(2i+2b)×1

= M̃α

(2i+2b)×2b
Ψ

(2b×6r )
Qα

(6r×1)
. (30)

Further, combining the shape functions Nh(x) with the local fine mesh Mα,h , as defined in Eq. (15), the displacement
at any point x ∈ Ωα is interpolated as

uα(x)
2×1

= Nh(x)
2×(2i+2b)

q
(2i+2b)×1

= Nh(x)
2×(2i+2b)

M̃α

(2i+2b)×2b
Ψ

(2b×6r )
Qα

(6r×1)
, x ∈ Ωα. (31)

This equation maps the discrete nodal displacement Qα to the continuous interpolated displacement uα(x). Moreover,
it provides the CBN shape functions Nα(x) in a matrix form,

Nα(x)
2×6r

= Nh(x)
2×(2i+2b)

M̃α

(2i+2b)×2b
Ψ

(2b×6r )
, (32)

which is determined from the product of the Bézier interpolation matrix Ψ and the boundary–interior transformation
˜ α
matrix M .

9
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Fig. 6. Surfaces of the four components of the proposed matrix-valued CBN shape function Nα(x) for the corner node in solid; the corner
odes are taken as bridge nodes.

Fig. 7. Shape functions (in their first component) for the four different CBNs; the example has 8 bridge nodes.

The CBN shape functions Nα(x) on the coarse element Mα indicate the assembly of the shape function to each
BN, represented as a 2 × 2 matrix possibly comprising all non-zero entry values. However, in contrast to the
onventional scalar bilinear shape functions where the displacement interpolates each coordinate independently, the
atrix-valued shape function tightly couples different dimensions and handles anisotropy naturally; this phenomenon
as first observed and studied by [12].
Consider the surface functions in Fig. 6, where the bridge nodes are chosen as the corner nodes. The example has

2 CBNs, and owing to its symmetry, only the shape function to a corner and plot surfaces of its four components
re considered. Based on the plots, it is evident that N11(x) and N22(x) have much larger height values than those of
12(x) and N21(x). This is consistent with the assumption of this study that N11(x) and N22(x) play key roles while
12(x) and N21(x) regulate the interpolation by coupling different axes. In addition, the complex surfaces in Fig. 7
ithin a coarse domain differ significantly from the bilinear shape functions and are expected to better expose the
eterogeneity of the coarse element.

.4. Geometric properties of CBN shape functions

The derived CBN shape functions Nα(x) in Eq. (32) also satisfy the basic geometric properties required by FE
hape functions to avoid non-physical behavior [12,42,43], including node interpolation, partition of unity (PU),
nd rotation invariance. This is explained in detail as follows.

ode interpolation. This can be observed as a matrix form of the well-known Lagrange property of the shape
unctions, or the Kronecker delta function in Eq. (11), which is required for preserving the essential boundary
onditions [43]. Specifically, the shape function for node j acquires a value of unity and zero at the other nodes,
his property ensures the nodal displacements remain unchanged following the interpolation of the shape functions.

The property can be specified in a matrix form, as follows. Let Qα
j be the displacement on a coarse node x j .

rom the CBN shape function expression in Eq. (32) and the fine nodal displacement expression q in Eq. (30), the
ollowing can be inferred

Nα(x j ) Qα
= Nh(x j ) M̃α Ψ Qα

= Nh(x j ) q. (33)

onsequently, as the local fine mesh shape functions Nh(x) naturally satisfy the node interpolation property,

Nh(x j ) q = Qα
j , (34)

s does Nα(x), or

Nα(x j ) Qα
= Qα

j , (35)

hich thus produces a compact matrix form of node interpolation property.
10
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Partition of unity (PU). This property ensures the continuity across the inter-element boundaries [42], enforcing
the conformity of the global solution space. Furthermore, PU ensures the property of translation invariance [12],
such that the interpolation value at any point maintains relative invariance following the translation.

Here, PU is satisfied for the fine node shape function Nh(x) and the Bézier interpolation matrix Ψ , or

Nh(x) I2i+2b,1 = I2,1, (36)

Ψ I6r,1 = I2b,1. (37)

Substituting qb and qi with an all-one vector in Eq. (27) gives

Mα I2b,1 = I2i,1, (38)

and thus,

M̃α I2b,1 = [I2b,Mα] I2b,1 = I2i+2b,1. (39)

Consequently, the PU property for Nα(x) in a compact matrix form is expressed as

Nα(x) I6r,1 = Nh(x) M̃α Ψ I6r,1 = Nh(x) M̃α I2b,1 = Nh(x) I2i+2b,1 = I2,1. (40)

Rotation invariant. This property ensures that the interpolation value at any point maintains relative invariance
following geometric rotation. In addition, both PU and rotation invariance improve the robustness of the proposed
CBN shape functions.

Specifically, for a constant angular velocity θ̂ , the following must hold:

θ̂ × x = Nα(x) (θ̂ × x). (41)

The results can be proven similar to the case of the translation invariance by considering that the Bézier curve is
rotation invariant and that Eq. (27) is also satisfied under a rotation transformation.

Theorem 1. The CBN shape functions Nα(x) in Eq. (32) have the following basic geometric properties:

Nα(x j ) Qα
= Qα

j , for a coarse node x j ∈ Ωα (42)

Nα(x) I6r,1 = I2,1, ∀x ∈ Ωα (43)

θ̂ × x = Nα(x) (θ̂ × x), ∀θ̂ , x ∈ Ωα, (44)

where Qα
j is the nodal displacement on CBN nodes and θ̂ is a constant angular velocity.

The properties discussed above are important for producing physically reasonable analysis results using an FE
analysis framework. They were imposed as constraints in an optimization problem in a previous study that attempted
to construct the material-aware shape functions [12], and are naturally satisfied in the case of the CBN shape
functions in this study. The results obtained are summarized as follows.

