
Augmented Sphere Tracing for Real-time Editing Mega-scale Periodic Shell-lattice
Structures

Jiajie Guo, Ming Li*

State Key Laboratory of CAD & CG, Zhejiang University, China

Abstract

We propose an augmented sphere tracing (AST) pipeline that seamlessly integrates editing, rendering, and slicing of mega-scale peri-
odic shell-lattice structures. Traditional STL-based pipelines face challenges such as time-consuming format conversions, high storage
requirements, and complex blending issues between discrete lattice and shell components, often resulting in a loss of geometric ac-
curacy. Alternatively, implicit-based pipelines excel at smooth modeling and robust Boolean operations but require inefficient and
error-prone conversions of STL shells into implicit forms, complicating the rendering process. To address these issues, AST com-
bines hybrid implicit lattice and mesh shell representations, eliminating the need for explicit 3D model construction and unnecessary
geometric format conversions. It overcomes the major challenges of hybrid forms and mega-scale rendering by using an augmented
tracing distance query that avoids costly signed distance field (SDF) calculations while preserving geometric details. Additionally, it
employs a local tracing distance query within a single cell, leveraging lattice periodicity for efficiency. The pipeline also supports vari-
ous types of shell-lattices in industrial applications, including blending, warping, field-directed distributions, region-specific cell types,
and produces arbitrary directional slicing for manufacturing. As demonstrated by various examples implemented in WebGPU, AST
archives high efficiency and accuracy in real-time rendering of shell-lattices with billions of beams on an RTX 3090, outperforming
traditional pipelines in storage, frame time, and detail preservation.

Keywords: Lattice structures, Real-time rendering, Hybrid explicit-implicit, Mega-scale, Additive manufacturing.

1. Introduction

Lattice structures are lightweight configurations composed of
interconnected short beams that converge at common vertices,
often with smooth transitions [1, 2, 3, 4]. These structures are
commonly used as infill in additive manufacturing, creating spe-
cialized shell-lattice forms. According to a recent DARPA re-
port, modeling such shell-lattices presents a significant challenge
for conventional CAD (Computer-Aided Design) systems due to
their mega-scale, which can include up to 1012 entities and de-
mand up to 100 TB of memory [5].

The traditional approach for designing shell-lattices relies on
an STL-based pipeline, where lattice structures represented in
continuous implicit or parametric forms are converted into dis-
crete triangular meshes [6, 7, 8]. Boolean operations between
the STL-format lattice and the outer shell produce the final shell-
lattices. However, the STL-based approach faces three key chal-
lenges: First, converting from implicit or parametric formats
to STL meshes is highly time-consuming and requires substan-
tial storage, particularly for large-scale lattices [9, 10]. Second,
achieving smooth blending between the discrete STL-formatted
interior lattices and the outer shell is complex [9, 10]. Third,
this process can result in a loss of accuracy, which is critical for
high-precision fabrication.

Alternatively, the implicit-centered pipeline shows promise for
designing shell-lattice structures, offering advantages in smooth
modeling, robust Boolean operations, and seamless blending [11,
12]. However, converting STL shells into implicit forms can de-
grade geometric accuracy by losing fine details such as sharp

∗Corresponding author
Email address: liming@cad.zju.edu.cn (Ming Li*)

edges [13]. While ray-tracing techniques like sphere tracing are
effective for implicit surfaces, they are less efficient than direct
mesh rendering.

To address these challenges, we propose that the ideal solution
for shell-lattice design should (1) support both STL and implicit
inputs without tedious conversions and (2) employ a direct ap-
proach that bypasses intermediate modeling, producing outputs
ready for rendering or fabrication. This is crucial for real-time
rendering during interactive editing and high-precision slicing in
additive manufacturing.

We introduce an augmented sphere tracing (AST) pipeline that
integrates implicit lattice inputs and STL shells for real-time
rendering and editing, along with direct slicing of mega-scale
shell-lattices, without high-cost intermediate conversions. The
pipeline bypasses the explicit generation of 3D models even dur-
ing Boolean operations.

The key contributions of this study are:

• We introduce a seamless pipeline that integrates editing,
rendering, and slicing of mega-scale shell-lattice structures
without geometry conversions, efficiently handling both im-
plicit and STL formats.

• We present a novel method for real-time editing of hybrid
shell-lattices, unifying mesh, and implicit representations to
avoid costly SDF queries while maintaining geometric de-
tail and precision in Boolean operations.

• Leveraging lattice periodicity, our method uses only cur-
rent cell data for closest distance queries, reducing com-
putational overhead compared to traditional rendering ap-
proaches [14].

• The pipeline supports various industrial applications, in-
cluding region-specific cell types, field-directed distribu-

Preprint submitted to Elsevier March 19, 2025

tions, beam-to-beam and beam-to-shell blending, and direc-
tional slicing.

• Implemented in WebGPU, AST demonstrates superior per-
formance on an RTX 3090, outperforming traditional STL-
based approaches in storage, frame time, and rendering de-
tail preservation.

The paper is organized as follows: Section 2 covers related
work. Section 3 outlines the problem and overall approach. The
core technical details of AST are presented in Section 4 and
5, followed by extensions like smooth blending, variations, and
slicing in Section 6. Results and evaluations are discussed in
Section 7, and conclusions are drawn in Section 8.

2. Related work

2.1. Lattice modeling
Lattice structures, widely used in CAD and solid modeling,

have garnered significant research attention due to their indus-
trial applications. Great efforts have been devoted to their mod-
eling [11, 15, 16], simulation [17, 18, 19] or optimization [2, 3];
few has on its rendering [14].

Lattice structures can be classified based on various criteria.
They can be open, closed, or mixed according to cell open-
ness [2]. They can be periodic, semi-regular, or irregular accord-
ing to cell similarity and distributions [4, 7, 20]. Shell-lattice
structures have also become a prominent subject of research due
to their versatile applications in industry [18, 21, 22, 23].

Lattice structures can be represented in discrete voxels, tri-
angular meshes, continuous parametric, or implicit forms, each
with its advantages. The form of discrete voxels is widely used
in topology optimization due to their prominent merits in direct
simulations [3]. The parametric form represents the lattices in
boundary representation (B-rep) [7], which is a de facto standard
in conventional industries. The discrete triangular form, particu-
larly in STL form, is the most popular representation for model-
ing the lattices and their outer shells. It is, however, also heavily
blamed for its huge storage and inefficiency [24]. The implicit
form offers smooth, robust modeling with fewer geometric con-
straints, making it favorable for lattice applications [12, 25, 26].

Existing approaches to mega-scale lattice design struggle with
various challenges [5, 27, 28]. Early studies explore regular lat-
tices using intersections of infinite slabs and thick planes, and
wave functions are used for more complex units [11]. While this
approach accelerates queries through space mapping, it struggles
with limitations in geometry, symmetry constraints, discontinu-
ities, and artifacts. Parametric program-based representations of
steady lattices [7] and a series of related works [29, 30, 31] are in-
troduced. However, their reliance on meshing or voxelization re-
stricts their scalability in ultra-scale rendering or slicing applica-
tions. A progressive ray-shooting method for specific lattice pat-
terns is further proposed [32], but it requires multiple frames to
achieve accurate results. Additionally, these methods do not ade-
quately support mesh shells and variations, such as field-directed
distributions.

Visualizing implicit micro-structures within a mesh-shell re-
mains a relatively under-explored research area. Converting the
shell to an implicit representation is a common practice [11]. For
SDF representations, the conversion involves two approaches:
presampling a level set or computing exact SDF values at query
time. The former struggles to balance sampling resolution and
detail preservation, while the latter, despite recent acceleration
methods [33], causes significant rendering delays.

Some approaches, alternatively, consider rendering without
format conversions. The interval shading via volume render-
ing can support implicit structures embedded in a mesh but is
limited to tetrahedrons [34]. The dexel buffer and rasterization
techniques in [35] provide valuable insights. Nevertheless, the
microstructure encoded by the 0-1 indicator requires binary ray
marching for rendering, which is inefficient [14] and takes a few
seconds to produce a complete image. Similar approaches are
also used in shell mapping to project volume textures onto a mesh
shell [36, 37]. Such visualization can also be achieved with the
multi-scale shape-material modeling [38, 14]. They consider the
mesh shell as a scale and render it using sphere tracing, aligning
with porous structures at finer scales. However, the rendering
method is not specifically optimized for periodic or mesh struc-
tures accordingly.

Targeting the above-mentioned problems, we study the mega-
scale lattice design from the aspect of editing, rendering, and
slicing, ensuring high efficiency and accuracy by avoiding unre-
liable model conversions.

2.2. Implicit model rendering
Rendering implicitly defined structures typically involves con-

verting them into triangular meshes using algorithms like March-
ing Cubes [24, 39, 40, 29] or a voxel grid with a readily available
containment indicator [25, 41]. While compatible with commer-
cial software, these approaches often result in detail loss, high
storage needs, and computational overhead [29, 9].

Sphere tracing, another popular approach [11], is a completely
different rendering pipeline for surfaces implicitly defined by
SDF [42]. Most approaches work directly using existing ray trac-
ing tools, e.g., POV Ray [43], and seldom address the challenge
of real-time frame rate for mega-scale lattice structures.

