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A novel PCA (Principal Component Analysis)-based microstructure descriptor is proposed for heteroge-
neous material design given a database of material microstructures. The PCA-based descriptor captures
the important geometric features of the database, and provides a compact representation of the design
space. Based on the PCA-based descriptor, a polynomial expression is ultimately derived that links the
microstructures in the design space with their associated physical performances. Compared with previ-
ous approaches using first-order or second-order descriptors, the novel approach integrates PCA and
Combined Approximation (CA) in mechanics, provides more precise presentation of the microstructure
and accelerates the optimization and reconstruction of the result microstructure. The performance of
the proposed approach is also tested in various aspects for a linear elasticity analysis problem.
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1. Introduction

Designing materials of desired physical properties is a constant
pursuit of human being but the process is significantly time and
effort-consuming. In order to accelerate the process of discovering
and designing new materials, the concept of microstructural medi-
ated design [1–3] has been proposed, which follows Olson’s design
framework covering process, structure, property, and performance
[2]. This new idea emphasizes the microstructures of materials,
viewing it as the determining factor which dictates its physical
and chemical performance. This novel strategy implements the
material design process in the form of finding the optimal
microstructure so that the material exhibits desired performance,
an idea which revolutionized the material design strategy.

The key issues of microstructural mediated design are: how to
describe the microstructure, and how to build structure-property
and property-performance relations. To build structure-property
relation, the traditional homogenization approaches [4–6] provide
homogenized property of an RVE (representative volume element)
according to its microstructure. To build the property-performance
relation, the popular FEM (finite element method) simulates mate-
rial performance under numerous physical conditions. Further, Xu
et al. [7–9] took into account the meta-modeling method and pro-
vided an approximate expression of the structure-performance
relations. This computational costs of these approaches are usually
high.

How to describe the microstructure is an even more important
issue, because the description of the microstructure reveals its key
information of the microstructure, determines the design parame-
ters, and is also involved in the formation of all the process-struc
ture-property-performance relations. A direct and precise descrip-
tion is an image obtained from scanning the material sample using
SEM/TEM (scanning/transmission electron microscopy), which can
capture the microstructure’s composition, phases, morphologies
and particularly geometries. However, during the design process
the image description includes too many design parameters if all
the pixel values need determined carefully.

To avoid redundant design parameters, one solution is to
extract only statistical information contained within a scanning
image. Among the numerous studies on this issue, the first- and
second- (or higher) order descriptors [7,10] are the most popular.
The first-order descriptors capture the one-point statistics of the
microstructure image, such as volume fractions and nearest neigh-
bor distances. However, the first-order descriptors are not suitable
for describing the microstructure geometries due to missing spatial
information. The second- (or higher) order descriptors solve this
issue by considering the distribution statistics, such as 2-point cor-
relation functions describing the distribution of line segments with
a fixed length.

Excellent studies have been done using these first- and second-
(or higher) order descriptors. Kalidindi et al. [3,10,11] proposed a
performance oriented microstructure-sensitive design systemwith
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a simple and effective process-structure-property-performance
relationship. This was achieved by projecting microstructure dis-
tribution functions like size distribution, orientation distribution,
and some correlation functions into a spectral space. Then, the dis-
tribution functions were reduced to a compact representation of a
few parameters in the spectral space. Further extending the
homogenization theory, the structure-property relation was built
and the design problem was transformed to an optimization prob-
lem that can be easily solved. However, this structure-property
relation maintains only some microstructure information and has
limited accuracy.

Other statistical descriptors of microstructure composition, dis-
persion and geometry were also applied by Xu et al. [7–9], and it
was proved that these descriptors allow the reconstruction of
microstructures as in the cases of high order descriptors [7].
Besides, the machine learning theory [8,9] was introduced to
extract the key descriptors with respect to the properties. Then, a
design approach was proposed with the structure-property rela-
tion built using a combination of FEM and meta-modeling method.

Another study on the microstructure geometry descriptor was
done by Wang et al. [12]. The microstructure geometry was mod-
eled and controlled accurately using periodic surfaces, while the
structure was related to some properties such as porosity and per-
meability. This study provide a new perspective to microstructure
modeling.