Theorem 2. For a coarse element Ωα , its local fine mesh Mα,h , and the fine-mesh shape function Nh(x) in (15),
he CBN shape functions are

Nα(x) = Nh(x) M̃α Ψ , (45)

here the boundary–interior transformation matrix M̃α is defined in Eq. (29) and the Bézier interpolation matrix
Ψ is defined in Eq. (25). In addition, the basic geometric properties stated in Theorem 1 are satisfied.

3.5. Numerical aspects

Numerical aspects related to the CBN-based analysis are further discussed in this section, including the
computation reduction for CBN shape function construction, and the implementation details on the CBN-based
analysis, particularly the numerical computation for the stiffness matrix.
11
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3.5.1. Computation reduction
The main computational costs to derive the shape functions Nα(x) in Eq. (45) primarily involve the computation

f Mα in Eq. (27), or the product of k−1
i with kib. Consequently, it is formulated as a solution to the following

inear equation systems:

ki
2i×2i

Mα

2i×2b
= − kib

2i×2b
. (46)

he column number 2b of the right terms can be a very large number, and computing solutions to such excessive
quations would be costly, despite the use of a pre-computed LU decomposition. Specifically, it is usually
naffordable as such equation systems have to be computed for all the different coarse elements Ωα of different
tiffness matrices ki .

The unique introduction of CBNs and the associated Bézier interpolation transformation Ψ in this study provides
n alternative that reduces the computational costs. Consequently, multiplying both sides in Eq. (46) by Ψ yields

ki
2i×2i

Mα

2i×2b
Ψ

2b×6r
= − kib

2i×2b
Ψ

2b×6r
. (47)

Subsequently, instead of computing Mα , the product Mα Ψ is directly computed as the matrix Φ defined below,

ki
2i×2i

Φ
2i×6r

= kφ
2i×2r

, for kφ
2i×2r

= − kib
2i×2b

Ψ
2b×6r

. (48)

Consequently, the number of linear equation systems to be solved is greatly reduced from 2b to a much smaller
number of 6r .

According to Eq. (29), by letting

Φ̃ = [Ψ ,Φ]T , (49)

the CBN shape function now acquires the following form:

Nα(x) = Nh(x) Φ̃. (50)

Corollary 1. The CBN shape functions Nα(x) in Theorem 2 can be numerically derived as follows:

Nα(x) = Nh(x) Φ̃, (51)

where Φ̃ is defined in Eq. (49).

Algorithm 1 Heterogeneous structure analysis using CBN for linear elasticity
Input: a heterogeneous structure Ω , its coarse mesh MH

= {Ωα, α = 1, 2, . . . ,M}, fine mesh Mh
= {ωαe , e =

, 2, . . . ,m, α = 1, 2, . . . ,M}.
utput: the CBN shape functions Nα(x), and the approximated displacement Q to Eq. (3)

1: Prepare Bézier interpolation matrix Ψ in Eq. (25)
2: Prepare boundary–interior transformation matrix M̃αfor each coarse element Ωα in Eq. (29)
3: Construct the transformation matrix Φ̃ in Eq. (48)
4: Construct the shape functions Nα(x) for each Ωα in Eq. (51)
5: Compute the coarse elemental stiffness matrix Kα based on Kα

e for each Ωα in Eq. (56)
6: Assemble the global stiffness matrix K
7: Compute the displacement solution Q by Eq. (58)

3.5.2. Heterogeneous structure analysis on CBNs
Upon constructing the CBN shape functions Nα(x) for each coarse element Ωα , the displacement to the linear

lasticity problem in (3) on a heterogeneous structure Ω can be computed by following a traditional FE analysis
ramework. The overall algorithm is described in Algorithm 1.

Let Qα be the vector of discrete nodal displacements on MH to be determined. Then, the continuous displacement
α(x) is interpolated using the CBN shape functions Nα(x),

uα(x) = Nα(x) Qα. (52)
12
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Accordingly, the strain is obtained as

εα(x) = Bα(x) Qα, (53)

here Bα(x) is the derivative of Nα(x) with respect to x,

Bα(x) =
∂Nα(x)
∂x

=
∂Nh(x)
∂x

Φ̃, (54)

ccording to Eq. (51).
Further, substituting Eq. (53) into the weak formulation Eq. (4), the coarse nodal displacement Q is computed

s

K Q = f, for K =

M∑
α=1

Kα, (55)

here

Kα
=

∫
Ωα

(Bα(x))T D(x) Bα(x) dΩα

=

m∑
e=1

∫
ωe

(Bα(x))T De(x) Bα(x) dωe

=

m∑
e=1

Φ̃
T

(
∫
ωe

(
∂Nh(x)
∂x

)T De(x)
∂Nh(x)
∂x

dωe) Φ̃

=

m∑
e=1

Kα
e , (56)

or

Kα
e = Φ̃

T
(
∫
ωe

(
∂Nh(x)
∂x

)T De(x)
∂Nh(x)
∂x

dωe) Φ̃, (57)

y noticing Eq. (54).

umerical computation for Kα . The computation of Kα involves an integration computation on a coarse element
α . In the case of a homogeneous Ωα , it is computed using Gauss integration at 2d Gauss points, d = 2, 3. However,

he integration works on a heterogeneous coarse element Ωα and a piecewise shape function Nα(x). Thus, to achieve
omputation accuracy, the integration must be conducted on each fine element ωe and assembled together following
q. (56). Further, additional 2d Gauss points, d = 2, 3, are considered for each fine element. Moreover, Nh(x) is

ocally supported, and the numerical integration in Eq. (57) only involves Ne(x) instead of Nh(x) for a specific fine
lement ωe.

orollary 2. Let Ω be a heterogeneous solid structure and MH ,Mα,h be its coarse and fine meshes, respectively.
hen, the solution Q to the linear elasticity analysis problem in Eq. (3) can be computed as

K Q = f, (58)

or

K =

M∑
α=1

Kα
=

M∑
α=1

m∑
e=1

Kα
e , (59)

nd Kα given in (57).
e

13
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Fig. 8. Strategies to set CBN in 3D cases for shape function construction.