Sphere tracing is an iterative forward process where each step
is accompanied by solving for the SDF value of primitives at the
current query point. Approaches to its acceleration are broadly
based on two ideas: (1) reducing the number of iterations [44, 45]
or (2) accelerating the evaluation of SDF in one iteration. More
works focus on the latter, often exploiting the localization of the
ray or primitives. For instance, some studies employ widely-used
spatial tree acceleration structures like bounding volume hierar-
chies (BVH), KD-Tree, etc., to exclude a subset of primitives
[46, 47, 48]. Keeter’s pruning of directed acyclic graphs com-
posed of Boolean expressions, coupled with subdivision to ex-
ploit the image space coherence, is a representative idea, though
not based on sphere tracing [49]. Furthermore, Zanni proposed to
bound primitives with blending in space according to the regions
they affect and to prune the blob-tree composed of primitives,
with spatial subdivision taken into account [50].

The sphere tracing acceleration techniques discussed above
are designed for general implicit structures without specific op-
timizations for periodic lattices. Leveraging both acceleration
strategies, our method is tailored to the characteristics of peri-
odic lattices and hybrid representations.

3. Problem statement and approach overview

3.1. Problem statement
In this study, our shell-lattice is constructed from an infinitely

periodic lattice structure L(Cl) and a covering cutting shell M.
The lattice is induced from a hexahedral background grid, each
grid cell embedding a lattice element, under control parameters
Cl (Table 1). A lattice element is made of a set of beams B =
{B[i], i = 0, · · · , nb − 1}, each of which has two end nodes N[i, 0]

2

B

[]iBSingle beam

Hexahedral grid

Cell of size S

Element with

beams

Embeds Consists of

r
r

r
[,1]iN

[,0]iN

r
r

r
[,1]iN

[,0]iN

Figure 1: An example illustrating how the internal lattice is defined.

and N[i, 1], and a radius r, see Figure 1 for an illustration. The
end-node can be anywhere inside the element. Without loss of
generality, we require that for the input unit element, N[i, j] ∈
[−1, 1]. For ease of explanation, we first assume that each cell
has a fixed cell size S, and the radius r is constant across the
lattice.

The extensions detailed in Section 6 further extend the scope
of lattices that can be processed: S and r can vary spatially under
the control of continuous fields; the lattices can be warped [11,
29]; different cells can have distinct cell types (specified by B);
blends can be imposed between lattices and shells.

The SDF (signed distance function) value of a beam B[i] of
radius r at a given point P is to be used, and defined as,

Fb,i(P) = Fl,i(P) − r, (1)

where Fl,i(P) is the distance from P to the line segment defined
by N[i, 0] and N[i, 1].

The outer shell is usually induced from a watertight mesh M
of ignorable thickness. In certain cases, only parts of M are filled
with lattices, we then define M as M = M f ∪ Ms, M f ∩ Ms = ∅,
where M f is the volume to be filled with lattices while Ms is the
left solid part.

All together, the partly filled shell-lattice structure
Ω(Cl,M f ,Ms) is defined,

Ω(Cl,M f ,Ms) = L(Cl) ∩ M f ∪ Ms. (2)

We aim to construct a seamless pipeline for real-time render-
ing, editing, and efficient slicing for the shell-lattices defined
above at a mega scale. By real-time editing, we mean that when-
ever the parameters Cl in Table 1 are modified, the corresponding
Ω(Cl,M f ,Ms) will be rendered on the next frame, maintaining a
frame rate of over 30 frames per second (FPS) for most cases.
By mega scale, we mean Ω(Cl,M f ,Ms) can encompass billions
of, or even more, beams. Extensions for wider applications are
also provided in Section 6, including blending, warping, field-
directed properties, and region-specific cell types.

Notations Definitions

B The beam list defined in the unit cell
S The cell size represented as a triplet
r The radius of beams
p The smoothness term discussed in 6.1

A, ω, ϕ,A,Ω, and Φ Parameters of the fields discussed in 6.2.1
α Parameters of the warping discussed in 6.2.2

Table 1: Notations and meanings of Cl, where B, S, r are core parameters. All of
these parameters can be edited interactively in our AST framework.

3.2. Preliminaries

Sphere tracing. Sphere tracing is an iterative ray tracing tech-
nique used to render implicit surfaces, typically a signed distance
function (SDF) [42]. At each iteration, the ray advances from the
current point by the SDF value at this point. The iterative pro-
cess terminates when the SDF value is less than a very small
threshold. A key advantage of sphere tracing is its robustness,
preventing ray overshoot and avoiding common issues such as
surface acne in traditional methods like binary ray marching.

Bounding volume hierarchy (BVH). BVH is a spatial accelera-
tion structure represented as a binary tree [51]. In a BVH, leaf
nodes tightly encompass primitives, while non-leaf nodes tightly
enclose two child nodes, with each node being a bounding box.
A common type of bounding box is the axis-aligned bounding
box (AABB) [52], as used in AST, defined by the minimum and
maximum coordinates of its children. BVH is widely applied in
tasks such as intersection tests, collision detection, and closest
point queries due to its efficiency.

3.3. Approach Overview

An appropriate approach must address the critical challenges
on the mega-scale and hybrid implicit-mesh form. We achieve
this by the AST (augmented sphere tracing) pipeline (Figure 2),
which comprises three modules: mega-scale handling for large
lattices, heterogeneous rendering for hybrid implicit-mesh forms,
and extensions for broader applications. During each iteration of
sphere tracing, the former two modules generate the corrected
distance for lattices and the tracing distance for shells, respec-
tively, which are then used for Boolean operations.

The mega-scale module renders lattices with billions of beams
and arbitrary cell types. It uses a user-friendly unit cell definition
rule and two algorithms: beam augmentation to preserve beam
visuals in a cell and distance calibration to ensure safe distance
queries within the lattice. In this way, distance queries can be
done only in a single cell, regardless of any neighbors.

The heterogeneous module renders Boolean results between
implicit and mesh forms without format conversion. It is
achieved by replacing the true SDF values of the meshes with
aggressive but safe tracing distances derived from BVH-based
ray-mesh intersections. The pruning strategy for BVH traversal
is also provided.

Furthermore, AST offers extensions for design and manufac-
turing, including internal blending (confined to the unit cell) and
internal-external blending (using a low-resolution level set for vi-
suals). Field-directed distributions, warped lattices, and region-
specific cells are achieved by modifying query points and prop-
erties during SDF solving. A slicing method is realized by ad-
justing certain rendering configurations, and it corrects internal-
external blending errors.

The former two modules are explained in Sections 4 and 5.
The extensions are in Section 6.

4. Mega-scale rendering for lattices

Mega-scale rendering is mainly achieved via restricting dis-
tance query for the lattice within a single cell. We start by de-
tailing the distance query for a cell. The correction for accurate
rendering of the entire lattice is discussed next.

4.1. Distance query within a single cell

3

Lattice

parameters

Augmented

sphere tracing

Corrected

distance

Rendering

frames

Tracing distanceMeshes

lC

sM
fM

(a) (b) (c) (d) (e)

Figure 2: Overview of the augmented sphere tracing (AST) algorithm. The algorithm takes lattice descriptions and outer shell meshes as inputs (a) and produces shell-
lattice structures as outputs (e). For lattices (b), corrected distances are computed through distance queries within a single cell. For meshes (c), tracing distances are
obtained via BVH-based ray-mesh intersections. Although the distances are not exact SDF values, they are calculated efficiently and serve as inputs to the augmented
sphere tracing process, robustly incorporating Boolean operations to generate the final rendering results (d).

r

r

(a) Beam augmentation triggered by

edges in two dimensions.

r

r

(b) Beam augmentation triggered by

vertices in two dimensions .

Figure 3: 2D schematic on beam augmentation. The blue beams are manually de-
signed, and the yellow ones come from their beam augmentation. The shadowed
segments are not rendered in the current cell containing the query point, and the
arrows indicate the translation direction.

Simply confining the lattice cell within
a cube does not render the entire element,
as some beams extend beyond it. For ex-
ample, in the inset, only the green volume
within the blue cell is rendered, while the
red part is missing. Specifically, it hap-
pens when

∃⋆ ∈ {x, y, z}, |N[i, j]⋆| > 1 −
2r
S⋆
. (3)

Based on the above observations, we are to render with a cube
element all the regions of the beams within the cell. The ap-
proach is illustrated in Figure 3 and explained in Algorithm 1.

In Algorithm 1, we sequentially consider three scenarios re-
garding the cube’s vertices, edges, and faces while traversing all
nodes N[i, j] in the unit cell. First, we check if any of the 8 ver-
tices are inside the node surface of N[i, j]. If so, all 8 surrounding
cells render the beam, and the beam is copied and moved to the
other 7 vertices (lines 4-16). If not, we check if any of the 12
edges pass through the surface. If so, the 4 surrounding cells
render the beam, and it is copied and translated to the other 3
parallel edges (lines 18-35). If not, we finally check if any of the
6 faces intersect the surface. If so, the beam is copied once and
translated to the opposite face (lines 39-46). Lattice symmetry
can also accelerate the traversal (line 4).

While B is the user-defined beam list within the unit cell, B̂

includes the beams that intersect the cell. With B̂ = {B̂[i], i =
1, · · · , n̂b} obtained, the SDF value of this cell (denoted as Fb) is
the minimum of all the SDF values of the beams in B̂, i.e.,

Fb(P) =
n̂b−1
min
i=0

(Fb,i(P)). (4)

Note that many cases may not need Algorithm 1 where beams
connecting neighboring cells can complement each other, and we
allow users to toggle the algorithm on or off.

4.2. Local distance calibration
We now explain how to obtain the query distance of the entire

lattice from that of the unit cell. Calculating the SDF for the
entire lattice directly is computationally intensive. A common
practice is to leverage the localization of porous structures [14].