However, the disadvantages of these descriptors are obvious:
first, some of them are computationally expansive and their cost
increases exponentially with the order; second, they only capture
statistical information and lose much, so, key information that
determines the material performance might be lost since we have
no direct structure-property and property-performance relations
to refer to; third, it is computationally expansive to reconstruct
the microstructure image from these descriptors and the recon-
structed microstructures are not unique, despite the great efforts
devoted towards this end, such as genetic algorithms [13,14], gaus-
sian random fields [15,16], branch and bound [17] and simulated
annealing [18,19].

Viewed from another perspective, the extraction of these
descriptors from microstructure images can be taken as infor-
mation denoising, i.e. extracting the critical information in
the design process and avoiding redundancy. To achieve this
goal, we introduced the dimension reduction technique for-
merly used in image [20] and graphic [21] analysis. The dimen-
sion reduction technique has been developed into two
categories: linear and nonlinear. Linear dimension reduction
methods like PCA (principal component analysis) [22] and
LDA (linear discrimint analysis) [23] transform the high dimen-
sion data to low dimension data while maintaining the linear
relations of the pairwise distances. Nonlinear dimension meth-
ods like Isomap (isometric mapping) [24], SNE (stochastic
neighbor embedding) [25], t-SNE [26] and LargeVis (large-
scale visualization) [27] were conceptualized as manifold learn-
ing for preserving the manifold shape after projecting high
dimension data to a low dimension.

Among these methods, PCA has the special characteristic of cap-
turing the key components, putting them in a linear space and link-
ing the redundant information to them. Due to this advantage, PCA
has already been applied in the material design process. Kalidindi
[28] applied PCA in property spaces to approximate the state solu-
tion for performance optimization. Recently, Xu et al. [29]
employed PCA to reduce the dimension of the material distribution
space, in which the material distributions are not always smooth.
Also, Li et al. [30] used PCA in both the geometric and physical
space to reduce the computational costs, and Niezgoda et al. [31]
made use of PCA in the space of second-order descriptors to accel-
erate the descriptor extraction.
Different from these previous approaches, PCA was applied in
this study directly in the microstructure image space. In this space,
we can exploit the ability of PCA which maintains the shape fea-
tures of the database similar to face recognition [32]. Further, with
the linear relation to the eigenvector of PCA and the introduced CA
(combined approximation) approach [33], we derived a novel poly-
nomial relation between the PCA descriptor and the performance.
This polynomial relation enabled fast property and performance
prediction and thus fast microstructure optimization.

The major contributions of this paper are as follows. First, we
proposed a novel PCA-based microstructure descriptor for a given
database, which is easier to extract from microstructure, faster for
microstructure reconstruction and preserves shape character bet-
ter than previous descriptors. Second, based on such descriptor,
an analytical approximate structure-performance relation was
derived, and can be applied directly in performance-oriented struc-
ture optimization. Performance of the proposed descriptor was
also tested in various aspects via numerical experiments.

This work is a modified version of our previous conference
paper [34] with the following major improvements: First, the par-
allel analysis method [35] was introduced after the PCA process for
selecting proper PCA bases. Second, the Ashby model [36] has been
introduced to provide a solid and accurate structure-property rela-
tion, which has proved effectiveness in numerous physical experi-
ments. Third, the overall numerical approach was carefully
designed and improved for further computational efficiency
improvement. Lastly, all the numerical examples were redesigned
and tested based on the newly proposed approach.

This paper is arranged as follows: first, the novel PCA-based
descriptor definition and its relation with the existing descriptors
are presented in Section 2; and then the problem and overall
approach is summarized in Section 3 and the structure-property
relation is derived in Section 4. Furthermore, the property-
perform relation is provided by CA, and based on this relation, a
polynomial approximation of the compliance supporting the
microstructure design approach is formulated in Section 5; we per-
form numerical tests on the proposed approach in Section 6, and all
the results are concluded in Section 7.

2. Microstructure and descriptors

In this section, we first explain the representation of
microstructure and its descriptors, and then introduce the novel
PCA-based microstructure descriptor. Further, we deduce the rela-
tion of the novel PCA-based descriptor and the classical first- or
second- order descriptors.