4. Extension to 3D cases and nonlinear analysis

4.1. Extension to 3D cases

In this section, the CBN shape functions are extended to 3D cases, primarily on the construction of the Bézier
nterpolation matrix Ψ and boundary–interior transformation matrix M̃α . Specifically, Ψ is extended from cubic
ézier curves to bicubic Bézier surfaces, whereas M̃α is extended from 2D FE analysis to 3D FE analysis.

.1.1. 3D Bézier interpolation matrix Ψ
In 3D case, the bicubic Bézier surface is formed as

P(t) =

3∑
i=0

3∑
j=0

ψi (tu) ψ j (tv) Pi j =

3∑
i=0

3∑
j=0

C i
3t i

u(1 − tu)3−i C j
3 t j
v (1 − tv)3− j Pi j , (60)

where t = (tu, tv), Pi j ∈ R3 is the control point, ψi (tu) or ψ j (tv) is a cubic Bernstein basis, and C i
3 is the binomial

coefficient.
In a similar manner, P(t) can be written in a matrix form as

P(t)
(3×1)

= ψ F (tu, tv)
(3×48)

P
(48×1)

(61)

for

P = [P0,P1, . . . ,P15]T , ψ F = ψ1(tu) ψ2(tv), (62)

and

ψ1(tu)
(3×12)

= ψ0(tu)
(1×4)

⊗ I3
(3×3)

, ψ2(tv)
(12×48)

= ψ0(tv)
(1×4)

⊗ I12
(12×12)

, (63)

here ψ0(t) is referred to in Eq. (21)
For a particular face F determined by a set of bridge nodes, similar to the 2D case, the displacement on any

oint x on face F is obtained as

uF (x) = u(tu(x), tv(x)) = ψ F (tu(x), tv(x)) QF , (64)

here QF is the vector of the displacements on the associated CBNs, as indicated in Fig. 8.
Subsequently, assembling uF (x) over all faces F and evaluating it on all the boundary nodes in Xb, the 3D Bézier

nterpolation matrix is expressed as

Ψ
(3b×q)

=

[∑
F

ψ F (t(x0)), x0 ∈ Xb

]
, (65)

here q is the number of DOFs on CBNs, given as

q = 3 (54x2
− 108x + 56) for x = 1 +

1√
6r − 12. (66)
6
14
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4.1.2. Boundary–interior transformation matrix M̃α

In the 3D case, the shape function matrix Ne(x) has a dimension of 3 × 24 in the following form:

Ne(x) =
[

N1(x) N2(x) N3(x) N4(x) N5(x) N6(x) N6(x) N8(x)
]
, (67)

here each submatrix Ni (x) is

Ni (x) =

⎡⎣ Ni (x) 0 0
0 Ni (y) 0
0 0 Ni (z)

⎤⎦ , (68)

nd Ni (x) is the trilinear shape function defined on each of the eight corner nodes,

Ni (x) =
1
8

(1 + xi x)(1 + yi y)(1 + zi z) , 1 ≤ i ≤ 8, (x, y, z) ∈ [−1, 1] × [−1, 1] × [−1, 1]. (69)

onsequently, following the approach similar to the 2D case, the boundary–interior transformation matrix M̃α can
e derived.

.2. Extension to nonlinear analysis

The extension of the proposed approach to nonlinear analysis is discussed herein, specifically focusing on neo-
ookean elasticity. For this study, only the bilinear or trilinear shape functions for each coarse element Ωα need to
e replaced with the proposed CBN shape functions Nα(x) in the deformation gradient F(x), as follows

F(x) =
∂u(x)
∂X

+ Id =
∂Nα(x)
∂X

Qα
+ Id , (70)

where x is in the deformed shape, X is in the reference shape, and Id is a d × d identity matrix for d = 2, 3.
Subsequently, a nonlinear elasticity analysis can be conducted using the deformation gradients F(x), following

a classical nonlinear FE analysis process [44]. The overall algorithm is described in Algorithm 2. The iterations
in the coarse mesh analysis all work on an undeformed regular mesh, and thus, the CBN-shape functions are only
generated once at the beginning (in Step 2). In addition, the fine mesh field solution needs to be reconstructed
during the iteration (in Step 6) from the coarse mesh solution, because the material property on each fine mesh
De(x) in Eq. (56) is dependent on the solution u, or De(u, x), and must therefore be updated during the iterations.

Comment. Depending on the different nonlinear analysis approaches, the CBN-based shape functions may be
econstructed during the iteration for improved analysis accuracy, although at the cost of considerable computational
fficiency loss. In addition, constructing the CBN shape functions via linear analysis, as in this study, cannot fully
escribe the nonlinear behavior of a coarse element, and in general, results in the loss of certain analysis accuracy.
hus, devising a more advanced CBN shape function from nonlinear elasticity analysis is expected to overcome the
hallenge, and is under the purview of this study. The performance of the CBN-based shape functions for nonlinear
nalysis is further demonstrated in Section 6.7.

ccuracy improvement in nonlinear cases. To improve the elastic behaviors of the nonlinear model, the following
corotational formulation [12] of the displacement was considered

u(x) = Rα(X + Nα(x)(Rαx − X)) − X, (71)

here Rα is the local frame to each shape function [12].

