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Abstract

An optimization method for the design of multi-lattice structures satisfying local buckling con-
straints is proposed in this study. In order to resolve the highly nonlinear large-scale optimization
problem, a consecutive numerical approach is devised: macro-field optimization and microstructure
embedding. The macro-field optimization finds an optimal elasticity tensor distribution among all
feasible elastic continua based on a concept of free material optimization (FMO), which largely
extends the design space compared with density-based topology optimization. After this, by an
inverse design approach that approximates the elasticity tensor under local buckling constraint, an
appropriate lattice structure is able to be embedded within each macro-element, where the local
stress tensors are considered in particular to produce more reasonable microstructures. During
the process, a machine learning approach is also devised to significantly reduce the number of
material/lattice types and thus the overall computational costs. Ultimately, a lattice structure
under requirements of overall stiffness and local buckling resistance is produced, as demonstrated
via numerical examples.

Keywords: Local buckling mode; lattice structure; free material optimization; inverse
homogenization; topology optimization.

1. Introduction

Lattice structures have fascinating properties of lightweight and multi-functions such as shock
resistance [1], energy absorbability [2], damping enhancement [3], heat manipulation [4], and defect
tolerance [5, 6]. With the fast development of additive manufacturing, reliable and efficient fab-
ricating such complicated lattice structures has become practically possible, and boosted various
related research developments and practical applications [7, 8, 9]. These prominent properties
make them an ideal candidate in widespread industrial applications including aerospace, automo-
tive, and biomedical field [10, 11]. Recent developments and applications of the lattice structures
are further referred to the reviews from Dong et al. [12] and Tamburrino et al. [13].

Automatic design of a complex lattice structure to meet critical mechanical requirements on the
other hand becomes a dominating task. Topology optimization is becoming a powerful automatic
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design tool that computes the optimal material distribution to meet certain design target and
constraints, and various excellent approaches have been proposed over the past decades [14, 15,
16, 17, 18]. The approaches for lattice structure design mainly depend on a homogenization-based
framework, where topologies of the micro-structures and/or their distributions are optimized for
an overall structural performance optimization, usually stiffest structure [19, 20, 21, 22], or for
the identification of periodic microstructure shapes approaching the theoretical limit on elastic
properties [23, 24, 25, 26], or metamaterials for heat manipulation [4].

However, an extremely stiff lattice cell or structure may still fail as the appearance of slender
lattice bars is very vulnerable to highly localized buckling when being imposed by compressive
loading. Actually, it has been reported that the strength design achieved in industrials is still far
from the theoretical strength limit it can achieve [27]. Noticing that the buckling design often has
a counter-acting character to compliance or stress designs, it must be carefully incorporated into
the optimization of such complex structures.

Topology optimization of a lattice structure under buckling constraint is however a more chal-
lenging topic than solely considering stiffness optimization. The challenges mainly come from its
much more complex computational efforts, and the poor convergence. The computational costs
are due to its eigenvalue analysis for the complex structures of extremely high DOFs. The conver-
gence issue comes from the highly nonlinear optimization both in the coupled macro- and micro-
structures and the typical challenges encountered in the eigenvalue optimization problem, including
eigenvalues with multiplicity or spurious local buckling modes [28, 29].

Previous work on topology optimization under buckling constraint mainly focuses on macroscale
optimization or periodic microstructure optimization. Topology optimization of continuum struc-
tures with a global buckling criterion has been long considered by Neves et al [28], and later
geometrically non-linear response was included in [30, 31, 32].

The problem of designing a microstructure under buckling constraint was initially considered by
Bendsoe and Triantafyllidis [33] as a size optimization problem for a rectangular orthogrid. Sub-
sequently, a topology optimization formulation for microstructure design under buckling constraint
was formulated by Neves et al. [28], which treated localized instability modes under an assump-
tion of cell-periodic wavelengths. The study was then extended to further cover non-local buckling
modes using the Bloch-wave technique in [29, 34]. Later on, the researchers have conducted a series
of excellent studies on optimizing microstructures under buckling constraints [35, 36, 37, 38]. In
particular, Thomsen et al. [35] optimized periodic microstructures with respect to multiscale buck-
ling conditions under representative stress situations, laying the foundations for future multiscale
structural and material design. Wang and Sigmund [36] investigated the stiffness and buckling
strength of finite structure consisting of periodic microstructures, and optimized the microstruc-
tures with enhanced buckling strength. Here, the effects under two benchmark loadings were
considered: uniaxial compression loading and shear loading. Research efforts have also been de-
voted to designing 2D or 3D microstructures with tunable stiffness and buckling properties [39, 37].
Very recently, Christensen et al proposed a multiscale topology optimization approach that takes
into account both the global and local bucking constraints [38]. In most of these previous studies,
the applied techniques are mainly based on the homogenization theory, linear buckling analysis,
and Bloch-Floquet theory, which worked together to reduce the computational costs and to account
for short and long wavelength buckling.

In spite of the achievements from these previous studies, designing a lattice structure to maxi-
mally resist the local buckling while simultaneously maintaining the global structure stiffness seems
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Figure 1: Overview of the proposed method (from left to right): problem definition, finding an optimal elasticity
tensor distribution, clustering to obtain discrete solutions, inverse microstructure design under buckling constraint
to produce the final lattice structure design.

to be rarely addressed as far as we know, which is to be explored in this study. The optimization
framework has to address the critical issues as how to resist local buckling without much losing
the global structural stiffness. Besides the above mentioned critical issues, it has to further take
into account other important challenges on generating a geometrically valid lattice structures, re-
ducing the types of lattice cells, and effectively decoupling between the macro-structure and the
micro-lattices to reduce the overall computational complexities.

This is to be achieved in this study via a two-step process by first conducting free material opti-
mization (FMO) by computing optimal material distribution within a coarse mesh, then embedding
microstructures under buckling constraints. During the process, a machine learning approach is
also devised to significantly reduce the number of material/lattice types, and consequently the
associated lattice cells to be optimized and the overall computational costs. Ultimately, a lattice
structure with overall optimized stiffness and local buckling resistance is produced that enhances
the structural mechanical properties as demonstrated via numerical examples.

The remainder of the study is arranged as follows. The method is first overviewed in Section 2.
The numerical details on the macroscale design and microscale design are respectively presented in
Sections 3, 4, and 5. After demonstrating the method’s performance on 2D examples in Section 6,
the study is concluded in Section 7.

2. Overview

Previous researches on topology optimization of continuum structures have produced many
excellent results on improving structural stiffness. These approaches mainly take structural stiffness
as the performance evaluation criterion, and seldom address challenges such as stress concentration
or structural buckling. The obtained designs usually lead to structural instability or fractures
in practical engineering investigations, resulting in energy loss. Therefore, it has been widely
acknowledged the need to further incorporate both stress and buckling requirements, rather than
just stiffness, into the lattice design in order to improve the structural overall performance [40].
Our study mainly focuses on the stiffness optimization problem under the buckling constraints.