Query point mapping. Since beams in the unit cell have been
well defined in 4.1, we consider constructing a mapping between
it and an arbitrary cell of the lattice. Rather than mapping beams
from the unit cell to a certain cell of the lattice, as widely applied
in [7, 31], we map the query points from a global coordinate
(denoted as Pg) to a local one (denoted as Pl), which is similar
to the method in [53]. Based on the consistency of the query
point’s relative position within the original cell and the unit cell,
the mapping is achieved by rounding off:

Pl = (Pg − Vmin) mod S − 0.5 · S, (5)

where Vmin is the minimal coordinate of the generated lattice.
By query point mapping, Fb at location Pg is

Fb(Pg) = Fb(Pl). (6)

The equation is reasonable in that moving the query point from
a specific cell to the unit one and copying intra-cell primitives
from the original cell to the specific one yield an equal Fb value.

Distance calibration. Since Fb(Pg) considers only one cell, it is
not the exact SDF value of the entire lattice, as depicted in Fig-
ure 4 (a). When the total volume of beams in a cell is small and
their distribution is not uniform enough, an error occurs in which
Fb(Pg) represents an excessive distance. With that distance, the

4

Algorithm 1 BeamAugmentation
Input: Origin beam list B of size nb, beam radius r, cell size S;
Output: Extended beam list B̂;

1: B̂ := B
2: for i := 0 → nb − 1, j := 0 → 1 do ▷ For each beam node
3: C := ({1, 1, 1} − |N[i, j]|) ⊙ (0.5 · S)
4: if ||C|| < r then ▷ Examine the cell vertices
5: for k := 1 → 7 do
6: N̂[0] := N[i, 0], N̂[1] := N[i, 1]
7: for ⋆ := 0 → 2 do
8: if k&(1 << ⋆) then
9: N̂[0]⋆ := N̂[0]⋆ − 2 · sign(N[i, j]⋆)

10: N̂[1]⋆ := N̂[1]⋆ − 2 · sign(N[i, j]⋆)
11: end if
12: end for
13: B̂ := B̂ ∪ {{N̂[0], N̂[1]}}
14: end for
15: continue
16: end if
17: addByEdge := False
18: for ⋆ := 0 → 2 do ▷ Examine the cell edges
19: Ĉ := C, Ĉ⋆ := 0
20: if ||Ĉ|| < r then
21: for k := 1 → 3 do
22: N̂[0] := N[i, 0], N̂[1] := N[i, 1]
23: for l := 0 → 2 do
24: if k&(1 << l) then
25: l̂ := (l + ⋆ + 1) mod 3
26: N̂[0]l̂ := N̂[0]l̂ − 2 · sign(N[i, j]l̂)
27: N̂[1]l̂ := N̂[1]l̂ − 2 · sign(N[i, j]l̂)
28: end if
29: end for
30: B̂ := B̂ ∪ {{N̂[0], N̂[1]}}
31: end for
32: addByEdge := True
33: break
34: end if
35: end for
36: if addByEdge then
37: continue
38: end if
39: for ⋆ := 0 → 2 do ▷ Examine the cell faces
40: if |C⋆| < r then
41: N̂[0] := N[i, 0], N̂[1] := N[i, 1]
42: N̂[0]⋆ := N̂[0]⋆ − 2 · sign(N[i, j]⋆)
43: N̂[1]⋆ := N̂[1]⋆ − 2 · sign(N[i, j]⋆)
44: B̂ := B̂ ∪ {{N̂[0], N̂[1]}}
45: end if
46: end for
47: end for
48: return B̂

ray either enters or misses the beams in subsequent cells, result-
ing in a crippled rendering, as indicated in Figure 4 (b).

To address the issue, we propose Algorithm 2 to reduce poten-
tially excessive distances to just safe distances. As illustrated in
Figure 4 (c), the basic idea is that the ray can only enter a new
cell by first reaching the boundary of the current cell and then

Algorithm 2 DistanceCalibration
Input: Local query point Pl, ray direction D, cell size S, small

number ϵt;
Output: Corrected tracing distance;

1: Ŝ := 0.5 · S
2: t := ∞
3: for ⋆ ∈ {0, 1, 2} do
4: t̂ := ⌊ Ŝ⋆−P⋆

D⋆
⌋

5: if t̂ > 0 then
6: t := min(t̂, t)
7: else
8: t̂ := ⌊−Ŝ⋆−P⋆

D⋆
⌋

9: if t̂ > 0 then
10: t := min(t̂, t)
11: end if
12: end if
13: end for
14: return min(t + ϵt, Fb(Pl))

(a) Schematic of sphere tracing using periodicity directly (b) Incorrect rendering

(c) Schematic for the distance calibration algorithm (d) Corrected rendering

cellcell

1
2
.
5

cellcell

Figure 4: 2D schematics of the incorrect rendering (a & b) and the solution pro-
vided by Algorithm 2 (c & d). The blue circles indicate the beam cross-sections.
In this example, a cell contains only a horizontal beam.

advancing by a very small value ϵt. We calculate the 3 possible
forward distances required for the ray to reach the cell bound-
ary plane (lines 3-13) and take their minimum (lines 6 and 10).
The additional forward distance ϵt, which guarantees that the ray
enters the next cell, should neither be too small (causing the
cell’s boundaries to be rendered) nor too large (falling to solve
the above problem). We set it equal to the termination threshold
of sphere tracing, ϵ, which ultimately produces the proper result
in Figure 4 (d).

In the absence of distance calibration, sphere tracing the SDF
efficiently for the entire lattice would also require leveraging the
localization of the SDF. A direct approach involves evaluating
the exact SDF considering 27 cells (the current cell containing
Pg and its 26 neighbors). This can be reduced to evaluating 8
cells (the current cell and its 7 neighbors closest to Pg) by tak-
ing into account the position of Pg within the current cell [53].
Considering that evaluating the SDF for beams is the most time-
consuming part of lattice rendering, we compare the number of
cells evaluated per ray for the proposed method and the 8-cell
method in [53] in Figure 5. When the beams connecting the
cells restore the missing parts of each other at the boundaries,

5

(a) (b)

(c) Body-centered

cubic

Figure 5: A comparison of the number of cell evaluations per ray between our
method (a) and the 8-cell method in [53] (b). The cell type is the body-centered
cubic (c). The number of evaluations is represented by the R-channel value in the
ray’s color, capped at a maximum of 255.

Algorithm 1 is omitted. In such cases, the cost of evaluating
a cell is the same for both methods, and the proposed method
requires much fewer beam evaluations for most rays. Among
the widely used cell types summarized by [54] (See Figure 11),
only the diamond type necessitates Algorithm 1, where the num-
ber of the beams in a cell is augmented from 12 + 4 = 16 to
12 × 2 + 4 × 8 = 56, a 3.5-fold increase.

5. Heterogeneous rendering for hybrid forms

We now explain the heterogeneous rendering of hybrid inputs
(mesh and SDF) through tracing distance computation and the
pruning-based acceleration.

5.1. Tracing distance for mesh shells
We mainly explain how to obtain the tracing distances. Once

it is done, the Boolean operations of intersection and union be-
tween the mesh and SDF can be achieved by simply taking max-
imum and minimum values.

Given Ms and M f , their BVHs are respectively constructed in
advance before entering the rendering pipeline. The tracing dis-
tance calculation consists of two stages. First, the intersections
between the ray and the mesh shells are solved before sphere
tracing. Second, the tracing distances are derived from these in-
tersections and used as inputs for sphere tracing at each iteration.

In the first phase, we follow the standard practice in ray tracing
to obtain the ray-mesh intersections by traversing BVHs. We
denote the ray-mesh intersection respectively for the solid part
Ms and the filled M f for later usage. For Ms, as rays never enter
a solid mesh, we only record the first intersection, where the hit
face is denoted as Is, and its distance to the camera as ts. For M f ,
multiple intersections are stored as the lattice structure allows
multiple mesh faces to be visible. We sort their distances to the
camera in ascending order in a list t f associated with faces I f .

In the second phase, the tracing distances of Ms are relatively
straightforward (Figure 6). When there is no intersection, a large
number is returned to make the tracing stop. When the ray has
not entered the mesh, the distance to the first intersection point
is returned. We now mainly explain it for the region M f to be
filled, as detailed via Algorithm 3 and illustrated Figures 7.

In Algorithm 3, when the query point is outside the shell mesh,
we step to the next intersection (line 4). When the ray traces
within the shell mesh, it returns a large negative number (line 6).
When the ray hits a face before entering the mesh, the algorithm
calculates and stores the face normal for shading and returns a
value slightly less than ϵ (lines 10 and 11). If the ray hits a face
before leaving the mesh, a large negative number is returned (line
13). The membership of the query point is determined by the
parity of the remaining intersections in front of this point (lines 3

Algorithm 3 TracingDistance
Input: Hit face list I f , intersection distance list t f , list size n,

distance from the query point to the camera t;
Output: Tracing distance for M f ;

1: for i := 0→ n − 1 do ▷ Traverse each intersection
2: if t < t f [i] then
3: if (n − i) mod 2 = 0 then ▷ Outside the mesh
4: return t f [i] − t
5: else ▷ In the mesh
6: return −∞
7: end if
8: else if t = t f [i] then
9: if (n − i) mod 2 = 0 then ▷ Hit before entering

10: Calculate and store the normal of I f [i]
11: return (1 − ϵ) · ϵ
12: else ▷ Hit before leaving
13: return −∞
14: end if
15: end if
16: end for
17: return∞ ▷ t > t f [n − 1]

(a) (b)

Figure 6: Comparison of heterogeneous union (a) and general sphere tracing (b).

and 9): an even count indicates the exterior, while an odd count
indicates the interior. When the ray has left the mesh, a large
value is returned to quickly end the tracing (line 17).