2.1. Microstructure

A microstructure is represented as a binary digital image in this
study, obtained by scanning a material sample using SEM/TEM. The
pixel value in the image represents the material phase. Limited by
the instrumental errors of SEM/TEM, the microstructure image can
be gray images (shown as the left image of Fig. 1) even when pho-
tographing bi-phase materials [7]. To eliminate the errors and pro-
vide a binary image, we can use image processing techniques like
denoising and binarizing to get a strictly binarized image, as shown
on the right of Fig. 1. In addition, the microstructure image is also
taken as a FE mesh in the rest of the paper when performing FE
analysis on the microstructure.

The following notations are used in this paper:

I: a microstructure image under study;

q: a density value in I representing the material phase, specifi-

cally, ‘0’ for void phase and ‘1’ for solid phase.



Fig. 1. The SEM image (left) and the bi-phase image (right) after binarization of
polymer nanocomposites [7].
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2.2. Descriptors

A microstructure descriptor is given as a scaler or a vector
which identifies this microstructure from others. Taking the den-
sity q of each element in I as a dimension, the microstructure
image is of high dimension. A microstructure descriptor aims to
reduce the dimension to a vector or even a scaler with reasonable
information reduction, and is used as the microstructure design
parameter.

2.2.1. Definition of PCA-based microstructure descriptor
We introduce the linear dimension reduction technique PCA in

image processing, to define the novel microstructure descriptor,
which consequently gives a compressed representation of a
microstructure.

Given a database of the binarized microstructure images as
given in Fig. 1, we can obtain the linear decomposition of any
microstructure image I under study via PCA,

I �
Xn

k¼0

akIk; ð1Þ

where � means the decomposition is a nice approximation, fIkgnk¼1

are the PCA bases, and fakgnk¼1 are the coefficients of I with respect
to the bases. In particular, the first item of the summation, a0I0, is
preset before the PCA decomposition as a0 ¼ 1 and I0 the average
image of the database. The coefficients fakgnk¼1 give the PCA-based
microstructure descriptor, and Eq. (1) builds a bijection between an
arbitrary image I and the descriptor fakgnk¼1.

2.2.2. Selection of PCA-based microstructure descriptor
After PCA decomposition, the decision of which and how

many bases to retain is critical. Noticing that PCA is a factor
analysis technique, we apply the parallel analysis [35], one of
the most accurate factor retention methods, to resolve the
issue.

The idea of parallel analysis is to find the PCA bases of which the
eigenvalues are greater than 95% of the randomly generated ones.
The process is formed by four main steps,

1. Perform PCA on the given database;
2. Generate random data similar to the database and perform PCA

on them;
3. Repeat the Step 2 for 100 times and calculate the average of the

eigenvalues;
4. Select the PCA bases of which the eigenvalues are larger than

95% of the above average.
We note here that 95% is an empirical percentage and needs
further experimental verification.

2.2.3. Relation with previous descriptors
Previous descriptors can be classified as the first-, second- and

higher order descriptors. The first-order descriptors depict the per-
centages of overall geometric microstructure feathers [8]. The
second-order descriptors are statistical quantities representing
two-point relations, such as the possibility of the two points with
fixed distance r placed in the same phase [7]. Other descriptors
such as lineal path function and higher order descriptors which
focus on more points’ relations are similarly defined, and are not
further discussed in this paper.

The volume fraction, one of the common first-order descriptors,
is defined as the percentage of volume that one phase occupies in
the material. Mathematically, it can be calculated as

vf ðIÞ ¼ 1
V

X
x2I

IðxÞ; ð2Þ

here vf ðIÞ denotes the volume fraction of I and V is the volume of
area I.

Substituting the decomposition Eq. (1) of I into Eq. (2), we fur-
ther have,

vf ðIÞ ¼ 1
V

X
x2I

Xn
k¼0

akIkðxÞ ¼
Xn
k¼0

ak
1
V

X
x2I

IkðxÞ ¼
Xn
k¼0

ak � vfk; ð3Þ

where vfk is the volume fraction of Ik and constant for a fixed Ik. In
this case, we find the linear relation of the first-order descriptor and
the PCA-based descriptor.

The two-point correlation function [7], one of the common
second-order descriptors, is defined as

P2ðrÞ ¼< Iðx1ÞIðx2Þ >; ð4Þ
where x1; x2 are two points with the fixed distance jx1 � x2j ¼ r and
<> indicates the average over all two-point pairs.