In order to obtain a stable optimized structure, additional consideration of buckling constraints
is required. Without considering the computer arithmetic limitations, if a high-resolution underly-
ing density mesh is used as much as possible, it often tends to generate fine rod-like structures that
are usually subject to buckling failure. Consider for example the excellent work of Aage et al [41]
that studied a full-scale wing-design problem in giga-voxel-resolution. The generated structure
contains a large number of intricate details like curved beams or trusses, which usually result in
undesirable buckling performance. It is noteworthy that these detailed complex structures often
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differ significantly in size and scale from the overall structures. Therefore, it is very desirable to
impose the buckling constraints on the local microstructures.

Regarding the structural buckling in a biscale topology optimization of continuum structures,
properly resolving the optimization problem and reducing the overwhelming computational burden
pose serious challenges. The causes of the challenges come from such issues as highly coupled macro-
and micro- formulations, non-robust sensitivity analysis from mode switching and multimode, and
the costly de-homogenization in producing different microstructures.

These issues are to be resolved in several aspects. Firstly, the optimal elastic distribution
within the overall structure is derived via an FMO approach which directs the subsequent work
on lattice cell embedding. The separate FMO and microstructure embedding allows us to work
on two relatively simper optimization problems. The FMO, in comparison with a density-based
optimization, increases the design space to produce a possible better structure. In addition, in
order to reduce the number of lattice cells to be de-homogenized, which is generally the most
computational costly work, the resulted free material are clustered into a small group of different
elasticity tensors. The clustering process also increases the overall structural periodicity so that a
homogenization-based analysis and optimization could be more reasonably applied.

Secondly, the microscopic model is composed of smoothly blended lattice bars and the buckling
constraints are imposed on their design optimization. The strategy ensures to produce a geo-
metrically valid structure and much reduces the number of design variables. It does not require
additional expensive reconstruction efforts in producing a geometrically valid structure.

Thirdly, the buckling constraints are aggregated into a single one using the K-S aggregation
function [42] and incorporated into the objective function. In fact, the large number of buckling
constraints may deteriorate the optimization convergence in two aspects: mode switching and
multimode can appear during the optimization process, and the repeated eigenvalues associated
with multimode are even non-differentiable. The K-S based strategy helps to derive a reliable
sensitivity analysis.

Furthermore, the buckling response of a microstructure is analyzed under a given stress con-
dition derived from the macroscopic analysis. We specifically select the stress condition on each
type of clustered lattice cells based on the results of the finite element analysis on the macroscopic
real-world solution. This way, the optimized structure is more compatible with the macroscopic
target as compared with conventional approaches that generally set a general stress for represen-
tative cell. Owning to the clustering process, the stress is selected as the maximal one amongst
the elements within each cell type.

In this step, we focus on the overall FMO-based framework to design lattice structures under
linear buckling constraint. The local buckling mode taken here is treated under an assumption of
cell-periodic wavelengths following the formulation from Neves et al. [28]. In case that the lowest
bucking mode spans a group of adjacent macro-cells, the Bloch-Floquet boundary condition has to
be imposed to capture both the short and long wavelength buckling. More details are referred to
the excellent work from Neves [29, 34], Wang and Sigmund [36, 37], and Christensen et al [38].

Based on the above considerations, this study proposes a multiscale optimization approach
under local buckling constraints; see Fig. 1 for an illustration. We first compute an optimal distri-
bution of the material elasticity tensor associated to each macro-element based on an approach of
free material optimization. The free material properties are further clustered into a small group
of different elasticity tensors based on a machine learning technique to accelerate the downstream
tasks. The FMO-based approach broadens the design space as compared with conventional density-
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based approaches. After this, the lattice structure is to be found for each macro-element by an
inverse design process that approximates the elasticity tensor under the buckling constraint. Here,
the location stress is also included for a further improvement of performance optimization based
on an observation that the buckling mode does not only depend on its shape of microstructures
but also on its external loadings. It ultimately produces a multi-lattice structure with improved
local buckling modes.

3. Optimal material tensor field generation in macroscale

This paper focuses on the classical problem of maximizing the stiffness of a structure under
certain boundary and stability (buckling) conditions defined in a multiscale sense. This section
first explains the modeling and computational approach of the macroscale problem to find an
optimal elasticity tensor distribution among all feasible elastic continua. After this, a novel material
clustering approach is applied to reduce the material space while simultaneously maintaining high
compliance fidelity of the generated structure.

3.1. Optimal material distribution via FMO

The problem of FMO takes the material elasticity tensor in each domain point as design vari-
ables, and finds their optimal distribution within the design domain. Without loss of generality,
we consider in the rest of the study a 2D macro-design domain Ω = {ωi, i = 1, . . . ,M} ⊂ R2

composed of discrete disjoint square elements ω of the same size. For each ω, let σω and εω be the
second-tensor stress and strain vectors using the conventional Kelvins notation

εω = (ε11, ε22,
√
2ε12)

T ,σω = (σ11,σ22,
√
2σ12)

T , (1)

where

εω =
1

2

(
∇uω +∇uT

ω

)
,

uω ∈ R8 is the associated displacement vector and ∇ is the gradient operator.
It follows from the Hooke’s law ([43]), the stress is a linear function of the strain in the following

form
σω = Dωεω, (2)

where the elasticity tensor Dω is a symmetric positive 3× 3 matrix

Dω =

 D1111 D1122

√
2D1112

D1122 D2222

√
2D2212√

2D1112

√
2D2212 2D1212

 . (3)

The elasticity tensor matrix can also be of orthogonal material subject to the following conditions

Dω =


Ex

1−νxyνyx

νyxEx

1−νxyνyx
0

νyxEy

1−νxyνyx

Ey

1−νxyνyx
0

0 0 Gxy

 (4)

and νxyEy = νyxEx. Here, Ex, Ey stand for Young’s modulus, νyx, νxy are Poisson’s ratios and
Gxy is shear modulus. It can also be of isotropic material governed by its Young’s modulus and
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Poisson’s ratio. Our proposed framework is able to handle different cases, and we mainly focus on
the case of general elasticity tensor for the ease of explanation.

The free material optimization problem aims to find the optimal material property Dω asso-
ciated with each ω such that the resulted structure is stiffest, that is, find D = (D1, . . . ,DM ) so
that the compliance of the resulted structure (Ω,D) is minimized, that is,

min
Dω∈SN+

C(D,u) = fTu, s.t. (5)


K(D)u = f , u ∈ U , equilibrium equation∑M

ω=1Tr(Dω) ≤ mfT0, global trace constraint

T ≤ Tr(Dω) ≤ T , ω = 1, . . . ,M, element trace constraints
Dω − δI ∈ SN+, ω = 1, . . . ,M, manufacturability constraint.

In the above equation, the objective function C(D,u) is the structure’s compliance calculated
by

C(D,u) = uTK(D)u =

M∑
ω=1

uT
ωKω(D)uω, (6)

u is the macroscopic displacement field, U ⊂ Rd is the admissible displacement space, where
certain Dirichlet boundary conditions are prescribed, f is the exerted nodal force vector ignoring
the structure weight for simplicity, and K(D) is the global stiffness matrix calculated by

K(D) =

M∑
ω=1

Kω(D), Kω(D) =

nG∑
k=1

BTDωB,

where B is the strain-displacement matrix and nG is the number of Gaussian integration points.
Note that K and Kω are all symmetric positive semidefinite.