The algorithm’s efficiency comes from two main aspects. (1)
The number of tracing steps: The proposed approach avoids nu-
merous iterations that sphere tracing would typically require near
mesh faces; (2) Time consumption in each iteration: Compared
to approaches that compute the SDF of the mesh by utilizing
complex accelerating structures at each iteration, the proposed
approaches only visit BVHs once before sphere tracing.

Another significant advantage of heterogeneous ray casting is
its ability to preserve all details of M f and Ms. Methods based
on explicit-implicit conversions, such as sampled level sets and
marching cubes, often result in loss of details.

5.2. BVH pruning for rendering acceleration

The calculation of the above ray-mesh intersection is further
accelerated by pruning the BVHs during the depth-first traversal,
as explained below.

For the BVH traversal of Ms, we follow a common pruning
method: (1) always prioritize access to the node closer to the
camera among the two child nodes, and (2) discard nodes where
the closet distances from the camera to the bounding boxes are
farther than the current ts (see Figure 8 (a)).

BVH of

solid mesh

prune

BVH of

filled mesh

prune

The situation is different for M f .
Since all its intersection points
with the ray may be visible, the
BVH traversal of M f cannot be

6

far plane

filled mesh

beams

(a)

(b)

Figure 7: Comparison of heterogeneous intersection (a) and general sphere trac-
ing (b).

t_AABB > t_min_solid

Sapce

t_AABB > t_min

t_AABBt_min

Sapce

t_AABB

t_min_solid

(a) solid mesh (b) filled mesh

Figure 8: Schematic of pruning BVH of M f (a) and Ms (b). The × symbol marks
the discarded branch.

pruned using t f . Thanks to the pre-
requisite that Ms∩M f = ∅, we propose utilizing ts to prune BVH
traversal of M f . The pruning relationship between Ms and M f is
illustrated in the inset. Is and ts should be solved prior to I f and
t f . When traversing the BVH of M f , any node with an AABB
whose closest distance to the camera exceeds ts is discarded.

Considering the cases where the camera starts from within M f ,
we also prune the branches where the max signed distance from
the camera to the AABB along the ray is less than 0. Such nodes
are discarded for both M f and Ms. Dropping the intersections
before the ray’s starting point shifts i and n in Algorithm 3 by an
equal amount, so the parity of n − i remains unchanged.

6. Extensions

We now extend Ω to enable control over blending, defor-
mation, property distributions, and cell types by modifying the
SDF or adjusting query points. The extended lattice covers
a great number of structures that are involved in industry and
academia, typically the 3D non-stochastic cellular structures and
the warped-regular lattices [11, 28, 54, 25].

6.1. Smooth blending

A proper smooth blending improves physical attributes over
sharp connections [55]. Two types of blending are studied: (1)
internal blending within L(Cl), and (2) internal-external blend-
ing between L(Cl) and the complement of M f .

(a) An example with moderate smoothness,

featuring an arbitrary unit cell design that

breaks the symmetry constraint.

(b) An example that exhibits strong

smoothness with a unit cell design that

obeys the symmetry constraint.

Figure 9: A demonstration of cases where only one of two triggers (large smooth-
ness or asymmetry) is met, without discontinuities occurring.

6.1.1. Internal blending
Internal blending focuses solely on achieving smooth transi-

tions between beams. For SDF blending, the minimum and max-
imum functions used in Boolean operations are replaced by the
corresponding blending functions. We use the KS function [56]
to support multiple components and order invariance. This pro-
cess aligns with the localization strategy in Section 4.2, consid-
ering only beams within the current cell for blending:

F∪I(P) = −
1
p

ln

nb−1∑
i=0

e−p(Fb,i(P)−Fb(P))

 + Fb(P) s.t. p > 0, (7)

where p is the smoothness term (the smaller, the smoother).
This method introduces minimal rendering overhead and per-

forms well in most scenarios. However, in rare cases, it may
cause volume discontinuities at cell boundaries due to inconsis-
tent blending of beams connected on boundaries. This issue only
arises when the value of p is too small and an asymmetry along
the connection direction appears: if the cells are connected in the
⋆ direction, the beams in the cell are not symmetric with respect
to the plane perpendicular to the ⋆-axis and passing through the
cell center. Note that although blending over larger or infinite
regions can minimize or eliminate these discontinuities without
this constraint, it incurs prohibitive computational costs due to
increased SDF evaluations.

The internal blending performs well when the large smooth-
ness and asymmetry do not occur simultaneously, as shown in
Figure 9. Figure 10 shows the impact of p and S⋆/r on discon-
tinuities when the symmetry constraint is not satisfied. We fix
S⋆ at 0.2 and modify r and p. When p is small, discontinuities
appear; the smaller S⋆/r becomes, the more pronounced these
discontinuities are. Given the potential impact of discontinuities
on the structure’s physical properties [57, 58], we recommend a
smoothing range of p ≥ 30/S⋆ when S⋆/r ≥ 5 to avoid excessive
discontinuities in typical applications.

In most manufacturing scenarios, the symmetry constraint is
satisfied, as illustrated by the types in 11 (excluding the diamond
type) [54].

6.1.2. Internal-external blending
Internal-external blending refers to smooth transitions along

the truncated beams by shell M f . It is achieved by a smooth
union operation between L(Cl) and the complement of M f using
its SDF.

The SDF computation directly achieved from point to mesh
query in each tracing iteration is too slow to meet our high de-
mand of interactive rendering, although great acceleration has
been achieved [33, 59]. Such a strategy is used in our slicing
stage to ensure correct manufacturing.

7

= 150p

= 50p

/ rS = 5 / rS = 10

(a)

(b)

Figure 10: Comparison of results under different S⋆/r and p values (a), using a
unit cell not satisfying the constraint (b). The three components of S are set equal.
As S⋆ and p decrease and r increases, discontinuities become more pronounced.

We thus precompute a level set M̂ f approximating shell mesh
M f . Let FM̂ f

(P) be the precomputed SDF value of M̂ f achieved
by trilinear interpolation among 8 surrounding grid points. Tak-
ing F∪I and −FM̂ f

(P) as inputs, the KS function gives the de-
sired internal-external blending. During the process, we keep M f
unchanged for shell rendering, thus preserving the mesh details
from the intersection operations in Section 5.1.

In practice, given the detail-erasing nature of blending opera-
tions, a low-resolution level set is accurate enough. In our imple-
mentation, a grid with a fixed resolution of 1283 is used as the
level set. Precise SDF values are presampled at the grid points.

Figure 11 shows internal-external and slight internal blending
for classic unit cells [54] observed within M f . Figure 12 illus-
trates varying degrees of internal-external blends for the body-
centered cubic cell type. A p value of p ≥ 2.5/S⋆ (for densities
where S⋆/r ≥ 5) is recommended to maintain structure visibil-
ity. Excessive blending causes rays from within the shell to start
inside the microstructure, complicating rendering.

6.2. Repetition with variations

We now describe how to introduce variations to repetitions
while keeping the frame rate. The parameter adjustments of these
variations can also be made in real-time.

6.2.1. Field-directed distributions
Since AST takes a local view of the entire lattice, each query

point only concerns local differences when rendering varying
structures.

We explain this using a cosine trigonometric field as an ex-
ample. Given the positional variable Pg, each component on the
coordinate ⋆ of a field-directed triplet is

Ttri(v⋆,Pg; A, ω, ϕ) = v⋆ + v⋆Acos(ωPg,⋆ + ϕ), (8)

where v, A, ω, and ϕ are the triplets, amplitude, frequency, and
phase, respectively. And a field-directed scalar applied to an orig-
inal scalar v is given by

Tsca(v,Pg; A,Ω,Φ) =
1
3

∑
⋆∈{x,y,z}

Ttri(v,Pg; A⋆,Ω⋆,Φ⋆), (9)

where A, Ω, and Φ are triplets representing the amplitude, fre-
quency, and phase, respectively. They are the only parame-
ters passed to the GPU to describe the field. The field-directed

properties are evaluated at runtime during tracing. The addi-
tional memory overhead for a field-directed property is a total
of 3× 3× 4 = 36 bytes (assuming single-precision) in the case of
the trigonometric field.

Field-directed radius / internal smoothness. It is trivial to render
a lattice of field-directed radius r (or smoothness term p) in AST,
as long as the field is continuous and does not vary drastically.
We just substitute Tsca(r,Pg) for r (or Tsca(p,Pg) for p) when
calculating Fb in Equation (1) in each tracing iteration. One ex-
ception has to be taken care of: some beams, which previously
did not require beam augmentation, now do. This occurs because
the enlarged portion of the beams may exceed the cell boundary.
A solution to this is to substitute r in line 4, 20 and 40 of Algo-
rithm 1 with r(1 + 1

3
∑
⋆ |A⋆|).

Field-directed cell size. Our mega-scale module relies on the
rounding off operation in Equation (5), leveraging the consis-
tency of cell sizes S across all cells. Interestingly, the round-
ing off still works when cell sizes vary. We simply replace the
cell size S with Ttri(S,Pg) in Equation (5) and Algorithm 2,
and the rest rendering process remains unchanged. Each query
point assumes rendering a lattice with a consistent cell size, even
though the cell size varies continuously across the space. The
field should not vary drastically, as this can lead to rendering im-
perfections. Specifically, if rays advance too aggressively along
the direction of field variation, they may penetrate the beam sur-
faces. It can be addressed by multiplying the forward distance by
a decay constant. An example is illustrated in Figure 13.