By substituting the PCA decomposition Eq. (1) into Eq. (4), we
have

P2ðrÞ ¼< IðxÞIðxþ rÞ >

¼< ½
Xn

k1¼0

ak1 Ik1 ðxÞ�½
Xn
k2¼0

ak2 Ik2 ðxþ rÞ� >

¼<
Xn
k1¼0

Xn

k2¼0

½ak1 Ik1 ðxÞ�½ak2 Ik2 ðxþ rÞ� >

¼<
Xn
k1¼0

Xn

k2¼0

ak1ak2 ½Ik1 ðxÞ�½Ik2 ðxþ rÞ� >

¼
Xn
k1¼0

Xn
k2¼0

ak1ak2 < Ik1 ðxÞIk2 ðxþ rÞ > :

ð5Þ

Consequently, we have

P2ðrÞ ¼
Xn
k1¼0

Xn
k2¼0

ak1ak2P2;k1k2 ðrÞ; ð6Þ

where P2;k1k2 ðrÞ ¼< Ik1 ðxÞIk2 ðxþ rÞ > is constant when r is assigned.
The analytical expression (6) gives the relation between 2-point
correlation function and the new PCA-based descriptor. Higher
order descriptors can be related to the PCA-based descriptor in a
similar manner.

Once the relation with the existing first- and second- descrip-
tors is built above, the previous results of material design involving
the existing descriptors can be easily reformulated using the PCA-
based descriptor as the design parameters, that is, the novel PCA-
based descriptor can substitute the existing ones.



42 C. Xu et al. / Computational Materials Science 130 (2017) 39–49
Also, we will explain later that the PCA-based descriptor is
easier to calculate, especially compared to the 2-point correlation
functions. In the material design process, the microstructure varies
and thus the descriptors need to be recalculated in each iterative
optimization steps. Introducing the novel PCA-based descriptor
can save a great computational cost in the design process.
3. Problem statement and approach overview

3.1. Problem statement

In this paper, we focus on the specific case of linear elasticity.
The physics of the microstructure is studied via performing FEM
on the microstructure. Accordingly, we have the stiffness matrix
K associated to the microstructure, and the equilibrium equation
defined as Ku ¼ b.

Now the problem of microstructure design is defined below:
Inputs: the microstructure database of a certain kind of mate-

rial and its PCA bases fIkgnk¼1; the physical boundary conditions
(loads b and fixed boundaries);

Outputs: the optimal microstructure, represented by its
descriptor fakgnk¼1 of minimal compliance c ¼ uKu;

In addition, we also limit the value of q in the range ½0;1� for
phase presentation. Correspondingly, similar to the decomposition
of I, we have q ¼ Pn

k¼0akqk for each density vector qk in Ik.
To summarize, the problem of optimal microstructure design

under study is,

min
fakg

: c ¼ uKu

subject to : Ku ¼ b

: q ¼
Xn
k¼0

akqk

: 0 6 q 6 1

9>>>>>>>=
>>>>>>>;
; ð7Þ

We also comment here that the density q is now required to lie
between 0 and 1. In order to produce a binary image, the value of q
should better be close to 0 or close to 1. A further strategy to
achieve this will be explained later in Section 5.1.
3.2. Approach overview

The proposed approach follows the Olson’s design framework
that links microstructure, property and performance. In this case,
the property is taken as the associated stiffness matrix K to the
microstructure, as involved in FEM computation process, and the
performance is set as the compliance of the microstructure.

The proposed approach is shown in Fig. 2. In Step 1, the
microstructure is represented by its PCA-based descriptors. Then,
in Steps 2 and 3, we build a polynomial structure-property-
performance relation to approximately link the descriptor with
its ultimate physical performance, that is the compliance. Based
Input

Output

Material
Database Descriptor Stiffness

Matrix

ComplianceOptimal
Structure

1

5

2

3
4

PCA Assemble

CA

Recon-
struction

Optimi-
zation

Fig. 2. The design flowchart: (1) using the input material database to build the PCA
bases for the descriptor; (2) building the structure-property (descriptor-stiffness
matrix) relation; (3) building the property-performance (stiffness matrix-compli-
ance) relation; (4) optimization to find best descriptor; (5) structure reconstruction
and output.
on this polynomial relation, an optimization process is performed
to find the optimal microstructure descriptors. Finally, we recon-
struct the optimal microstructure from the derived optimal
descriptors and output it.

Algorithmic details are explained in the following sections.