Constraints on the material usage is prescribed by the traces of each elasticity tensor Dω and
their sum. Specifically, Tr(Dω), the trace of Dω, denotes the elemental material cost, which is
bounded by T and T , and mfT0 constrains the overall amount of materials distributed within the
structure for a fraction parameter mf with respect to trace T0 of a full solid material.

The last constraints above impose additional manufacturability constraints to bound the min-
imal eigenvalues of elasticity tensors away from zero, in case that any directional stiffness is too
close to zero [44, 45] for a small quantity δ greater than zero. Here, SN+ is the cone of symmetric
positive semidefinite matrices in the space SN of symmetric N × N matrices for N = 3 in 2D,
N = 6 in 3D. The value of the desired δ varies with different design problems, and can be com-
puted using the method described in [46]. Note here there is a notable fact that without the last
constraint, the original problem (7) will generate some extreme elasticity tensors which usually
make the subsequent microstructure design difficult or even impossible.

Lemma 1. ([44, 45]) The FMO problem (5) includes nonlinear and nonconvex vector constraints.
Using the Schur complement theorem, this nonconvex semi-definite programming (SDP) problem
can be written as follows

min
Dω∈SN+,γ>0

γ, s.t. (7)
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

(
γ fT

f K(D)

)
≥ 0,∑M

ω=1Tr(Dω) ≤ mfT0,

T ≤ Tr(Dω) ≤ T , ω = 1, . . . ,M,
Dω − δI ∈ SN+, ω = 1, . . . ,M.

If without the last constraint, the above problem becomes a linear SDP problem, which has a
converged global optimum. Even though the solution to problem (7) becomes sub-optimal after
adding the last constraint, the downstream task of microstructure embedding is still much facili-
tated [47]. The solution to the above FMO problem can be computed efficiently via a primal-dual
interior point method. For isotropic material optimization problems, the methods described in our
previous work [48] can be consulted.

3.2. Material space reduction via hierarchical clustering

The derived material distribution of elasticity tensors {Dω, ω = 1, . . . ,M} from the FMO is
highly heterogeneous within the design domain, in the sense they are almost different from each
other. This poses serious challenges to the practical applications of the optimization results, such as
the huge computational costs to design respectively the embedded microstructures, the difficulties
of their reliable manufacturing and the costs of testing their physical properties for such a huge
number of varieties.

The issues are to be resolved by an unsupervised machine learning approach that clusters
the material tensors into a small number of clusters. Different clustering algorithms have been
developed in the past, such as K-means, mean-shift, Gaussian mixture model etc. For our specific
task of clustering elasticity tensors, it is hoped: 1. Different numbers of clusters can be easily
derived from different design purposes. 2. The larger number of clusters, the better lattice structure
is to be achieved.

An agglomerative hierarchy clustering algorithm is carefully selected and developed for the
purpose. It groups data on various scales by creating a clustering tree. The tree is not a group of
individual clusters, but a multi-level hierarchy, in which clusters at one level are connected together
as clusters at the next level. The overall algorithm of the hierarchical clustering works as follows:

1. Initialize each cluster as the elasticity tensor {Dω, ω = 1, . . . ,M} computed from Eq. (7).

2. According to the similarity measure explained below, find the nearest pair of clusters and
combine them into a single cluster, resulting in M − 1 clusters.

3. Based on the agglomerative clustering linkage algorithm to measure the distance between
different cluster, and cluster the nearest into a single cluster.

4. According to user’s specification or classic measure such as Silhouette score, output the
optimal number of clusters and their associated tensors, that is {Dk, k = 1, . . . ,K}, for a
much smaller number K of clusters, where each Dω belongs to a certain group of Dk.

5. Decide the corresponding cluster center by performing again the following FMO process,
defined below,

min
Dω∈SN+,γ>0

γ, s.t. (8)
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Figure 2: A schematic diagram of a complete microstructure model and its one-eighth.



(
γ FT

F K(D)

)
≥ 0,∑K

k=1

∑
ω∈Ξk

Tr(Dω) ≤ mfT0,

T ≤ Tr(Dk) ≤ T , k = 1, . . . ,K,
Dk − δI ≥ 0, k = 1, . . . ,K,

where the integer K is the prescribed number of cluster groups. Note the trace sum of Dω is
still computed on all elements in the design domain.

In step 2, various distance measures can be defined such as Euclidean distance, Minkowski
distance, Manhattan distance or Cosine similarity. The classical Euclidean distance for anisotropic
elasticity tensors is finally selected after tests. For isotropic material, we follow the approach
in [49] to measure their similarity in an intrinsic material property space, which demonstrates nice
performance as verified experimentally. In step 3, measures via single linkage, complete linkage, or
average linkage exist, and the complete linkage is chosen. More details on hierarchical clustering
are referred to [50].

4. Lattice structure modeling and analysis in microscale

According to the above operations, we can obtain a set of discrete elasticity tensors and their
distribution within the design domain. Further mechanical analysis also gives the stress distri-
bution. Accordingly, each element is then to be embedded with a microstructure via an inverse
homogenization theory under pre-specified buckling constraints in combination with the element
stress. This section first elaborates the modeling and buckling analysis of these micro-lattice struc-
tures.

4.1. Lattice structure modeling in implicit form

Basically, a lattice cell can be modeled in a parametric form, an implicit form, or a discrete
mesh form. The implicit form has its merits in ease of freeform modeling, blending generation,
boolean operations etc, and is taken here for lattice structure modeling. The lattice cell is defined
by a set of bars of connecting nodes in a square element. It is prescribed within a 1/8 of a square
element; a mirror symmetry gives the overall cell; see Fig. 2. The following notations are used:

Ω: a given solid model;
M: a quadrilateral mesh of Ω;
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ω: a macro-element of Ω, each consisting of a set of fine elements ωω;

v
(i)
1 ,v

(i)
2 : coordinates of two endpoints of the bar ι(i);

p(i): diameter of the bar ι(i);
ι(i): the i-th bar of the lattice;
ϖ: the lattice cell consisting of m bars;
Ψ: the overall lattice structure generated from M;
ι̃(i): the implicit (level-set) function of the bar ι(i);
ϖ̃: the implicit function of the lattice cell ϖ;
Ψ̃: the implicit function of the lattice structure Ψ.

Figure 3: A rod is determined by two nodes x1,x2 and their width p.

The control parameters of the lattice cell include the diameter p = (p(1), p(2), . . . , p(n)) and

the endpoint v = (v
(1)
1 ,v

(1)
2 ,v

(2)
1 ,v

(2)
2 , . . . ,v

(n)
1 ,v

(n)
2 ) of each of its constituent rods. Each bar ι(i)

consists of a cylinder with diameter p(i) and height ∥v(i)
2 − v

(i)
1 ∥ and two half-sphere ends with

diameter p(i); see Fig. 3. The implicit form ι̃(i) of bar ι(i) is defined as follows,

ι̃(i)(x) = ι̃(x,v
(i)
1 ,v

(i)
2 , p(i)) = d(x,v

(i)
1 ,v

(i)
2 )− p(i)

2
, (9)

where d(x,v1,v2) represents the minimum distance from the point x to the medial axis of the bar,

d(x,v1,v2) =


∥b∥, if a · b ≤ 0,
∥g∥, if 0 < a · b < a · a,
∥e∥, if a · b ≥ a · a.