6.2.2. Warped lattice
Warped-regular lattices enhance the flexibility of regular lat-

tices by allowing deformations that go beyond traditional geo-
metric constraints. This enables them to better meet a wider
range of physical and aesthetic requirements [11, 29, 61]. In
warped-regular lattices, transformations are applied to the volu-
metric micro-elements of beams, rather than just the node centers
as in steady lattices. We introduce two types of warping: bend-
ing, a global transformation that alters the spatial distribution of
cells, and twisting, a local transformation that deforms the beams
without changing the cell arrangement.

Deriving the form of implicit representations transformed by
a rotation matrix is challenging, but it can be equivalently ex-
pressed by applying the inverse matrix to the query point P. From
this, to render a warped lattice with spatially varying rotation, we
inversely warp the query point at each tracing iteration. This ap-
proach is inspired by and explored in detail for general cases in
[62, 63, 64]. Note that our definitions of bend and twist differ
slightly from those in traditional implicit model deformations,
but they capture similar effects [62, 63].

Denote by R(ψ(Pg)) a function that returns the rotation ma-
trix for beams at a rotation angle ψ(Pg). For the same effect, its
inverse matrix R(ψ(Pg))−1 is applied to query points. We omit
details such as the axis of rotation as they are not the focus. For
the bending, R(ψ(Pg))−1 is applied to the original query point Pg:

P′g = R(ψ(Pg))−1Pg. (10)

By contrast, the twisting is applied to the mapped query point Pl:

P′l = R(ψ(Pg))−1Pl. (11)

See examples in Figure 14 on the bending and twisting, where,

ψ(Pg) = αPg,⋆. (12)

8

Body-centered cubic Face-centered cubic Body center Diamond Truncated cube

Truncated octahedron Octahedron Rhombicuboctahedron Octahedron Cuboctahedron

Unit cell type

Rendered image

Rendered image

Unit cell type

Figure 11: Rendered images for Ω using various unit cell types, with internal-external and slight internal blending enabled. The camera captures photos from within Ω.
The diamond type is the only one that necessitates Algorithm 1.

(f) 30(e) 50(d) 100

(c) 500(b) 1000(a) No internal-external blending

Figure 12: Comparison of internal-external blending at values of p: +∞ (no
internal-external blending applied), 1000, 500, 100, 50, and 30. Internal blending
with p = 800 is simultaneously applied in all cases, and S⋆ is fixed as 0.05.

α is the user-controlled coefficient for bending or twisting, and
Pg,⋆ can be any component of Pg.

Since the transformation is defined by a differentiable field, the
Lipschitz bound of the warping can be derived using the chain
rule. This bound is no larger than the product of the bounds of
the field and the SDF [63]. The severity of the warping directly
increases the bound. While this bound is not used in AST, it
could be useful for subsequent applications.

6.3. Region-specific cell types

AST can easily support multiple unit cell types with specific
copying rules, adding versatility to lattice design without signifi-
cant computational or storage overhead.

The repetition rule for cells is highly flexible and is typically
specified using their indices in the lattice. For example, the dis-
tinction can be determined by the parity of the sum of cell index
components: cells with an even sum are assigned the first unit
cell type, while those with an odd sum get the second type. For
a given query point Pg, the index of the cell it belongs to is cal-
culated as:

I =
⌊

Pg − Vmin

Ttri(S,Pg)

⌋
, (13)

where ⌊⌋ is a floor function.
To guarantee structural completeness, the beams from beam

augmentation in a unit cell (Algorithm 1) are copied to other unit
cells. And C0 continuity on adjacent boundaries should be sat-
isfied by the cell types and the repetition rule. As a limitation,
region-specific cell design should not coexist with internal blend-
ing. This is because neighboring cells of different types undergo
distinct smooth blending, resulting in inconsistencies in the vol-
ume at the cell boundary. Figure 15 illustrates an example of
region-specific cell types.

6.4. TPMS

Although AST is specially designed for periodic lattices with
beams as primitives, the heterogeneous rendering can accept a
broader range of porous structures as inputs.

A typical example is the Triply Periodic Minimal Surface
(TPMS). Two common types of TPMS, namely, Primitive (P)

9

(b) Colormap of variations on xS (c) Colormap of variations on radius(a) Rendered image

Figure 13: A filled booster model of an aircraft model sourced from the Thingi10k dataset [60] (File ID: 113419). Here, Sx and r are controlled by trigonometric fields
that vary along the y-axis (b) and x-axis (c), respectively.

(a) Twisting

Y

XZ

Y

XZ

(b) Bending

(c) Unit cell design. Groups are

distinguished by beam colors.

Figure 14: Results of the filled booster model with twisting (a) or bending (b)
enabled, using a unit cell in (c). The beams are grouped, and the twisting is only
applied to the blue group.

(a) Rendered image (b) Unit cell types

Body-centered cubic

Simple cubic

Figure 15: A rendered image of a filled booster model with region-specific cell
types enabled (a). Two types of cells (b) are arranged in alternating sequences.

and Gyroid (G), are tested and are respectively defined as:

IP(P) =cos(X) + cos(Y) + cos(Z) + b, (14)

IG(P) =sin(X)cos(Y) + sin(Z)cos(X) + sin(Y)cos(Z) + b, (15)

where X = ΘxPg,x, Y = ΘyPg,y, Z = ΘzPg,z, and b is the level
constant. Θx, Θy, Θz, and b can all be edited with real-time re-
sponse. We treat TPMS as a single structure due to its inherently
periodic nature, and the cell-based mega-scale module is not re-
quired here. Note that IP and IG are not typical SDFs, and we
address it by multiplying IP or IG by an attenuation factor to ob-
tain a conservative distance. With this distance as the input for
sphere tracing, the rest of AST remains unchanged. Figure 16
presents two examples.

6.5. Slicing for fabrication
We now present the methods to generate slices for printing

along any direction. Unlike the contour extraction-based meth-
ods in [35, 65], our slicing evaluates the fields directly for pixel
classification, similar to the method in [66]. While it does not
fully exploit the coherence of pixels and slices, it reuses the pro-
posed rendering framework with existing GPU implementations

(b) Gyroid TPMS(a) Primitive TPMS

Figure 16: A booster model filled by P or G TPMSs.

(a) The perspective projection for rendering (b) The orthographic projection for slicing

Near clipping plane

Far clipping plane Far clipping plane

Image plane

Near clipping plane

(Image plane)

Figure 17: Comparison between perspective projection for rendering and ortho-
graphic projection for slicing.

and ensures rendering consistency. The consideration of the ap-
propriate slicing direction and supportability is beyond the scope
of this paper.

We treat the slices as rendered images, modifying the proposed
rendering process. First, we replace the perspective projection
with an orthographic projection, as shown in Figure 17. In per-
spective projection, rays originate from a single viewpoint and
pass through different pixels on the image plane, whereas in or-
thographic projection, rays are perpendicular to the image plane
and start from the pixels themselves.

Second, the far clipping plane is no longer located behind the
scene but instead very close to the near clipping plane. The near
clipping plane now coincides with the image plane, rather than
being slightly behind it (See Figure 17). The distance between
the near and far planes represents the printing thickness of each
slice.

Third, when internal-external blending is enabled, the SDF
values of M f are no longer approximated by a low-resolution
level set. Instead, they are precisely solved on the fly, reusing
the BVH of M f . Slicing is latency-insensitive and thus tolerates
time-consuming distance queries to M f .

Fourth, we adjust the slice width for a given height so that
the boundary aligns with the object in the current view, thereby
improving the utilization of slice pixels.

Finally, we remove the calculations on face normals and shad-
ing.

Figure 18 shows selected equally spaced slices with differ-
ent slicing directions. The base model M f is sourced from the
Thingi10k dataset [60] (File ID: 65149), which is a part of a gear
system assembly sourced from the Thingiverse website (Thing
ID: 11836). Ms comprises three stand tops from this assembly.
Time statistics for generating a single shell-lattice slice at differ-

10

ent resolutions are provided in Table 2. Higher resolutions can
be easily obtained by stitching multiple slices together.

We emphasize that the contribution of this paper does not in-
clude a real-time slicing algorithm. Our slicing algorithm is sim-
ply adapted from the rendering pipeline, without the specialized
optimizations seen in [35, 65, 66]. Further optimization of slicing
efficiency is left for future work. Fortunately, existing GPU im-
plementations enable the slicing algorithm to achieve reasonably
good efficiency.

Resolution
1208 2416 3625 4833 6041 7249
× × × × × ×

1024 2048 3072 4096 5120 6144

Runtime (ms) 45.806 143.30 300.54 534.3258 829.46 1237.74

Table 2: Average time cost of generating a single slice at different resolutions.

7. Evaluation

The assessment of AST consists of two aspects: comparing it
with existing methods and analyzing its own performance.

7.1. Implementation

We implement AST using WebGPU, a cross-platform graph-
ics and computation API, with the implementation provided by
Google in 2023 [67]. All experiments were conducted on an ordi-
nary desktop with an AMD Ryzen 4750G CPU and an NVIDIA
GeForce RTX 3090 GPU.

All ray-level methods, including Algorithm 2, Algorithm 3,
and extensions in Section 6 are executed on the GPU. Algorithm
1 runs on the CPU because it is applied beforehand and is low
in parallelism. Complex data, such as Ms, M f , B̂, and BVHs,
are copied from CPU memory to storage-type GPU memory, as
storage memory supports larger data blocks. All other param-
eters in Table 1, along with camera parameters and the model
transformation matrix, use uniform-type GPU memory, which is
more efficient but has a smaller capacity and stricter data format
requirements [67]. Whenever any data is modified, we transfer
only the updated data back to the GPU. When the parameters
in Table 1 are modified, the shader does not need to be recom-
piled. In practical use, new frame requests occur only after data
updates. However, in subsequent runtime tests, requests were
continuously sent to the renderer to measure frame time.