. Discussions

This section presents an extended discussion of the relation and difference between the proposed CBN
nalysis approach (denoted CBN) and certain previous classical approaches for heterogeneous structure analysis:
omogenization [25,26], FE2 using Voigt–Taylor model [34], the second-order CMCM [21] (CMCM for short),

nd Substructuring [36].
15
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Algorithm 2 Heterogeneous structure analysis using CBN for nonlinear elasticity
Input: a heterogeneous structure Ω , its coarse mesh MH

= {Ωα, α = 1, 2, . . . ,M}, fine mesh Mh
= {ωαe , e =

, 2, . . . ,m, α = 1, 2, . . . ,M}.
utput: the CBN shape functions Nα(x), and the approximated displacement Q to Eq. (3)

1: Initialize the displacement Q = 0
2: Construct the shape functions Nα(x) following steps 1–4 in Algorithm 1
3: while unconverged do
4: Compute the corotational matrix Rα for each Ωα

5: Compute the deformation gradient F(x) for each Ωα in Eq. (70)
6: Compute the displacements q on the fine field based on the current Q and Nα(x)
7: Compute the coarse elemental stiffness matrix Kα based on Kα

e for each Ωα in Eq. (56)
8: Assemble the global stiffness matrix K
9: Compute the elastic forces fint

10: Compute the residual forces ∆f = fext − fint

11: Compute the increment of displacement ∆Q = K−1∆f
12: Compute the step size t using line-search
13: Update the displacement Q+ = t∆Q

5.1. Technical differences

In general, most approaches, including Homogenization, CMCM, Substructuring, and the proposed CBN, conduct
he analysis following two main procedures: an offline process to compute local fine mesh displacement for each
oarse element, and an online process to conduct the global analysis on the coarse mesh. In contrast, FE2 follows a

different process, where both local and global analyses are iteratively conducted online. Here, the offline is termed
in the sense that the CBN shape functions can be derived in parallel through offline calculations, following previous
naming [21]. In addition, the offline calculation is dependent on a specific heterogeneous structure, irrespective of
varied loading conditions. Fig. 9 shows an illustration of the flowcharts of these approaches, with their differences
explained below.

Scale separation assumption. Homogenization assumes scale separation as a precondition, and thus, results in a
oss of much of its analysis accuracy if the assumption is broken. In contrast, other approaches, including the FE2

of Voigt–Taylor model, Substructuring, CMCM and CBN, are not based on this assumption.

Local computations. All the local computations involve solution computations to linear equation systems of the
same left-hand stiffness matrix. However, the right hand is different in two aspects: the number of columns and the
entry values. The column number is determined by the involved coarse analysis DOFs. Further, the entry values are
calculated from the imposed boundary conditions: testing BCs in Homogenization and CMCM, linear interpolation
of coarse corner displacements in FE2, or a submatrix of the local fine-mesh stiffness matrix in Substructuring and
CBN.

Fine–coarse transmission. Homogenization or FE2 transmit specific physical quantities for global coarse-mesh
analysis, such as an effective material elasticity tensor and internal force vector. In addition, FE2 attempts to
further improve the analysis accuracy via iterative computations between the local fine and coarse meshes, and may
consequently encounter a convergence issue. In contrast, Substructuring, CMCM or CBN constructs an explicit
physical field, specifically strain fields or the derivatives of the shape functions, local stiffness matrix of the super-
elements, and CBN shape functions. Subsequently, they are used to generate the local stiffness matrix to the coarse
element.

Global solution reconstruction. For a particular coarse mesh solution, reconstructing the local response in the local
fine mesh is important for various industrial applications. However, Homogenization only computes the coarse
displacement and is not directly applicable to recover the fine-mesh displacement. In contrast, the other approaches

studied here can reconstruct the fine-mesh strain or stress field directly. Regarding global displacement smoothness,

16
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Fig. 9. Flowcharts of different approaches for heterogeneous structure analysis, including CBN, Homogenization, CMCM, Substructuring
and FE2.

CMCM is not continuous along the coarse boundary as its coarse strain fields are constructed locally without
adjacency consideration; in contrast, the other three approaches, Substructuring, FE2, and CBN, can generate a

lobally smooth displacement, although they each have significantly different computational costs, as discussed
ater in this paper.

.2. Complexity analysis

The complexity primarily depends on two aspects: local displacement computation to each coarse element and
he global displacement computation on the coarse mesh, which has been further analyzed below.

.2.1. Complexity analysis of local displacement computations
For all the approaches mentioned above, the local analysis problem involves all the efforts to compute

isplacements q̄ to a set of linear equation systems as

ki q̄ = f̄, (72)

here ki is the submatrix defined in Eq. (26), and f̄ represents a set of column vectors.
Let κ be the number of vectors, which determines the number of equation systems to be computed, and

onsequently, the computational complexity (Table 2). In the case of Homogenization and CMCM, κ is dependent
on the number of testing boundaries: 3 in 2D or 6 in 3D in Homogenization, and 5 in 2D and 15 in 3D in CMCM
(as CMCM imposes high-order boundary conditions). Regarding Substructuring, it is κ = 2b in 2D or 3b in 3D,
which typically can be as high as tens of thousands. Further, in the case of the proposed CBN, κ = 6r in 2D or q
17
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Table 2
Computational complexity comparisons of different heterogeneous structure analysis approaches: Homogenization,
FE2, CMCM, Substructuring, and CBN.

Methods Number of linear equation systems
for each coarse element (2D or 3D)

DOFs of each coarse element
in online analysis (2D or 3D)

Homogenization 3 or 6 8 or 24
FE2 1 for one iteration 8 or 24
CMCM 5 or 15 8 or 24
Substructuring 2b or 3b 2b or 3b
CBN 6r or q 6r or q

b is the number of boundary nodes in Xb , r is the number of coarse bridge nodes in Xr , and q is expressed
in Eq. (66).

Table 3
Parameter setting of all the numerical examples in the study.