Here,
a = v2 − v1, b = v − v1,
e = v − v2, g = (I− 1

∥a∥2a⊗ a)b.

Accordingly, the implicit function ϖ̃ of a lattice cell ϖ is aggregated by the implicit functions ι̃(i)

(i = 1, 2, . . . , n) of the n bars. Taking the union of the domains of the bars, that is ϖ = ∪n
i=1ι

(i),
we have

ϖ̃(x,v,p) = max
i

ι̃(x,v
(i)
1 ,v

(i)
2 , p(i)).

To resolve the issue that the maximum function is not differentiable and to reduce stress concen-
trations and to improve the bulk modulus, the maximum function is replaced by the Kreisselmeier-
Steinhauser (KS) function,

ϖ̃(x,v,p) =
1

k
ln

(
n∑
i

ek·ι̃(x,v
(i)
1 ,v

(i)
2 ,p(i))

)
, (10)
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(a) max (b) KS (c) difference

(d) max (e) KS (f) difference

Figure 4: Blending between bars of different widths.

where k is a transition parameter. The different structures obtained using the maximum function
and the KS function are illustrated in Fig. 4.

For a finite element (FE) analysis and a uniform expression of the various types of lattice struc-
tures, the design geometry is usually projected onto a fixed regular background mesh, described
by a density field as follows

ρ(x) = H(ϖ̃(x,v,p)) ∈ [0, 1]. (11)

H is the heaviside function in a regularized version as

H(ϖ̃) =


0, Ψ > γ,

−3
4(

ϖ̃
γ − ϖ̃3

3γ3 ) +
1
2 , −γ ≤ ϖ̃ ≤ γ,

1, Ψ < −γ,

(12)

where γ is a small positive value controlling the magnitude, set as γ = 0.005 in this study.
Given a solid model Ω and its quadrilateral mesh M, a lattice structure Ψ(P), P = {Pi},

can then be generated by embedding different lattice cells Pi = (vi,pi) within each mesh element
of M. Following a similar regularization procedure as above, the implicit form Ψ̃(P) of lattice
structure Ψ(P) can then be derived. Under the implicit modeling, the interior and exterior of the
lattice cells can be easily determined. It avoids the complex process of meshing and remeshing for
FE analysis involved in the optimization iteration process.

The basic lattice cells are generally set with certain periodicity by the users so that the geometric
connection and smoothness between neighbouring lattices are kept. They can also be selected from
a lattice library with extensive elasticity coverage for wide design choices [51, 52].
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4.2. Homogenization and buckling analysis of a lattice cell

The homogenization method is introduced here to establish the averaged macroscopic elastic
properties of a microstructure from its local FE analysis [53]. For convenience, the Einstein index
summation notation is used here for the basic introduction.

In general, in order to properly describe the buckling performance of a microstructure, a nonlin-
ear theory should be developed, which is however generally too complex to be computed efficiently
with high accuracy. In this study, an asymptotic technique is introduced to give a linearized buck-
ling analysis under the assumption of scale separation ([29]), the microstructure is periodically
distributed, and its size is relatively much smaller than that of the overall macrostructure.

In the linearized problem, suppose that a microstructure in ω has a small displacement uω prior
to buckling, or moving from an initial displacement u0

ω to a new displacement uω by a variation
u1
ω under an infinitesimal real parameter α, that is,

uω = u0
ω + αu1

ω.

From an asymptotic approximation for the displacement u0
ω and u1

ω at an infinitesimal small
variation ϵ, we have

u0
ω(x,y) = u00(x,y) + ϵu01(x,y) + ϵ2u02(x,y) + · · ·

u1
ω(x,y) = u10(x,y) + ϵu11(x,y) + ϵ2u12(x,y) + · · · .

(13)

Based on the expansion (13), the homogenization theory for the microstructure to predict its
effective material property, and its buckling analysis can then be derived following previous studies
in [29], as explained below.

The homogenization method is first introduced to predict the averaged effective elasticity tensor
(as defined in (3)) to a microstructure built on the assumption of scale separation [53, 54], as stated
below.

Lemma 2. ([53, 54]) Given a base cell ω in 2D, Dijkl is the point-by-point varying elasticity tensor

on ω. Let ε
0(kl)
pq be the prescribed three linearly independent unit test strain fields, specifically, in

the horizontal direction (00), in the vertical direction (11), and unit shear strain (01 or 10).
When only the first order terms of the asymptotic expansion in Eq. (13) are considered, the

effective homogenized elasticity tensor DH
ijkl on the cell ω can be computed as the integral over the

average of base cell solution below,

DH
ijkl =

1

|ω|

∫
ω
Dpqrs(ε

0(ij)
pq − ε∗(ij)pq )(ε0(kl)rs − ε∗(kl)rs )dω, (14)

where ε
∗(ij)
pq is the locally varying strain fields defined as

ε∗(ij)pq = εij(χ
ij) =

1

2
(χij

pq + χij
qp),

which are found by solving the elasticity equation at the unit test strain∫
ω
Dijklεij(v)ε

∗(ij)
pq dω =

∫
ω
Dijklεij(v)ε

0(ij)
pq dω, ∀v ∈ Vy, (15)

for a virtual displacement field v in the allowable displacement space Vy and y is the local coordinate
vector in ω.
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Eq. (14) is usually approximated in a discrete form by solving Eq. (15) numerically via FE
analysis, or,

DH
ijkl =

1

|ω|

N∑
e=1

∫
ωe

(χ0(ij)
e − χij

e )
Tke(χ

0(kl)
e − χkl

e )dωe, (16)

for the associated stiffness matrix ke, or

DH =
1

|ω|

N∑
e=1

∫
ωe

(I−Bχe)
TDe(I−Bχe)dωe,

where I is a 3 × 3 identity matrix. The term Bχe is taken as the strains caused by the non-
homogeneous microstructure within cell ω for the strain-displacement matrix B.

Let χkl be the displacement solution on each cell ω corresponding to the test strain field defined
in Eq. (15). χkl can be derived in a discretized form following classical Galerkin FE analysis by
solving the following linear equation system

Kωχkl = fklω , Kω =
N∑
e=1

Kωe , k, l = 0, 1, (17)

for the global stiffness matrix Kω on ω, local stiffnes matrix Kωe for each micro-element ωe, and
load vector fklω associated to the test strains on the base cell ω.

Following the analysis in previous study [29] and the first-order asympotic approximation in
Eq. (13), the local buckling analysis for a microstructure cell ω is conducted as follows.

Lemma 3. [29] The first local and periodic eigenmode of a cell ω at the length scale of base cell
can be found as eigenvalue solutions to the following equation:∫

ω
Dijkl(y)

∂ϕi

∂yj

∂vk
∂yl

dY + P

∫
ω

(
Dijkl(y)−Dijpq(y)

∂χkl
p

∂yq

)
∂ui
∂xj

∂ϕc

∂yk

∂vc
∂yl

dY = 0, ∀v ∈ Vy, (18)

where P is the eigenvalue (standing for the stability parameter) associated to the buckling mode
ϕi(y), both of which are to be computed. In addition, χ is the solution to the homogenization
problem in Eq. (15) and u is the macroscopic displacement to the structure after FMO optimization
in (8), which together describe the stress values in the cell ω.