7.2. Comparative analysis

To assess the practical value of AST, we compare it against an
STL-based pipeline and a fully implicit pipeline. For the STL-
based pipeline, we opt for Marching Cubes [39] as the triangula-
tion technology, given its widespread usage and the availability
of an optimized GPU implementation from CUDA samples [68].
This pipeline is referred to as MCM and operates under CUDA
Toolkit version 12.4. In the fully implicit pipeline, we replace
our heterogeneous module with a presampled level set, referring
to it as LSM. M f is the stand base model in Thingi10k [60]. To
focus on comparing the results of lattice filling, Ms is not set.

To begin with, we observe that MCM requires a minimum of
approximately 163 voxels per cell to achieve visually acceptable
rendering effects, as indicated in Figure 19.

Storage. This comparison focuses on the overhead of graphics
memory (VRAM), as it is often a limiting factor and can create
bottlenecks in practical applications. Each cell in MCM main-
tains 163 Marching Cubes voxels. Since the ability of MCM and
LSM to display details is positively correlated with grid resolu-
tion, we report the VRAM usage of both methods at different res-
olutions, as shown in Figure 20. Although the VRAM usage of
AST is independent of resolution or detail fidelity, we label this
constant value in the figure for ease of comparison. The primary
VRAM overheads of the MCM comprise three parts: (1) the flag
information used in the Marching Cubes voxel classification, (2)
the sampled SDF level set of the mesh shell during voxel classifi-
cation, and (3) the vertex data during triangular mesh generation.
Using our method to render the internal lattice, the VRAM over-
head of LSM is almost entirely due to maintaining the level set
grid. However, its VRAM overhead still increases sharply with
resolution, similar to MCM. In contrast, the main VRAM over-
head in AST consists only of the raw representations of mesh
shells, their BVHs, and the fixed-resolution level set of M f .

Details. We evaluate the capability of AST to accurately render
the fine details of lattice structures. We set the resolution of both
MCM and LSM to 5123 (a resolution of 10243 causes programs
to crash). The camera focuses on the sharp edges of M f to high-
light detail rendering. The comparison with MCM is shown in
Figure 21 and with LSM in Figure 22. MCM demonstrates sig-
nificant limitations in rendering the fine details both of the outer
shell and of the inner beams; note that these limitations also ex-
tend to slicing for manufacturing processes. Although LSM ren-
ders internal beams effectively, it eliminates the sharp edges and
other detailed features of the original mesh. In contrast, AST
produces high-quality rendering that captures a wide range of
details, including the shell’s sharp edges, the beam’s smooth sur-
faces, and the nuanced articulation between them. These findings
underscore AST’s potential for high-quality visualization in ap-
plications involving large-scale shell-lattice structures.

Runtime. This experiment compares efficiency. Since LSM and
AST render the internal lattice in the same way—this being the
primary source of rendering overhead—their runtime differences
are minimal (see frame time in Figure 22). Therefore, we focus
on comparing AST and MCM. We conduct tests with varying cell
numbers (#C) within the AABB of M f and different beam counts
(#B) in the unit cell. #C ranges from hundreds to billions for AST
but is limited to 83 to 323 for MCM due to VRAM constraints.
Each cell is cubic with S⋆/r = 5. We employ four unit cell types
with increasing #B: simple cubic, face-centered cubic, truncated
cube, and rhombicuboctahedron. Tests are performed on both
a stand base model (Stand) and its AABB (Cube) as M f , with
Cube representing a simpler geometry but higher cell count. Note
that AST’s maximum frame rate is capped at approximately 60
FPS due to browser frame-locking, setting the lower bound for
measured frame time at 16.67 ms.

The results in Table 3 show that MCM’s frame time increases
significantly with #C and #B, losing real-time performance when
#C reaches 323. In contrast, AST maintains a frame time under
20 ms, unaffected by changes in #C or #B. A higher #B can re-
duce ray tracing iterations and speed up rendering. Despite using
more beams than Stand and increasing MCM’s frame time, Cube
improves AST’s performance by reducing ray-mesh intersection
computations. This stability highlights AST’s potential for real-
time rendering of complex lattices.

11

Slicing direction

2048 pixels

2048 pixels

Figure 18: Eight selected slices of a partially filled stand model at 2 different directions, where the stand base is taken as M f , and three stand tops as Ms. The slices are
equally spaced along their respective direction.

#B MCM AST

#C 83 163 323 83 163 323 643 1283 2563 5123 10243 20483

Stand

12 15.4 21.2 166.7 16.9 17.6 17.9 18.0 18.3 18.1 18.3 17.2 17.3
24 15.5 38.17 294.7 18.1 18.7 19.7 19.0 18.5 17.2 17.5 16.7 17.0
36 15.6 60.98 476.2 18.1 19.7 18.7 19.4 18.8 19.48 19.2 18.1 18.1
48 16.0 77.52 588.2 18.5 20.3 19.0 18.8 19.9 18.7 18.3 17.9 17.0

Cube

12 15.7 22.0 169.5 16.7 16.8 16.7 17.9 19.4 17.0 18.8 21.3 19.8
24 15.9 42.2 322.6 16.7 16.7 16.7 16.9 17.7 16.7 26.8 16.7 16.7
36 16.0 61.7 476.2 16.7 16.7 17.5 18.5 22.2 22.4 23.9 21.5 30.5
48 16.1 80.6 625.0 16.7 16.7 17.3 19.9 20.4 31.7 16.7 16.7 16.7

Table 3: Comparisons of the frame time (ms) between AST and MCM.

7.3. Results and analysis

7.3.1. Rendering effects
We demonstrate AST’s rendering capabilities with a complex

gear system assembly in Figure 23. The assembly is divided into
three groups: the stand base and tops (M f , red), a discoidal side
(M f , yellow), and the remaining parts (Ms, blue). Figures 23 (b)
and (c) test the rendering effects under two conditions: (b) when
various variations are set simultaneously and (c) when billions of
beams are embedded.

In Figure 23 (b), the two groups have different cell types, cell
sizes, and radii. Field-directed properties, internal blending, and
bending are applied to the red parts. The results confirm that
AST is robust and effective for rendering complex assemblies.

In Figure 23 (c), lattices with 20003 cells are embedded in a
bounding box, with the two M f groups occupying 4.4425% of
the volume. Using the body-centered cubic type (16 beams), this
results in around 5.686 billion beams. While the screen reso-
lution is far from capturing the full complexity, a camera FoV
(Field of View) of 0.15◦ is adequate to display the details. Note

that anti-aliasing is excluded due to its high overhead and mini-
mal improvement in detail visibility.

7.3.2. Efficiency analysis
We evaluate the computational efficiency (in terms of frame

time) of the AST pipeline in rendering mega-scale shell-lattice
structures with varying configurations, specifically of the lattices
or the camera. Unless otherwise specified, each cell is cubic,
with S⋆/r ranging from 5 to 10. As noted earlier, the frame time
cannot go below 16.67ms.

Cell numbers. We measure frame time with varying cell num-
bers #C, from 1.23×107 to 6.28×1010, at two screen resolutions:
1280× 720 and 1920× 1080, in Table 4. The number of triangu-
lar faces (#F) is fixed at 1.01K, the size of B (#B) is 12 (simple
cubic unit cell type), and the field of view (FoV) is 30◦.

The number of beams reaches approximately 7.54×1011, mak-
ing this the largest scale studied in lattice modeling to date. The
tests are conducted on regular lattices (Regular), lattices with

12

364
3128voxels

34

cells38

332

cells

voxels voxels

Figure 19: A cubic lattice generated and rendered using MCM, with varying cell
numbers and voxel resolutions. When each cell contains only 83 or 43 voxels, the
lattice structure shows significant fidelity loss.

Figure 20: Comparison of VRAM overheads among AST, MCM, and LSM.

field-directed distributions and warping (Field&Warp), and lat-
tices with internal-external blending (Blending). The FPS results
demonstrate that AST’s performance is largely independent of
the number of cells or the variations in the lattice configuration.

Resolution #C Regular Field&Warp Blending

1280
×

720

12.3M 16.69 16.99 18.43
98.1M 16.67 16.67 17.31
0.785B 16.70 16.69 16.67
6.28B 16.67 16.67 16.69

1920
×

1080

12.3M 30.22 23.87 22.02
98.1M 21.49 21.12 24.58
0.785B 23.12 17.24 21.14
6.28B 18.42 16.67 17.91

Table 4: Frame time (ms) measured at different numbers of cells.

Shell face numbers. Experiments in Table 5 analyze the impact
of #F on frame time, with #C fixed at 98.1M and a resolu-
tion of 1920 × 1080. The tests involve remeshing three distinct
objects—cup, puppy, and foot—at scales approximately of 1K,
10K, and 100K triangular faces. As expected, the frame time
shows a slight increase as #F increases, showing its efficiency.
The slight time increase is attributed to the increased time re-
quired to traverse the BVH. Its impact, however, is minimal due
to the logarithmic time complexity, O(log n), of BVH traversal.

Screen occupancy. We also evaluate the frame time under vary-
ing FoVs, still using the examples in Table 5, with around 10K
faces. The screen resolution is 1280×720. The results are plotted
in Figure 24, which reveals an increase in frame time when the
lattice occupies the entire screen at narrower FoVs.