Model Young’s modulus Coarse mesh Local fine mesh Bridge nodes
per edge/faceMatrices Inclusions

Half MBB of Fig. 12 1e3 1 2 × 4 10 × 10 2
Half MBB of Fig. 13(a) 1e3 1 2 × 4 64 × 64 –
Half MBB of Fig. 13(b) 1e3 1 – – 2
Half MBB of Fig. 13(c) – – 2 × 4 64 × 64 2
Half MBB of Fig. 16 – – 2 × 2 50 × 50 2
Half MBB of Fig. 17 1 1e3 2 × 2 50 × 50 2
Bending beam of Fig. 18 1e3 1 – – 2
3D example of Fig. 21 1e4 1e3 2 × 2 × 8 10 × 10 × 10 3 × 3
Geologic model of Fig. 23 – – 20 × 30 × 42 30 × 30 × 30 2 × 2

– denotes the parameter with different values could be referred in the corresponding section.

(in Eq. (66)) in 3D, which is typically in the hundreds. Finally, for FE2, κ is equal to the number of iterations; it
nly has a single column vector in each iteration.

Moreover, these different linear equation systems all possess the same left-hand matrix, and thus, the displace-
ents to different right-hand column vectors can be efficiently computed by performing KL-decomposition in

dvance. However, this strategy is not directly applicable in the case of FE2.

.2.2. Complexity analysis of global displacement computation
The complexity is determined by the DOFs in each coarse element. Homogenization, CMCM or FE2 analysis

nly involves the corner nodes and has node numbers of 8 in 2D or 24 in 3D; Substructuring has DOFs of 2b
n 2D or 3b in 3D. Moreover, CBN has the number of 6r in 2D or q in 3D. The complexity analysis results are
ummarized in Table 2.

For a more intuitive perspective, Fig. 10 shows the plots of the sparsity of the global stiffness matrix of each
ethod. Here, the coarse mesh exhibits a dimension of 2 × 4, whereas the local fine mesh exhibits a dimension

f 10 × 10, and the analysis results on the global fine mesh are considered the benchmark. Moreover, even in the
ase of this simple example, Substructuring has a dense stiffness matrix, and its number of nonzero elements is
pproximately 1.5 times that of the benchmark. Thus, its direct use on large-scale industrial application problems
ay be impractical. In contrast, the proposed CBN approach significantly reduces the number by introducing a
ézier interpolation matrix.

. Experiments

The proposed approach of CBN heterogeneous structure analysis was implemented in MATLAB on an Intel
ore i7, 3.7 GHz CPU and 64 GB RAM PC. The performance was tested on various 2D and 3D examples. The
arameter settings of all these examples are summarized in Table 3 for clarity. Further, for illustration purposes,
he geometry, material, and load data were chosen to be dimensionless. In addition, in all the examples, if not

3
pecifically stated, the matrices were assumed with Young’s modulus E = 1e and the inclusions of E = 1; both
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Fig. 10. Plots of the sparsities of the global stiffness matrices for different heterogeneous structure analysis approaches: Homogenization,
MCM, FE2, Substructuring and CBN. Here, nnz denotes the number of non-zero values, and n is the size of the matrix. Note that nnz
f Substructuring is approximately 1.5 times that of the benchmark.

ad a Poisson’s ratio of µ = 0.3. However, under these settings, the heterogeneous structures tended to present
large deformation, of which analyzing with a high level of accuracy was challenging. Furthermore, the bridge

odes were all set as the corner nodes by default.
The Substructuring approach is not discussed as it constantly produced solutions of high accuracy with

ignificantly high computational costs for large-size problems (complexity analysis in Section 5.2). Here, LBN
and CBN were used to denote the approaches proposed in this study using linear interpolation or cubic Bézier
interpolation, respectively; both have the same number of analysis DOFs to facilitate a fair comparison.

The analysis result on the global fine mesh Mh was considered the benchmark, where the fine mesh conformed
to the heterogeneities in all the examples, that is, each fine element was only filled with a single type of material.
Further the boundary conditions and the loading forces of all the benchmarks were consistent with the corresponding
coarse meshes. Regarding the global energy or displacement, the analysis fidelity was measured via effectivity index
as the relative variation in the computed result with respect to the benchmark.

re =
(e1 − e0)2

e2
0

, ru =

∫
Ω (u1 − u0)2 dΩ∫

Ω u2
0 dΩ

, (73)

where e1, e0 are the computed and the benchmark energies, respectively, and u1,u0 are the computed and the
benchmark displacements, respectively.

6.1. Overall performance and comparisons with related approaches

The overall performance and its comparison with related approaches including, Homogenization [25,26], FE2

using Voigt–Taylor model [34], the second-order CMCM [21], and LBN using direct interpolation, is presented in
19
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Fig. 11. Half MBB example has 2 × 4 coarse elements, each containing an elliptic inclusion.

Fig. 12. Numerical results of the heterogeneous half MBB example in Fig. 11 compared with benchmark and other related approaches:
Homogenization, FE2, CMCM, and LBN, where the shadow areas denote the benchmark deformations.

this section. The test was conducted on the half heterogeneous MBB example in Fig. 11. The coarse mesh size was
2 × 4, and that of the local fine mesh was 10 × 10. The results are summarized in Fig. 12 and Table 4.

The reconstructed deformation for each approach is shown in Fig. 12 with the effective indices re and ru . Large
deformation differences were clearly observed between results of the benchmark and Homogenization, FE2, CMCM,
and LBN. In contrast, CBN exhibited a deformation almost identical to that of the benchmark, even at the local
regions of large deformation. Further, their effectivity indices indicated similar phenomena: Homogenization yielded
20
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Table 4
Approach timings (in s): Homogenization, FE2, CMCM, LBN, and CBN for the half MBB example
in Fig. 11.

Approaches Solving linear equations systems
for each coarse element

Solving KU = F
in online analysis

Benchmark – 0.21
Homogenization 3.2e−4 4e−3

FE2 3.2e−4 4e−3
× 13a

CMCM 3.3e−4 4e−3

LBN 4.3e−4 5e−3

CBN 4.3e−4 5e−3

aFE2 has 13 iterations in this example.