Eq. (18) can also be written as follows,∫
ω
Dijkl(y)

∂ϕi

∂yj

∂vk
∂yl

dY + P

∫
ω
σkl

∂ϕc

∂yk

∂vc
∂yl

dY = 0, ∀v ∈ Vy.

Accordingly, following a discretized FE analysis process, the buckling load factor P and the corre-
sponding buckling mode vector ϕ are obtained by computing solution to the following eigenvalue
problem,

[Kω(p)− PG(χ,p)]ϕ = 0,

where Kω is the stiffness matrix in computing χ in Eq. (15) in a form as (17), and G is the global
geometric stiffness matrix for displacement χ = {χkl

e } defined as

G = −
N∑
e=1

∫
ωe

(
∂N

∂yk

)T

(σkl)e

(
∂N

∂yl

)
dω (19)
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for the finite element shape function N(y) in ω and the stress load σe whose computation is fur-
ther explained below. The eigenvector is normalized as ϕTKω(p)ϕ = 1 by assuming a distinct
eigenvalue. Note here these definitions are implicitly dependent on the design parameter p. Prop-
erly designing the optimal microstructures under buckling constraint will involve computing their
derivatives with respect to the design variables p, as will be explained in Section 5.

The stress σe per micro-element e in Eq. (19) is computed as follows. After clustering the
macroscale elasticity tensors, each class of materials has different local stresses in different locations.
The element with the largest von Mises stress value in one class is selected and its associated strain
is set to be the local strain load ε̄ determined by

ε̄ = D−1
0 σ̄,

for the target elasticity tensor D0.
Consequently, the stress σe for each micro-element e is calculated by

σe = De(I−Bχe)ε̄, (20)

where B is the strain-displacement matrix, χe is the displacement derived via Eq. (15).
The above numerical approach is set up based on the hypothesis that the microscale displace-

ments are periodic, and that the buckling mode is restricted within a single macro-element. In
cases the assumptions are not satisfied, other advanced approaches can be applied to improve
the analysis accuracy and structural stability. For example, Zeman et al have proposed the
quasicontinuum method for analysis of elastic and dissipative properteis of quasi-periodic lattice
structures [55, 56, 57, 58]. Li and Hu [59] proposed to construct material-aware shape functions
for analysis of heterogeneous structures with no assumption of scale separations. In case that the
buckling mode spans more than one elements, the Bloch-Floquet theory based approaches have to
be adopted, as have been conducted in a series of excellent work [29, 34, 36, 37, 38]. The topics
are however not the present research focus, and is to be explored in our future work.

5. Inverse microstructure design under buckling constraint

The goal of the micro-optimization stage is to obtain a microstructure with desirable physical
properties, specifically, to match the elasticity tensor obtained under additional buckling con-
straints. We also mention that previous studies such as [35, 39, 29] have dealt with the topological
optimization problem of minimizing the compliance under buckling constraints. These studies are
further extended to microstruture matching under buckling constraint.

5.1. Inverse lattice design under buckling constraints

The topology optimization of inverse microstructure design under buckling constrains is formu-
lated as follows,

min
p∈P

J = ||DH(p)−D0||F s.t.

Kω(p)χkl = fkl, k, l = 0, 1,
V (p) ≤ V ∗,
[Kω(p)− PG(χ,p)]ϕ = 0,
Pj ≥ P , j ∈ Jb,

(21)
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where D0 is the desired elasticity tensor, p is the design variable of bar radii in the admissible
space P, DH(p) is the homogenized elasticity tensor defined by Eq. (16). In addition, Kω(p) is
the global stiffness matrix corresponding to design p, χkl is the vector of the nodal displacements
to be computed and fkl is the external loadings of the test cases (kl), V ∗ is the desired volume
fraction, V (p) is the volume of design p, Pj is the j-th eigenvalue in the eigenvalue set Jb, and P
is the prescribed lower bound of eigenmode.

Properly addressing the optimization problem in Eq. (21) of continuum structures considering
eigenvalues meet with several severe challenges. Firstly, the large number of buckling constraints
Pj ≥ P may deteriorate the optimization convergence. In addition, mode switching and multimode
can appear during the optimization process, which may cause difficulties in sensitivity analysis of
eigenvalues. Particularly the repeated eigenvalues associated with multimode are non-differentiable.

To circumvent the difficulty, the following single constraint equation is used to replace the last
buckling constraint in Eq. (21)

f(P ) = κKSP − 1 ≤ 0, (22)

or

κKS ≤ 1

P
, (23)

where κKS is a K-S aggregation function defined below

κKS = κ1 +
1

µκ
ln

∑
j∈J∗

b

exp(µκ(κj − κ1))

 ,

in which

κj =
1

Pj
, µκ =

100

κ1

for the j-th eigenvalue Pj , and an aggregation parameter µκ, and J∗
b is a subset of Jb containing

only indices of the first nb buckling modes.
In case the eigenvalue is too small, the aggregation function is also scaled by the following

parameter to improve the iteration convergence,

cb =
κ1
κKS

.

Taking into account of the above discussions, the microscopic inverse design problem under
buckling constraint in Eq. (21) is re-formulated as

min
p∈P

O(p) = (1− λB)||DH(p)−D0||F + λBκKS s.t.

Kω(p)χkl = fkl, k, l = 0, 1,
V (p) ≤ V ∗,
[Kω(p)− PG(χ,p)]ϕ = 0,
f(P ) = κKSP − 1 ≤ 0,

(24)

where λB is the weight of the pre-specified buckling constraint, and the last inequality is defined
in Eq. (22).

Note here the original formulation in (21) must handle a large number of buckling constraints,
which involves huge computational efforts. By employing a single aggregated KS functions to
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approximate the maximum buckling mode [39], the costs are tremendously reduced. On the other
hand, it also introduces approximation errors such that the maximum buckling mode are not
accurately controlled.

In addition, for the low-density region during optimization, the problem of pseudo buckling
modes may occur. The adaptive continuation method of Gao [60] is taken to overcome it.

5.2. Numerics and sensitivities

Computing solution to the inverse homogenization problem (21) is very challenging due to the
inclusion of the nonlinear objective and constraint functions, which results in an overall complex
nonlinear and nonconvex optimization problem. The well-established optimization approach Glob-
ally Convergent Method of Moving Asymptotes (GCMMA) [61] is applied here to resolve the issue.
It approximates the original nonconvex problem through a set of convex sub-problems by using
the gradients of the optimization objective and constraints with respect to the design variables.

As described in Section 4.1, we first project the lattice microstructure onto the density field and
then perform the finite element analysis. Here, a modified solid isotropic material with penalization
(SIMP) format is used to interpolate the intrinsic property E between the hollow and solid elements,

E(ρ) =

{
Emin + ρp(E0 − Emin) for Kω, f ,
ρpE0, for G,

(25)

where p is a penalization factor, Emin is the relative density of the void phase which is set to a
small value to avoid numerical singularities, and E0 is the constitutive tensor of the solid phase.