(a) AST

(b) MCM

Figure 21: Comparisons between the local details of the lattices generated by
AST and MCM.

(a) AST

Frame time = 17.77 ms

FPS = 56.3

(b) LSM

Frame time = 17.51 ms

FPS = 57.1

Figure 22: Comparison of AST (a) and LSM (b) in preserving mesh details,
where a denser filling is used to highlight sharp edge differences. Their respective
frame time/rate are also provided.

The above three results collectively demonstrate AST’s capac-
ity for real-time rendering of mega-scale lattice structures, con-
firming its robustness and efficiency for various industrial appli-
cations. Considering the rendering of each frame treats Cl as the
new input and requires no preprocessing, the frame time for edit-
ing is the same as that of rendering.

See-through rays. To identify bottlenecks, we analyze the im-
pact of see-through rays by positioning the camera along the cell
repetition direction with a small FoV (4◦). In this setup, central
rays pass through hundreds of cells without intersections. Using
the body-centered cubic cell type and a 10242 screen resolution,
we vary the beam radius r to test the effect of lattice density on
frame time. The results in Table 6 show that as S⋆/r increases,
the frame time rises significantly.

As the structure becomes sparser and see-through rays in-
crease, many rays pass through more cells. This limits AST’s
applicability to sparse structures. In practice, S⋆/r > 20 is rare
due to poor mechanical properties. Appropriate camera or model
rotations can further reduce such rays (Figure 25).

8. Conclusion and future work

The AST framework is introduced for editing mega-scale pe-
riodic shell-lattices with arbitrary cell designs filled into a mesh
shell. The lattice can be warped, with blending, field-directed
properties , and region-specific cell types enabled. With the
mega-scale module and heterogeneous module, our method sig-
nificantly reduces computational overhead compared to tradi-
tional approaches that convert between implicit and explicit rep-

13

(a) Parts

(b) Shell-lattice with various configurations

(c) Mega-scale shell-lattice

FoV = 9.6 FoV = 2.4 FoV = 0.15

FoV = 4

FoV = 4

FoV = 1 FoV = 5

FoV = 0.6

Figure 23: A gear system (a) is filled by different configurations and rendered together. In (b), the red parts take body-centered cubic as the cell type, with the radius
varying along the x-axis, and internal blending and bending enabled. The yellow part takes octahedron as a cell type, with a smaller cell size. In (c), both parts use the
body-centered cubic type and have a much smaller cell size than lattices in (b). This results in a total of approximately 5.686 billion beams. The beams remain visible
as long as the camera focuses on the details (with a small FoV). All FoVs are measured in degrees.

Model #F Regular Field&Warp Blending

Cup
1014 21.49 21.12 24.58
10054 22.58 21.32 26.10

100032 22.88 22.38 26.85

Puppy
1050 26.48 19.86 20.71
10228 26.85 20.34 22.08

100002 28.51 20.90 22.12

Foot
992 23.82 18.29 19.39

10420 24.93 18.63 19.67
100118 25.84 19.43 20.76

Table 5: Frame time (ms) measured at different numbers of triangular faces.

resentations, enabling interactive editing without extensive pre-
processing. Our implementation demonstrates real-time render-
ing of lattices with billions of beams on an RTX 3090, highlight-
ing its potential to advance the additive manufacturing of large-
scale lattices. Slicing is also achieved based on the rendering
framework via adjusting rendering configurations.

Despite its efficiency in dealing with periodic lattices with
warping / field-directed properties, There are still lattice types
that AST can not currently cover, such as steady [7], confor-
mal [69], and stochastic [16] lattices. These structures intro-
duce complexities in mapping query points from lattice space to

Figure 24: Frame time (ms) measured at different FoV(◦).

unit cell space. For instance, in conformal lattices, cells are not
always hexahedral, making it challenging to map query points
directly to a unit structure for repetition. Also, more advanced
controls over varying radius and cell sizes—such as those deter-
mined by physical properties—have not been implemented [58].
Finally, the slicing process could be accelerated by methods that
generate multiple slices simultaneously [35, 65, 66]. Developing
such approaches remains one of our primary research efforts.

14

S⋆/r 5 10 20 40

Runtime (ms) 16.72 83.82 159.24 171.53
FPS 59.8 11.93 6.28 5.83

Table 6: Test results on the impact of see-through rays on runtime at various S⋆/r
values. The cell sizes in three directions are set equal.

(a) Frame time = 171.53 ms

FPS = 5.83

(b) Frame time = 64.02 ms

FPS = 15.62

Figure 25: Frame time comparison of the same lattice at S⋆/r = 40 from different
viewpoints. Common viewpoints like (b) are less affected by see-through rays.

ACKNOWLEDGEMENT

We would like to thank all the anonymous reviewers for their
valuable comments and suggestions. The work described in this
paper is supported by the NSF of China (No. 62372401).

References

[1] Y. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, J. A. Rogers, Printing,
folding and assembly methods for forming 3D mesostructures in advanced
materials, Nature Reviews Materials 2 (4).

[2] S. H. Siddique, P. J. Hazell, H. Wang, J. P. Escobedo, A. A. Ameri, Lessons
from nature: 3D printed bio-inspired porous structures for impact energy
absorption – a review, Additive Manufacturing 58 (2022) 103051.

[3] J. Wu, O. Sigmund, J. P. Groen, Topology optimization of multi-scale struc-
tures: a review, Structural and Multidisciplinary Optimization 63 (3) (2021)
1455–1480.

[4] Y. Liu, G. Zheng, N. Letov, Y. F. Zhao, A survey of modeling and opti-
mization methods for multi-scale heterogeneous lattice structures, Journal
of Mechanical Design, Transactions of the ASME 143 (4).

[5] J. Vandenbrande, Darpa trades challenge problems, accessed: 2024-9-2.
URL solidmodeling.org/tradescp

[6] H. Wang, D. W. Rosen, Parametric modeling method for truss structures, in:
International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Vol. 36215, 2002, pp. 759–
767.

[7] A. Gupta, K. Kurzeja, J. Rossignac, G. Allen, P. S. Kumar, S. Musu-
vathy, Programmed-Lattice Editor and accelerated processing of paramet-
ric program-representations of steady lattices, Computer-Aided Design 113
(2019) 35–47.

[8] Y. Liu, S. Zhuo, Y. Xiao, G. Zheng, Y. F. Zhao, Rapid modeling and design
optimization of multi-topology lattice structure based on unit-cell library,
Journal of Mechanical Design 142 (9) (2020) 1–34.

[9] L. Chougrani, J.-P. Pernot, P. Véron, S. Abed, Lattice structure lightweight
triangulation for additive manufacturing, Computer-Aided Design 90
(2017) 95–104.

[10] Q. Zou, Y. Gao, G. Luo, S. Chen, Meta-meshing and triangulating lattice
structures at a large scale, Computer-Aided Design 174 (2024) 103732.

[11] A. Pasko, O. Fryazinov, T. Vilbrandt, P.-A. Fayolle, V. Adzhiev, Procedural
function-based modelling of volumetric microstructures, Graphical Models
73 (5) (2011) 165–181.

[12] G. Allen, nTopology’s implicit modeling technology,
https://ntopology.com/resources/whitepaper-implicit-modeling-technology
(2019).

[13] X. Song, B. Jüttler, Modeling and 3D object reconstruction by implicitly de-
fined surfaces with sharp features, Computers & Graphics 33 (2009) 321–
330.

[14] X. Liu, M. Meneghin, V. Shapiro, An application programming interface
for multiscale shape-material modeling, Advances in Engineering Software
161 (2021) 103046.

[15] Y. Tang, G. Dong, Y. F. Zhao, A hybrid geometric modeling method for lat-
tice structures fabricated by additive manufacturing, The International Jour-
nal of Advanced Manufacturing Technology 102 (9) (2019) 4011–4030.

[16] S. Liu, T. Liu, Q. Zou, W. Wang, E. L. Doubrovski, C. C. Wang, Memory-
efficient modeling and slicing of large-scale adaptive lattice structures,
Journal of Computing and Information Science in Engineering 21 (6).

[17] A. Zargarian, M. Esfahanian, J. Kadkhodapour, S. Ziaei-Rad, Numerical
simulation of the fatigue behavior of additive manufactured titanium porous
lattice structures, Materials Science and Engineering: C 60 (2016) 339–
347.

[18] C. Bonatti, D. Mohr, Mechanical performance of additively-manufactured
anisotropic and isotropic smooth shell-lattice materials: Simulations and
experiments, Journal of the Mechanics and Physics of Solids 122 (2019)
1–26.

[19] O. Weeger, N. Boddeti, S.-K. Yeung, S. Kaijima, M. L. Dunn, Digital
design and nonlinear simulation for additive manufacturing of soft lattice
structures, Additive Manufacturing 25 (2019) 39–49.

[20] M. Li, L. Zhu, J. Li, K. Zhang, Design optimization of interconnected
porous structures using extended triply periodic minimal surfaces, Journal
of Computational Physics 425 (2021) 109909.

[21] W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen,
X. Liu, Cost-effective printing of 3D objects with skin-frame structures,
ACM Transactions on Graphics 32 (6) (2013) 1–10.

[22] L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu,
D. Cohen-Or, B. Chen, Build-to-last: Strength to weight 3D printed objects,
ACM Transactions on Graphics 33 (4) (2014) 1–10.

[23] H. Yu, J. Huang, B. Zou, W. Shao, J. Liu, Stress-constrained shell-lattice in-
fill structural optimisation for additive manufacturing, Virtual and Physical
Prototyping 15 (1) (2020) 35–48.