Fig. 13. Variations in effectivity indices re , ru under different mesh settings.

the largest index of 0.47, CBN the smallest of 7.9e−4, and FE2, CMCM, and LBN have an index of approximately
0.07. Thus, a two-order improvement was observed using CBN. Moreover, Homogenization, FE2, and LBN tended
to over-stiffen the deformation, whereas CMCM tended to soften it in this example.

The time costs are summarized in Table 4. As indicated, the benchmark required the longest time, whereas the
other approaches reduced it dramatically. In the local analysis for a coarse element, different approaches exhibited
similar timings, although CBN and LBN required slightly more time; the local computations could be conducted
in parallel online except for FE2. In online computation of the global coarse displacement, FE2 required more time
than the other approaches as it required 13 iterations. LBN and CBN required more time than Homogenization and
CMCM, and this difference may further increase in case of super large-sized analysis problems. Thus, the numerical
results are consistent with the algorithmic complexity analysis in Section 5.2.

6.2. Performance at different mesh settings

The performance of CBN was further tested at different analysis parameters: size of coarse mesh and number
of bridge nodes or contrast of material stiffnesses. The half MBB in Fig. 11 was used here, where the coarse mesh

size was 2 × 4, and the local fine mesh size was 64 × 64. The results are presented in Fig. 13.
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Fig. 14. Different coarse mesh sizes are set for the half MBB in Fig. 11.

Fig. 15. Part of the used fine meshes for the MBB example in Fig. 11 at different coarse mesh size.

Different numbers of bridge nodes Xr . CBN offers the unique ability of choosing different numbers of bridge
nodes. Its performance was tested at bridge node numbers of 2, 5, 10, 22 along a boundary, and Fig. 13(a) shows
their effectivity indices re and ru . The indices were observed to decrease rapidly with an increase in the bridge node

umber, and particularly exhibited a very high accuracy of re = 1.2e−28 and ru = 6.7e−30 in the case of 22 bridge
odes. In this case, the CBN number is equal to the number of all boundary nodes, and CBN essentially conducts
n identical analysis to the benchmark on the global fine mesh.

ifferent sizes of coarse meshes MH . As indicated in Fig. 14, five different sizes of coarse mesh MH 2 × 4, 4 × 8,
× 16, 16 × 32, and 32 × 64 were set, while the global fine mesh size was unchanged as 128 × 256. In addition,
ig. 15 shows the plots of part of the fine meshes of the five differently sized coarse meshes for illustration. The
ne mesh conformed to the inclusion heterogeneities such that each fine element was only filled with a single type
f material. Here, excluding the case of 2 × 4, the coarse mesh boundaries crossed the different interface materials.
urther, the dramatic material variations along the boundaries posed a significant challenge in terms of maintaining
nalysis accuracy. However, the proposed approach still demonstrates its high performance, as indicated by the
ffectivity indices in Fig. 13(b).

ifferent contrasts of material stiffness. Different contrasts of Young’s modulus were respectively set for the
nclusions and matrices: (1, 1), (1, 5), (1, 100), (1, 1e3), (1, 1e6). The derived effectivity indices are plotted in
ig. 13(c). In general, the larger the ratios, the more difficult it was to achieve a reasonable result, considering the
act that the relatively softer inclusion tensors tended to exhibit a large local deformation. Yet, CBN can maintain
high analysis accuracy of all effectivity indices below 1e−3, even for the extreme ratio of (1, 1e6).
Moreover, the index at (1, 1) was slightly larger than the other indices, which appears to be different from that

xpected intuitively. In fact, the accuracy of the CBN shape functions is determined by its ability to approximate the
eterogeneous model deformations. The ability, on the one hand, is influenced by the structural heterogeneity; on
he other hand, it is influenced by the local deformation behaviors. However, the case of (1, 1), despite homogeneous

aterial distribution, has a much smaller Young’s modulus overall, and thus, the model may still tend to produce
larger deformation, possibly inducing additional errors.

.3. Shape functions in terms of material distributions

The constructed CBN shape functions are expected to closely reflect the interior material distributions for high
ccuracy analysis, irrespective of the imposed boundary conditions. This was tested by plotting in Fig. 16 the
urfaces of the CBN shape functions for the cases of different material distributions. The local fine mesh size was
0 × 50, and the corner nodes were regarded as bridge nodes. Further, their associated effectivity indices on a

× 2 coarse mesh are shown below each shape function.
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Fig. 16. Surfaces of the first shape function component N11(x) and the effectivity indices for different material contrasts.

Fig. 17. Surfaces of the first shape function components N11(x) and the effectivity indices for different-sized squared inclusions.

Fig. 18. Structure of a heterogeneous bending problem, where the body is imposed by loading fields in its vicinity described by Eq. (74),
mimicking its contact forces with cylinders.

Shape functions at different material contrasts. Fig. 16 shows the plots of the surfaces of the first shape function
component N11(x) at different contrasts of Young’s modulus (1, 1e3), (1, 5), (1, 1), and (1e3, 1) for inclusions and
the matrices. As evident, the surface presents a smooth variation in the case of (1, 1). In contrast, it drops rapidly
over the softer inclusion in case (a) and remains almost unchanged over the stiffer inclusions in (d). Thus, the results
demonstrate the proposed CBN shape functions’ level of adaptation to the variations in the material stiffness.

Shape functions at different sizes of inclusions. Fig. 17 further shows the plots of the surfaces of the first component
N11(x) for the case of different-sized squared inclusions, where the darker and lighter regions have a Young’s
modulus of E = 1e3 and E = 1, respectively. The surfaces of the shape functions clearly exhibit flatter variations
right above the squared stiffer area, which is consistent with the expectation.

6.4. 2D heterogeneous bending beam

A more complex 2D heterogeneous bending beam example in Fig. 18 is also considered to test CBN’s
performance under different coarse mesh sizes. Compared with the MBB example in Fig. 12(a), the example
is more challenging as it has a more complex design domain of larger size and more complex boundary conditions.
In addition, the accuracy of its strain fields is analyzed in this example.