The modified scheme is used to eliminate the notoriously known problem of artificial modes
which contaminate low-density regions. To ensure the scheme’s success, the value of Emin must
be large enough to stabilize low-density regions while still being small enough to have negligible
influence on the bifurcation loads. Through multiple numerical studies, Emin = 10−4E0 was found
to yield the best results without causing significant alterations of the loads.

In solving the microscale lattice design using GCMMA, the approach mainly depends on com-
putation of the derivatives of the objective and constraint functions, or called sensitivity analysis.
Different from the density-based topology optimization, the design variables of the microstructure
optimization are the widths of the bars instead of the discretized density field. The sensitivities of
the objective and constraint functions with respect to the design variables are computed via the
chain rule as follows

df(p)

dp
=

∂f(p)

∂ρ

∂ρ

∂p
, (26)

where f(p) represents the objective function or the constraint functions.
Firstly, the gradients of the density field with respect to the design variables ∂ρ/∂p can be

derived from Eqs. (9), (10), and (12) as

∂ρ

∂p(i)
=

∂H(Ψ(p))

∂p(i)
=

∂H

∂Ψ

∂Ψ(p)

∂p(i)
,

where
∂H

∂Ψ
=

{
3(ε−1)(Ψ2−γ2)

4γ3 , −γ ≤ Ψ ≤ γ,

0, Ψ < −γ or Ψ > γ,

∂Ψ(p)

∂p(i)
= −

exp(−k(d(i) − pi

2 ))∑n
j=1 exp(−k(dj)− p(j)

2 )
. (27)
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The gradients of V =
∑

e ρe, J in Eq. (21), f(P ) in Eq. (22) with respect to the density field
ρ, or ∂V /∂ρe, ∂J/∂ρe and ∂f(P )/∂ρe are derived below.

The derivatives of the volume constraint V with respect to density ρe are given by

∂V (ρ)

∂ρe
=

∂(
∑

e ρe)

∂ρe
= 1.

The derivatives of the objective function J = ||DH(p)−D0||F in Eq. (21) with respect to density
ρe are given by

∂J

∂ρe
=

∂J

∂DH

∂DH

∂ρe
, (28)

where

∂J

∂DH
= Tr((DH(ρ)−D0)T (DH(ρ)−D0))(−

1
2
)(DH(ρ)−D0),

∂DH
ijkl

∂ρe
=

1

|ω|
pρp−1

e (E0 − Emin)
(
χij
e

)T
k0χ

kl
e .

The derivative of the buckling constraint f(P ) defined in Eq. (22) with respect to ρe can be
expressed as

∂f(P )

∂ρe
= P

∂κKS

∂ρe
=

P∑
j∈J∗

b
exp(µκκj)

∑
j∈J∗

b

exp(µκκj)
∂κj
∂ρe

.

Following previous studies [28, 29], we now explain below the approach to derive the derivative of
the critical load factor κj with respect to the density ρe under the assumption that all eigenvalues
P are positive.

First, consider the case that the eigenvalue κj is unimodal. Following its definition,

1

P
= max

ϕ

ϕTGϕ

ϕTKωϕ
. (29)

For each specific instability mode ϕ, we have from [29] the associated gradients based on an adjoint
approach. Specifically, by setting 11 → 1, 22 → 2 and 12 → 3 for ease of explanation, we have

∂κj
∂ρe

= ϕT
j

(
∂G

∂ρe
− κj

∂Kω

∂ρe

)
ϕj −

3∑
k=1

(
vk
j

)T(∂Kω

∂ρe
χk − ∂fk

∂ρe

)
, (30)

where vk
j is an adjoint vector with respect to the jth buckling mode, obtained by solving the

following adjoint equation for load k = 1, 2, 3 and buckling modes ϕj , j = 1, .., nb,

Kωvk
j = Pk

j , (31)

where the right-hand-side vector Pk
j is given as,

Pk
j = (ϕk

j )
T ∂G
∂χkϕ

k
j

=
N∑
e=1

{
(ϕk

j,e)
T ∂Ge

∂χk
e,1

ϕk
j,e, · · · , (ϕk

j,e)
T ∂Ge

∂χk
e,8

ϕk
j,e

}T
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with
∂Ge

∂χk
e,i

= −
∫
Ye

(
∂N

∂yl

)T ∂(σlm)e

∂χk
e,i

(
∂N

∂ym

)
dY.

We have from Eq. (20),

∂σe

∂χk
e,i

= −EeBeikε̄, i = 1, · · · , 8.

The derivatives of the global stiffness matrices Kω, G and loads fk are calculated by

∂Kω

∂ρe
= p(1− Emin/E0)ρ

p−1
e k0

e,

∂G

∂ρe
= pρp−1

e G0
e,

∂fk

∂ρe
= p(1− Emin/E0)ρ

p−1
e f0ke ,

where k0
e, G

0
e, f

0k
e are element matrices and vectors evaluated with the constitutive matrix of the

solid phase E0. More details on the derivations are referred to [28, 29].
Accordingly, we have the following results on the derivatives about the design objective in the

optimization problem in Eq. (24).

Lemma 4. The derivatives of the optimization target in Eq. (24), or,

O(p) = (1− λB)||DH(p)−D0||F + λBκKS

is given as
∂O(p)

∂p
=

∂O(p)

∂ρ

∂ρ

∂p
,

where ∂ρ/∂p is given in (27) and

∂O(p)

∂ρ
= (1− λB)

∂J(p)

∂ρ
+ λB ∂κKS

∂ρ
,

where the two derivatives on the right are given in Eqs. (28) and (30), and p(i) is a component of
the bar radius vector p.

More concrete details on computation of the derivatives are described in Algorithm 1.

5.3. Post-processing

The inverse design problem described above is solved on every group of clustered elasticity
tensors to generate the desired microstructure. Due to the scale separation of the homogenization
and the individual optimization of each microstructure, the microstructure obtained by solving
the aforementioned optimization problem may have structures that do not meet the actual manu-
facturing requirements, for example, the rods in a single microstructure are too thin, or adjacent
microstructures are not connected when they are combined together as a whole. These issues are
addressed by the following post-processings.
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Algorithm 1: Sensitivity of buckling constraint functions

Input: x, p, ρmin, nb, χ, Ē, dĒ, optMacroConstrain, valMacroConstrain
Output: { ∂f(P )

∂ρe
}Ne=1

// Compute the objective function

1 f(P ) = PκKS − 1 ≤ 0, κKS = κ1 +
1
µκ

ln
[∑

j∈J∗
b
exp(µκ(κj − κ1))

]
, κj = 1

Pj
, cb =

κ1

κKS , µκ = 100/κ1

// Compute adjoint vectors

2 for buckling modes j = 1, · · · , nb do
3 for load k = 1, 2, 3 do
4 for micro-element e = 1, · · · , N do
5 for degree of freedom i = 1, · · · , 8 do