4. Relation between pca-based descriptor and material
performance

Based on the description in Section 3.2, in this section we build
the relation between the descriptor, the stiffness matrix and the
microstructure’s compliance.

4.1. Relation of density and element stiffness matrix

Ashby et al. [36] presented the physical verification of the usage
of the penalty weight qp. They tested cells of different densities and
plot the stress-strain curves. After numerous tests over different
materials and cell microstructures, they concluded that the overall
Young’s modulus E and Poisson’s ratio m of these cells are as
follows,

EðqÞ � aq2E0; for open cell;
ðaq2 þ bqÞE0; for closed cell;

(
ð8Þ

m � 0:3; ð9Þ
where a;b are determined by the interior structure geometry of the
cell, E0 is the constant Young’s modulus of the cell when q ¼ 1.

In the case of an isotropic cell with a fixed Poisson’s ratio m, the
relation of the Young’s modulus E and stiffness matrix C is linear,
which consequently gives

CðqÞ � aq2C0; for open cell;
ðaq2 þ bqÞC0; for closed cell;

(
ð10Þ

where C0 is the constant element stiffness matrix for q ¼ 1.
The Ashby model builds an approximation to the element stiff-

ness matrix C with respect to q. This approximation on metal
foams has been found reasonable and accurate when tested on
MetFoam ’97 database [36].

4.2. Relation of density distribution and stiffness matrix after
assembling

Based on the above analysis, the following lemma states that the
final stiffness matrix can always be written as the sum of a constant
matrix and a difference matrix in terms of the design density q.

Lemma 1. Suppose a microstructure image I is given in a form
following Eq. (1), for any element stiffness matrix CðqÞ we have

CðqÞ ¼ ðaq2 þ bqÞC0: ð11Þ
Let K;Kk respectively be the stiffness matrix for I0; Ik. Then, the assem-
bled stiffness matrix K have a quadratic decomposition,

K ¼ K0 þ b
Xn
k¼1

akKk þ a
Xn
s¼0

Xn
t¼0

asatKs;t ð12Þ

where k; s; t are the different indexes for the same descriptor, which sat-
isfy ak ¼ as ¼ at if and only if k ¼ s ¼ t.
Proof. Following Galerkin finite method, the sub-matrix Kð1Þ to
the cell with q ¼ 1 is

Kð1Þ ¼
Z
I
r/T

i C0r/jdV ; ð13Þ
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where /i;/j are the test functions. Thus we have the sub-matrix
KðqÞ to the corresponding cell with density q,

KðqÞ ¼
Z
I
r/T

i CðqÞr/jdV

¼
Z
I
r/T

i ðb
Xn
k¼0

akqk þ a
Xn

s¼0

Xn
t¼0

asatqsqtÞC0r/jdV ;

¼ b
Xn

k¼0

ak

Z
I
r/T

i qkC0r/jdVþ

a
Xn
s¼0

Xn
t¼0

asat

Z
I
r/T

i qsqtC0r/jdV

¼ K0;q þ b
Xn
k¼1

akKk;q þ a
Xn
s¼0

Xn
t¼0

asatKs;t;q;

ð14Þ

where we denote

K0;q ¼ R
I r/T

i C0r/jdV

Kk;q ¼ R
I r/T

i qkC0r/jdX

Ks;t;q ¼ R
I r/T

i qsqtC0r/jdX

9>>>=
>>>;
: ð15Þ

We assemble K0;Kk;Ks;t using K0;q;Kk;q;Ks;t;q respectively. In this
case, we have the same polynomial decomposition of every sub-
matrix and thus the same decomposition of the matrix. h

Since we have built the quadratic decomposition of stiffness
matrix K with respect to the microstructure descriptor fakgnk¼0,
and the state solution u can be derived by solving the linear equa-
tion system Ku ¼ b, then the idea of deriving the analytical expres-
sion of u to fakgnk¼0 comes up via the further usage of CA approach.
Details are explained below.

4.3. Approximation of state solution

From the results in Lemma 1, suppose we have

K0u0 ¼ b; Ku ¼ ðK0 þ MKÞu ¼ b; ð16Þ
where

MK ¼ b
Xn
k¼1

akKk þ a
Xn
s¼0

Xn
t¼0

asatKs;t ð17Þ

is determined by the PCA-based descriptor.
The aim here is to approximate state solution u using the

descriptor fakg and other fixed quantities (a; b;u0;K0;Kk;Ks;t ;b).
The CA (combined approximation) approach, one of the structure
reanalysis method [33], is introduced to resolve this issue. CA
can produce solution approximation for low-rank or moderately
high-rank structure changes by using the modified part of K as
the terms in the binomial series expansion.