The bending beam is located at (0, 0) in its bottom-left corner and has a size of 2 × 20. At three different
locations (xc

i , yc
i ) of coordinates of (1, 0), (10, 2), (19, 0) from left to right, the body is imposed by a corresponding

loading field in its vicinity, mimicking the contact forces with cylinders, which is described as
c 2
p(x) = pi (1 − (x − xi ) ). (74)
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Fig. 19. Variations in effectivity indices ru under different-sized coarse meshes: 1 × 10, 2 × 20, 4 × 40, and 8 × 80.

Table 5
Effectivity indices re , ru at different-sized coarse meshes MH , compared with Homogenization, FE2, CMCM,
and CBN.

Size of MH 1 × 10
(re/ru )

2 × 20 4 × 40
(cutting interfaces)

8 × 80
(cutting interfaces)

Homogenization 0.70/0.69 0.61/0.59 0.31/0.27 0.72/0.66
FE2 1.00/0.77a 0.29/0.26 0.01/4e−3 0.05/0.04
CMCM 0.23/0.25 0.01/8e−3 0.11/0.16 0.09/0.09
CBN 0.02/0.01 6e−3/5e−3 1e−4/6e−5 5e−6/2e−6

aFE2 fails to converge in this context.

where p1 = p2 = 1 and p3 = 2. Further, the beam is fixed at the y-displacements on locations (0, 0) and (20, 0),
and at the x-displacement on location (0, 2).

This example was modified from [21] with two main changes. First, it contains elliptic inclusions of varied
shapes, instead of homogeneous circular inclusions of the same shape and size. Second, the inclusion is softer,
whereas [21] has stiffer fibers; the former results in the tendency to produce a large deformation. In such a case,
producing a highly accurate result is quite challenging.

The global fine mesh was set at a fixed size of 200 × 2000, and four coarse meshes of different sizes were
set: 1 × 10, 2 × 20, 4 × 40, and 8 × 80. The effectivity indices ru, re are summarized in Table 5, and variations
of ru are also plotted in Fig. 19. In general, the effectivity indices tend to decrease rapidly with increase in the
coarse element number (producing a small-sized local mesh). This phenomenon can be explained based on two
observations. First, the shape functions tend to capture finer material variations for a local fine mesh of a smaller
size. Second, the global displacement tends to achieve a higher accuracy at the larger number of coarse DOFs.

However, three exceptions were also observed. First was Homogenization at 8 × 80, where the coarse mesh
isplayed a highly unordered distribution that strongly breaks the scale separation assumption. Second was FE2 at
× 10, which may originate from the non-convergence of its nonlinear iteration. Third was CMCM at 4 × 40,
here a high material contrast along the coarse boundary posed a more challenging analysis task [21]. However,

he CBN addressed these situations well, and exhibited the smallest effectivity index of re = 6e−3 and ru = 5e−3.
Fig. 20 shows the plots of the deformation and strain fields of the beam for a coarse mesh size of 2 × 20,

ompared with that of the benchmark. The computed results using the CBN were found to be remarkably close
o the benchmark results, even in the middle large deformation area. Meanwhile, the overall deformation of CBN
ended to be stiffer than the benchmark and certain local inconsistencies were observed, particularly across the
oarse elements’ interfaces. Similar phenomena were also observed in previous studies [21].

Comment. The above results were obtained using the same size of coarse mesh, wherein the CBN was observed
o have more DOFs than the other approaches. For example, for a size 2 × 20, CBN had a DOF of 534 (depending
n the number of CBNs) while all the other approaches had a DOF of 126 (depending on the corner node number).
o further examine this, the performance of the other approaches was observed for the size of 8 × 80 with 1458
OFs, which was approximately three times that of CBN (534). However, CBN still achieved approximately an

−3 −6
rder of accuracy improvement, specifically, 4e (LBN), 2e (CBN) in comparison with 0.66 (Homogenization),
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Fig. 20. Numerical results of CBN approach in comparison with the benchmarks, where the color bars are shown at the bottom of each
subfigure. Note also the model presents an asymmetric deformation although their strains ε11 and ε22 are symmetric.
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Fig. 21. A 3D example under four different loading conditions: stretching, compressing, twisting, and bending, where the red shadows
enote the fixed area, and the black shadows and arrows denote the loading forces. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of this article.)

Fig. 22. Numerical results and the effectivity indices for the 3D example in Fig. 21 compared with the benchmarks, where the benchmarks
n (a),(b) are on the top and in (c),(d) are on the left.
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Fig. 23. Industrial 3D geologic model of 2.05 billion DOFs to test the performance of the proposed approach in heterogeneous structure
nalysis. The body is imposed by loading fields in its vicinity defined by Eq. (74), mimicking its contact forces with cylinders. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6
Mechanical properties of different soil layers in the geologic model in Fig. 23.

Index Soil layer Bulk modulus K Shear modulus G

Mat-1 (brown) Miscellaneous fill 7e6 3.2e6

Mat-2 (coffee) Silty clay 1.86e7 9e6

Mat-3 (yellow) Strong weathering rock 1.38e8 5.96e7

Mat-4 (buff) Middle weathering rock 6.3e8 3.86e8

0.02 (FE2), 0.09 (CMCM), as indicated in Fig. 19 for a coarse mesh of size 8 × 80. These observations indicate that
CBN possesses an intrinsic flexibility in closely capturing the heterogeneity of the coarse element, which greatly
improves its potential for the analysis of heterogeneous structures of non-separated scales. Moreover, its flexibility
in choosing different DOFs further improves its potential.

6.5. Heterogeneous 3D example under different loading conditions

The performance of CBN under different loading conditions was tested on the 3D example in Fig. 21, where
the dark and light areas have Young’s modulus of E = 1e4 and 1e3, respectively. The model had a coarse mesh
size of 2 × 2 × 8 and a local fine mesh size of 10 × 10 × 10, with each coarse mesh face comprising a set of
3 × 3 coarse bridge nodes.