[24] J. Iamsamang, P. Naiyanetr, Computational method and program for gener-
ating a porous scaffold based on implicit surfaces, Computer Methods and
Programs in Biomedicine 205 (2021) 106088.

[25] C. H. P. Nguyen, Y. Kim, Q. T. Do, Y. Choi, Implicit-based computer-aided
design for additively manufactured functionally graded cellular structures,
Journal of Computational Design and Engineering 8 (3) (2021) 813–823.

[26] J. Ding, Q. Zou, S. Qu, P. Bartolo, X. Song, C. C. Wang, STL-free design
and manufacturing paradigm for high-precision powder bed fusion, CIRP
Annals 70 (1) (2021) 167–170.

[27] T. A. Schaedler, W. B. Carter, Architected cellular materials, Annual Re-
view of Materials Research 46 (1) (2016) 187–210.

[28] W. Tao, M. C. Leu, Design of lattice structure for additive manufacturing,
in: 2016 International Symposium on Flexible Automation (ISFA), 2016,
pp. 325–332.

[29] K. Kurzeja, J. Rossignac, Rangefinder: Accelerating ball-interference
queries against steady lattices, Computer-Aided Design 112.

[30] K. Kurzeja, J. Rossignac, BeCOTS: Bent corner-operated tran-similar maps
and lattices, Computer-Aided Design 129.

[31] A. Gupta, G. Allen, J. Rossignac, Exact representations and geometric
queries for lattice structures with quador beams, Computer-Aided Design
115 (6058).

[32] K. Kurzeja, J. Rossignac, CTSP: CSG combinations of tran-similar two-
patterns of CSG cells, Computer-Aided Design 146 (2022) 103212.

[33] C. Zong, J. Xu, J. Song, S. Chen, S. Xin, W. Wang, C. Tu, P2M: A fast
solver for querying distance from point to mesh surface, ACM Transactions
on Graphics 42 (4) (2023) 147:1–147:13.

[34] T. Tricard, Interval shading: using mesh shaders to generate shading inter-
vals for volume rendering, Proceedings of the ACM on Computer Graphics
and Interactive Techniques 7 (3) (2024) 43:1–43:11.

[35] S. Lefebvre, Visualizing and fabricating complex internal structures, 2017,
p. 15, Technical report.

[36] F. Policarpo, M. M. Oliveira, Relief mapping of non-height-field surface
details, in: Proceedings of the 2006 Symposium on Interactive 3D Graphics
and Games, Association for Computing Machinery, 2006, pp. 55–62.

[37] N. Ritsche, Real-time shell space rendering of volumetric geometry, in:
Proceedings of the 4th International Conference on Computer Graphics and
Interactive Techniques in Australasia and Southeast Asia, Association for
Computing Machinery, 2006, p. 265–274.

[38] X. Liu, V. Shapiro, Multiscale shape–material modeling by composition,
Computer-Aided Design 102 (2018) 194–203.

[39] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d surface
construction algorithm, ACM SIGGRAPH 21 (4) (1987) 163–169.

15

solidmodeling.org/tradescp

[40] L. Hao, D. Raymont, C. Yan, A. Hussein, P. Young, Design and additive
manufacturing of cellular lattice structures, in: The International Confer-
ence on Advanced Research in Virtual and Rapid Prototyping (VRAP),
2011, pp. 249–254.

[41] C. Uchytil, D. Storti, A function-based approach to interactive high-
precision volumetric design and fabrication, ACM Transactions on Graph-
ics 43 (1) (2023) 3:1–3:15.

[42] J. C. Hart, Sphere tracing: A geometric method for the antialiased ray trac-
ing of implicit surfaces, Visual Computer 12 (10) (1996) 527–545.

[43] T. Plachetka, POV ray: persistence of vision parallel raytracer, in: Proc. of
Spring Conf. on Computer Graphics, Budmerice, Slovakia, Vol. 123, 1998,
p. 129.

[44] C. Bálint, G. Valasek, Accelerating sphere tracing, in: EG 2018 - Short
Papers, The Eurographics Association, 2018, p. 4 pages.

[45] B. K. H. S. J. Korndörfer, U. G. M. Stamminger, B. Keinert, Enhanced
sphere tracing, STAG: Smart Tools & Apps for Graphics 8 (4) (2014) 1–8.

[46] E. Dyllong, C. Grimm, A reliable extended octree representation of CSG
objects with an adaptive subdivision depth, in: Parallel Processing and Ap-
plied Mathematics, Springer, Berlin, Heidelberg, 2008, pp. 1341–1350.

[47] O. Gourmel, A. Pajot, M. Paulin, L. Barthe, P. Poulin, Fitted BVH for fast
raytracing of metaballs, Computer Graphics Forum 29 (2) (2010) 281–288.

[48] H. Grasberger, J.-L. Duprat, B. Wyvill, P. Lalonde, J. Rossignac, Efficient
data-parallel tree-traversal for blobtrees, Computer-Aided Design 70 (2016)
171–181.

[49] M. J. Keeter, Massively parallel rendering of complex closed-form implicit
surfaces, ACM Transactions on Graphics 39 (4) (2020) 141:1–10.

[50] C. Zanni, Synchronized-tracing of implicit surfaces, ArXiv
abs/2304.09673.

[51] S. M. Rubin, T. Whitted, A 3-dimensional representation for fast render-
ing of complex scenes, in: Proceedings of the 7th annual conference on
Computer graphics and interactive techniques, Association for Computing
Machinery, New York, NY, USA, 1980, pp. 110–116.

[52] J. Amanatides, A. Woo, A fast voxel traversal algorithm for ray tracing, in:
Eurographics, 1987.

[53] I. Quilez, Domain repetition, accessed: 2024-12-03.
URL https://iquilezles.org/articles/sdfrepetition/

[54] K.-M. Park, K.-S. Min, Y.-S. Roh, Design optimization of lattice structures
under compression: Study of unit cell types and cell arrangements, Materi-
als 15 (1) (2022) 97.

[55] M. Li, J. Hu, W. Chen, W. Kong, J. Huang, Explicit topology optimiza-
tion of voronoi foams, IEEE Transactions on Visualization and Computer
Graphics (2024) 1–16.

[56] G. Kreisselmeier, R. Steinhauser, Systematic control design by optimizing
a vector performance index, IFAC Proceedings Volumes 12 (7) (1979) 113–
117.

[57] D. Montoya-Zapata, A. Moreno, J. Pareja-Corcho, J. Posada, O. Ruiz-
Salguero, Density-sensitive implicit functions using sub-voxel sampling in
additive manufacturing, Metals 9 (12) (2019) 1293.

[58] J. Panetta, A. Rahimian, D. Zorin, Worst-case stress relief for microstruc-
tures, ACM Transactions on Graphics 36 (4) (2017) 1–16.

[59] E. Pujol, A. Chica, Triangle influence supersets for fast distance computa-
tion, Computer Graphics Forum 42 (6) (2023) e14861.

[60] Q. Zhou, A. Jacobson, Thingi10k: A dataset of 10, 000 3d-printing models,
ArXiv abs/1605.04797.

[61] G. Elber, Precise construction of micro-structures and porous geometry via
functional composition, in: Mathematical Methods for Curves and Sur-
faces, Springer International Publishing, Cham, 2017, pp. 108–125.

[62] A. H. Barr, Global and local deformations of solid primitives, SIGGRAPH
Computer Graphics 18 (3) (1984) 21–30.

[63] B. Wyvill, A. Guy, E. Galin, Extending the CSG tree. warping, blending
and boolean operations in an implicit surface modeling system, Computer
Graphics Forum 18 (2) (1999) 149–158.

[64] D. Seyb, A. Jacobson, D. Nowrouzezahrai, W. Jarosz, Non-linear sphere
tracing for rendering deformed signed distance fields, ACM Transactions
on Graphics 38 (6) (2019) 229:1–229:12.

[65] E. Maltsev, D. Popov, S. Chugunov, A. Pasko, I. Akhatov, An accelerated
slicing algorithm for Frep models, Applied Sciences 11 (15) (2021) 6767.

[66] M. Aydinlilar, C. Zanni, Transparent Rendering and Slicing of Integral
Surfaces Using Per-primitive Interval Arithmetic, in: Eurographics 2022
- Short Papers, 2022, pp. 37–40.

[67] Webgpu, accessed: 2023-07-21 (2023).
URL gpuweb.github.io/gpuweb/

[68] Cuda samples, accessed: 2024-04-02 (2018).
URL github.com/NVIDIA/cuda-samples

[69] Q. Y. Hong, G. Elber, M.-S. Kim, Implicit functionally graded conforming
microstructures, Computer-Aided Design 162 (2023) 103548.

16

https://iquilezles.org/articles/sdfrepetition/
https://iquilezles.org/articles/sdfrepetition/
gpuweb.github.io/gpuweb/
github.com/NVIDIA/cuda-samples

	Introduction
	Related work
	Lattice modeling
	Implicit model rendering

	Problem statement and approach overview
	Problem statement
	Preliminaries
	Approach Overview

	Mega-scale rendering for lattices
	Distance query within a single cell
	Local distance calibration

	Heterogeneous rendering for hybrid forms
	Tracing distance for mesh shells
	BVH pruning for rendering acceleration

	Extensions
	Smooth blending
	Internal blending
	Internal-external blending

	Repetition with variations
	Field-directed distributions
	Warped lattice

	Region-specific cell types
	TPMS
	Slicing for fabrication

	Evaluation
	Implementation
	Comparative analysis
	Results and analysis
	Rendering effects
	Efficiency analysis

	Conclusion and future work