6 Compute ∂Ge

∂χk
e,i

by

∂Ge

∂χk
e,i

= −
∫
Ye

(
∂N

∂yl

)T
∂(σlm)e
∂χk

e,i

(
∂N

∂ym

)T

dY,
∂σe

∂χk
e,i

= −EeBeeikε̄, (32)

7 Compute Pk
j by

Pk
j = (ϕk

j )
T ∂G

∂χk
ϕk

j =

N∑
e=1

{
(ϕk

j,e)
T ∂Ge

∂χk
e,1

ϕk
j,e, · · · , (ϕ

k
j,e)

T ∂Ge

∂χk
e,8

ϕk
j,e

}T

(33)

Compute vkj by solving Kωvkj = P k
j

// Compute sensitivities for each element

8 for element e = 1, · · · , N do
9 Get displacement χe and compute ∂G

∂ρe
and ∂K

∂ρe
by

∂G

∂ρe
= pρp−1

e G0
e,

∂K

∂ρe
= p(1− Emin/E0)ρ

p−1
e K0

e, (34)

switch optMacroConstrain do
10 case Stress do

11 Compute ∂Ge
∂ε̄

∂ε̄
∂ρe

by

∂G

∂ε̄k
= −

N∑
e=1

∫
Ye

(
∂N

∂yl

)T
∂(σlm)e
∂ε̄k

(
∂N

∂ym

)T

dY,
∂σe

∂ε̄k
= Ee(I−Beχe)ek, Ē

∂ε̄

∂ρe
= − ∂Ē

∂ρe
ε̄

(35)

12 case Strain do

13 Compute ∂Ge
∂ε̄

dε̄
dρe

= 0.

14 T0 ←− 0;
15 for buckling modes j = 1, · · · , nb do
16 Compute κj , ϕj,e

17 T1 ←− 0;
18 for load k = 1, 2, 3 do

19 Compute ∂fk

∂ρe
= p(1− Emin/E0)ρ

p−1
e f0ke .

20 Update T1 = T1 + (vk
j,e)

T
(

∂Ke
∂ρe

χk
e −

∂fke
∂ρe

)
21 Compute

∂κj

∂ρe
= ϕT

j,e

(
∂G

∂ρe
+

∂G

∂ε̄

∂ε̄

∂ρe
− κj ∗

∂K

∂ρe

)
ϕj,e − T1 (36)

Compute
∑

j∈J∗
b
exp(µκκj)

∂κj

∂ρe
by T0 = T0 + exp(µκκj) ∗ ∂κj

∂ρe

22 Compute ∂f(P )
∂ρe

= P ∂κKS

∂ρe
= P∑

j∈J∗
b

exp(µκκj)
∗ T0
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(a) The bridge design problem (b) One-eighth of the basic model

Figure 5: The bridge lattice design problem. The basic model of the one-eighth lattice microstructure using 21
rods determined by 9 points as design variables, where the appearance and thickness of each rod is determined by
optimization.

Firstly, check structural manufacturability on the over-thin rods, and remove them to reduce
potential manufacturing failure. After the operation, the structural connectivity must be checked
again against its neighboring four cells. Excess suspended rods are removed. Secondly, after
completing the above two-stage optimization procedures, the radii of the derived rods are optimized
again to strictly meet the volume constraint. Thirdly, for two disconnected adjacent cells, the two
rods with the closest endpoint distance are connected at their endpoints by adding a new rod
between them.

6. Examples

The method has also been implemented on MATLAB 2017b on a PC of Intel Core i5-4590
3.2GHz CPU and 16GB RAM. The FMO problem is solved by calling MOSEK 9.1 through
YALMIP [62]. The linear objective function and constraints other than the buckling problem have
a good mathematical structure, but introduce additional large-scale matrix inequalities whose com-
putation is very time-consuming and requires a lot of memory resources, for which the method in
reference [63] can also be used. In all examples, the inverse homogenization problem (21) has a
design domain of size 50× 50 with micro-element of length 1. Microstructures consist of Poisson’s
ratio ν = 0.3, Young’s modulus E0 = 1, Emin = 0.13 of the material. The macroscopic and each
microscopic volume constraint is uniformly set to 0.35 in the study.
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6.1. Bridge design problem

(a) The result of macroscopic optimization in a con-
tinuous free isotropic space, c = 1.4618.

(b) The result after clustering, c = 1.5899.
The number of clusters is 5.

Figure 6: Macro-optimization results for the first step of the bridge problem.

The approach’s performance for multi-lattice structure design under buckling constraints was
first tested on the classical bridge problem shown in Fig. 5(a). The macro- design domain was
divided into 48 × 24 cells, the external loading was 0.1, the volume fraction was 0.35, and the
number of clusters was set to 5.

The base lattice microstructure to be optimized was shown in Fig. 5(b). Its one-eighth part has
21 rods determined by 3 vertices, 5 edge points, 1 face point, which 9 points were taken as design
variables. Considering that we are using a symmetric design strategy for the one-eighth lattice, we
optimized the macroscopic problem in an isotropic material space.

Fig. 6(a) showed the final optimized lattice structure of a resulted compliance c = 14.618. The
different distributed elasticity tensors were further clustered to produce a structure consisting of
five types of different materials, whose compliance become c = 15.899, as given in Fig. 6(b).

Based on the above results, different microstructures corresponding to the five types of mate-
rial elasticity tensors were designed separately using an inverse design strategy. The associated
results were shown in Fig. 7, under different weights λB of buckling constraint, respectively of
0, 0.01, 0.02, 0.4, and 0.9 for purpose of wide testing.

Structural compliance obtained by the above two-scale optimization process were in sequence
19.6117, 14.0077, 23.9039, 24.9216 and 11.4800 for these different tests. It can be seen that the
overall structural performances did not decrease monotonically with the introduction of the local
buckling constraint. It may partially come from the microscopic inverse design problem formulation
in Eq. (21), which no longer considers the overall structural compliance. A simultaneous macro-
and micro- topology optimization under buckling constraint may help resolve the issue, as studied
in [38], which are to be further explored in our future work.

6.2. Inverse design of microstructures

Performance of the method on design optimization of a singe microstructure with desired elas-
ticity tensor under different buckling constraints was further tested here, still taking as example
the bridge design problem in Section 6.1.

Fig. 8 shows the optimization results of six types of lattice microstructures at different loca-
tions or conditions of the macro-domain, where a single lattice cell, its four-cell tiling at a 60× 60
resolution were respectively shown in the left and right figure. In order to test the method’s per-
formance in handling connections between adjacent microstructures, the resulted cells are further

20



(a) λB = 0, c = 19.6117. (b) λB = 0.01, c = 14.0077.

(c) λB = 0.02, c = 23.9039. (d) λB = 0.4, c = 24.9216.

(e) λB = 0.9, c = 11.4800.

Figure 7: Optimization results of the bridge problem.

stitched together following the approach in Section 5.3. Fig. 9 showed some connection examples
of structure (a) and structure (b) in Fig. 8. It can be seen that the scheme can ensure continuity
when connecting different microstructures.