The example was tested under four classical loading cases: stretching, compressing, twisting, and bending, and
the results are shown in Fig. 22 in comparison with the benchmark results. The largest effectivity index values
obtained in the tests were re = 1.4e−3 and ru = 1.5e−3, demonstrating the high approximation accuracy of the
proposed approach. In this analysis, all the coarse elements had the same heterogeneity distribution. Thus, using
CBN, the shape functions can be affordably computed offline once for a single coarse element, irrespective of the
different loading conditions.

6.6. Practical 3D large-scale geologic model with 2.05 billion DOFs

A modified industrial 3D large-scale complex geologic model in Fig. 23(a) was analyzed using CBN. The model
contained four types of materials in different colors: miscellaneous fill (brown), silty clay (coffee), strong weathering
rock (yellow), and middle weathering rock (buff); the property parameters are listed in Table 6. It was fixed on its
left and right sides, and exposed to three different pressure fields with P = 1e5 induced by the contact cylinders at
its top or bottom, as shown in Fig. 23(b).

In the analysis, the size of coarse mesh was 20 × 30 × 42, whereas that of the local fine mesh was 30 × 30 × 30,
which combined to results in a global fine mesh size of 600 × 900 × 1260, involving approximately 2.05 billion
27
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a
t

Fig. 24. The numerical results on the geologic model in Fig. 23, where constructing the shape functions takes 6.6 s per coarse element,
nd computing the global deformation takes 1.2 h. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
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Fig. 25. Numerical results for half MBB in Fig. 11 of nonlinear neo-Hookean material, where the black outlines in (b) denote the benchmark
eformation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

OFs. Further, the corner nodes were set as the bridge nodes. This was an offline local analysis problem of 89-
housand DOFs, and an online global analysis problem of 1.5 million DOFs. The local computation required 6.6 s
er coarse element, whereas the global computation required 1.2 h using the conjugate gradient (CG) method and
nded with a relative residual 9.5e−7 in 8658 iterations.

Fig. 24 shows the plots of the overall deformations in (a), and the deformations of certain top layers (1/6 of the
whole height) in (b) and (c). A close-up of the deformation in certain heterogeneous coarse elements is shown in (d).
As evident, different deformation behaviors were observed in these different regions: the softer region demonstrated
relatively large deformations (in brown and coffee) while the stiffer region exhibited small deformations (in buff
and yellow). Such phenomena were also observed in different areas in a single coarse element, as shown in (d),
thereby demonstrating the ability of the proposed approach in describing finely detailed local deformations of a
heterogeneous structure.

The example yielded estimated effectivity indices re and ru having values 0.09 and 0.08, respectively, computed
s follows. The multitude of DOFs of the fine mesh and the unavailability of an HPC precluded to compute a
enchmark result directly using the solution from the fine mesh. However, the accuracy of the CBN-based analysis
pproach was primarily dependent on the recover ability of the constructed CBN shape functions rather than the size
f coarse mesh, and the former was further determined owing to the heterogeneities and size of the local fine mesh.
hus, based on the observation, a low-resolution geologic model of size 90 × 120 × 150 (16.6 million DOFs) was

regenerated based on the original one, and the local fine mesh size remained unchanged at 30 × 30 × 30, resulting
in a coarse mesh of size 3 × 4 × 5.

6.7. Extension to nonlinear elastic model

Performance of the proposed CBN-based analysis approach for nonlinear elastic models was tested. Consider the
half MBB in Fig. 11 of neo-Hookean materials at a loading of 10. All the other parameters remained unchanged
similar to the setting in Section 6.1. The computed deformation was plotted as shown in Fig. 25, in comparison
with the benchmark.

In contrast to the linear case, re and ru exhibited very different values: re = 2.5e−6 and ru = 0.07. The small
value of re indicates that global deformation energy was attained, which is the same as that of the benchmark.
However, pseudo-stiffness was still present as indicated by the large quantity ru = 0.07. This is believed to be
caused by the local linear elasticity analysis in constructing the proposed CBN shape functions. Consequently,
employing a nonlinear model to build more advanced shape function appears to be a reasonable choice for future
research exploration.

7. Conclusions

This study introduced the concept of CBNs and their associated CBN shape functions to realize the elasticity

analysis of heterogeneous structures of non-separated scales. The shape functions were derived per coarse element
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as a product of the Bézier interpolation and boundary–interior transformations, which resulted in shape functions
n the form of an explicit matrix representation.

The Bézier interpolation transformation ensured the displacement smoothness between adjacent coarse elements
hile providing additional variables to reduce the problem of inter-element stiffness. Whereas, the boundary–interior

ransformation, derived from the local stiffness matrix to the local fine mesh, offered a prominent advantage to finely
mbed the intrinsic material heterogeneity into the shape functions. Finally, the derived shape functions exhibited
he properties of basic FE shape functions, thereby avoiding non-physical behavior. Extensive numerical examples
ndicated that the CBN has an intrinsic flexibility in closely capturing the heterogeneity of the coarse element,
nd it may serve as a suitable method for the analysis and optimization of heterogeneous structures without scale
eparation [29,36,45].

However, it was found that extensions of the CBN shape functions to nonlinear elasticity analysis problems may
ncounter accuracy loss. Thus, the introduction of nonlinear analysis in the shape function construction appears to
e a very promising approach for the improvement of its analysis accuracy and warrants further research efforts.
n addition, the shape functions can be computed in parallel, which boosts their applications in analysis of super-
arge problems, although their achievement still depends on the availability of appropriate computational facilities.
onsequently, developing a surrogate model using techniques of model reduction [36,46] or deep learning [47,48]

s expected to aid in resolving the existing limitations and thus should be explored in future studies.
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