The iteration histories in the inverse design of microstructures under buckling constraint were
also plotted in Figs. 10 and 11 for two typical microstructures in Figs. 7(d), and 8(e). The
variations of the design target O(p), volume fraction V (p), buckling constraint f(λ) and the first
and third eigenvalues P1, P3 were plotted respectively; See also the problem formulation in Eq. (24).
The iterations were not varying smoothly but still ultimately reached the expected values.

Accuracy of our buckling analysis was also tested in comparison with those from commercial
software ANASYS. Given two bucking modes χ1,χ2 computed from different approaches, the
Cosine similarity for them is defined to measure their approximation,

s(χ1,χ2) = cos(θ(χ1,χ2)) =
χ1 · χ2

∥χ1∥ ∥χ2∥
=

∑n
i=1 χ

i
1χ

i
2√∑n

i=1(χ
i
1)

2
√∑n

i=1(χ
i
2)

2
. (37)

Clearly, the more close approximate to 1.0 s(χ1,χ2) is, the more similar the two eigenmodes χ1,χ2
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Example of microstructures.

(a) Example 1 of connec-
tion to structure a.

(b) Example 2 of connec-
tion to structure a.

(c) Example 1 of connec-
tion to structure b.

(d) Example 2 of connec-
tion to structure b.

Figure 9: Example of microstructure connection.
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Figure 10: Iteration history of a typical lattice in Fig. 8(e): (a) Objective function; (b) Volume fraction; (c) f(P ) in
Eq. (22); (d) eigenvalues P1, P3.

Figure 11: Iteration history of a typical lattice in Fig. 7(d): (a) Objective function; (b) Volume fraction; (c) f(P ) in
Eq. (22); (d) eigenvalues P1, P3.
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Figure 12: Comparison of eigenmodes obtained from ANASYS (top) and from ours (bottom) at eigenvalues (a)
24182, (b) 31691, (c) 64052 and (d) 119340. The Cosine similarity in Eq. (37) is respectively of 0.9997, 0.9981,
0.9996, 0.9994.

are.
The 1st, 2nd, 3rd and 4th buckling modes from a typical microstructure were compared in

Fig. 12 with those derived from ANASYS. The similarity measure is respectively 0.9997, 0.9981,
0.9996, 0.9994, demonstrating nearly identical values. Their associated eigenvalues are 24182,
31691, 64052 and 119340.

6.3. Self-supporting bridge design problem

In order to test the approach’s ability in designing different types of microstructures, the above
bridge design problem was additionally tested in designing self-supporting microstructures so that
the resulted structure naturally satisfies the self-supporting requirements in additive manufactur-
ing. We prescribe the condition by requiring its hanging angle is not less than π/4. The basic
model consisting of self-supporting lattices shown in Fig. 13 was taken, where each rod was at 45
degrees to the printing direction, ensuring the final obtained overall structure is self-supporting.

The obtained results under different weights of buckling constraint were shown in Fig. 14, where
the overall structural compliance was 28.0892, 25.2472, 28.4533, 22.3849, and 25.2772 separately.
Compared with the results in Section 6.1, the introduction of the self-supporting constraint caused
a significant decrease in the overall stiffness performance of the structure, although they were
generally within an acceptable range and did not incur additional computational costs.

6.4. Discussions

As seen from the above typical numerical examples, the proposed approach has demonstrated
its effectiveness in generating lattice structures with improved buckling strength. It fills the FMO
directed macro-domain with a small number of cell-adaptive lattices, which together produce a
lattice structure with optimized macro-stiffness and local buckling strength. Some related technical
details are further discussed below.
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Figure 13: The basic model of the one-eighth lattice for the self-supporting microstructure using 10 rods determined
by 9 points as design variables. The design variable is the thickness of each rod.

After the FMO process, different material elements are clustered into a small number typical
cells. Generally, a larger cluster number is chosen a better macro-structure is generated. The
cluster number can be chosen automatically based on, for example, Gap Statistics [64]. It was set
5 in our examples after testing, which provided close compliance approximation. More discussions
on the clustering performance at different cluster numbers are referred to our previous work [48].

Each type of clustered elements is filled with the same lattice cell, which, together with lattices
of other types, produces the macroscale lattice structure. Maintaining the connection between
adjacent lattices is a very challenging topic in density-based topology optimization [65, 45, 66].
This is achieved in this study from two main aspects: using a symmetric base lattice for ease of
connection, and a postprocessing to link disconnected neighboring lattices.

The base lattice is generated from anisotropic or isotropic material determined from the FMO
or FIMO process in the macroscale level. In our numerical examples, the lattice cells were set
with 1/8 symmetry in 2D for an overall connection and ease of implementation. The restriction
on the other hand may reduce the range of the base lattices. As one of our research focus, we
are also exploring approaches in designing freeform lattices while simultaneously maintaining their
geometric connection.

The base lattice structure is determined by its node number, node location and their connec-
tions, and also range of the lattice beam radius. All the design DOFs together have to satisfy the
cell’s prescribed volume fraction, and to meet the fabrication constraints, such as self-supporting
or beam-beam angle, which restrict the types of the candidate lattices. Note that radii of the op-
timized beams have to be above the printer’s resolution as well. The geometrically specific design
parameter also has its specific advantage of mesh independence in spite that different underlying
FE mesh may influence the analysis accuracy.

7. Conclusion

This paper proposes and implements a multi-lattice structure optimization method that enables
the selective design and filling of several different kinds of lattice structures within the model to
meet the overall rigidity and local buckling requirements. It is achieved via consecutive steps of
FMO to obtain the optimal material elasticity tensor distribution, and inverse homogenization
to achieve a cell lattice that matches the target elasticity tensor as well as satisfies the buckling
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(a) λB = 0, c = 28.0892. (b) λB = 0.01, c = 25.2472.

(c) λB = 0.02, c = 28.4533. (d) λB = 0.4, c = 22.3849.

(e) λB = 0.9, c = 25.2772.

Figure 14: Results of the self-supporting bridge problem.

constraints. During the process, a machine learning approach is also devised to significantly reduce
the number of material/lattice types and thus the overall computational costs.

In contrast to density-based topology optimization approaches, this approach extends the
macroscale design space and imposes stronger local buckling that enhances the structural me-
chanical properties. It also uses the shape parameters of a fixed type of lattice structure of varied
topology as design variables to ensure the geometric validity of the final lattice structure and the
convergence of the optimization algorithm. The lattice within in each type of clustered cell is
optimized at its location specific stress to increase its compatibility with the macro-structure’s
deformation. At present, an assumption of cell-periodic wavelengths of the local buckling mode is
taken here. Utilizing approaches based on the Bloch-Floquet theory will further take account of
the long wavelength buckling spanning several macro-cells [29, 34, 36, 37, 38], and will be explored
in our future study.

Our separated FMO and lattice optimization is able to reduce the original complex nonlinear
optimization problem into two simpler sub-problems, each of which may be separately optimized.
The overall design DOFs and computational complexity are reduced consequently. On the other
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hand, once the lattice cells are generated and embedded within the macro-structure, the macro-
structure’s property becomes different from that of its FMO counterpart. Repeating several time
such optimization may help produce a better lattice structure. On the other hand, it is always
an important issue in design optimization to balance the both critical but conflicting issues of
structure validity and design choices, which is one of our current research focuses.
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