Mathematically, the CA approach give the approximation of u
as

Lemma 2. [33] The polynomial approximation of u is

u ¼ u0 �
Xm
i¼1

tiui ¼ u0 � Ut; ð18Þ

where ui can be iteratively calculated for each i as

K0ui ¼ �MKui�1; i ¼ 1; . . . ;m; ð19Þ

and U ¼ ½u1; . . . ;um�. The coefficients t are determined by solving the
reduced system

UTðK0 þ MKÞUt ¼ UTMKu0: ð20Þ
We can also set i ¼ 1, in which case the equality is not strictly
satisfied, however, the computational costs are reduced.

Note here that when calculating ui numerically via Eq. (19), K0

is fixed and can be reused. Thus the trick which can accelerate the
numerical computation of ui is to avoid solving the linear equation
system in each step. Instead, we perform Cholesky decomposition
on K0 as pre-processing to obtain the decomposition

K0 ¼ PQ ; ð21Þ
where P is lower triangular matrix and Q is upper triangular matrix.
In this case, solving Eq. (19) is converted to doing Gaussian elimina-
tion twice, which costs very little computationally.

Another numerical acceleration trick here is to avoid symbolic
computation at this stage. Note here MK has a linear decomposition
of fakgnk¼1 with the ‘coefficients’ fKkgnk¼1, but we can circumvent
computations involving the symbols fakgnk¼1. Taking the computa-
tion of u1 as an example,

u1 ¼ b
Xn

k¼1

akK
�1
0 Kku0 þ a

Xn
s¼0

Xn
t¼0

asatK
�1
0 Kstu0

¼ b
Xn

k¼1

akyk þ a
Xn
s¼0

Xn
t¼0

asatzst ; ð22Þ

here yk is calculated from solving K0yk ¼ Kku0, and zst is calculated
from solving K0zst ¼ Kstu0. In this sense, no symbols are involved in
this computation. Also, the fuigmi¼1 here are polynomial expressions
of fakgnk¼1.

4.4. Approximation of compliance

In linear elasticity, the state solution u is the key to calculating
other physical quantities. Once we have the approximation of u,
we focus on the mechanical compliance c, the important physical
quantity which measures the material’s resistance to deformation
caused by external forces, and is defined in an energy form
c ¼ uTKu.

We firstly substitute Ku ¼ b to Eq. (16) and obtain

uTKu ¼ uTb; ð23Þ
and further substitute the results of Lemma 2,

c ¼ uTb ¼ uT
0b� tTUTb ¼ c0 �

Xn

k¼1

tTck; ð24Þ

taking into account Eq. (18), and denote uT
kb as ck.

The following theorem summarize the above results:

Theorem 1. The compliance c ¼ uTKu can be expressed in the
following polynomial equation:
c ¼ uTb ¼ ðuT
0b� tTUTbÞ ¼ c0 �

Xn
k¼1

tTck: ð25Þ

Here we notice that uk are polynomial expressions of fakgnk¼1,
thus c is also polynomial and denoted as cðfakgÞ.
5. Optimize the microstructure

The aim of our approach is to find the optimal microstructure
with the minimal compliance. With the relation of compliance
and descriptor derived above, all we need is to add some necessary
constraints and modifications to obtain the mathematical form of
the optimization problem.
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5.1. Mathematical form of the optimization problem

The constraints we add on fakgnk¼1 are 0 6 ak 6 1; k ¼ 1;2; . . . ;n.
Considering the decomposition of I in Eq. (1), after performing PCA
the bases fIkgnk¼0 are fixed. If the upper and lower bounds of fakgnk¼1

were not limited, it is conceivable that abnormally large/small
points in the microstructure image I would occur. Further noticing
that the first item I0 is sufficiently larger than other bases fIkgnk¼1,
the constraint 0 6 ak 6 1; k ¼ 1;2; . . . ;n will ensure a suitable
microstructure image I.

Additionally, the microstructure studied here is bi-phase (solid/
void), so the resulted microstructure image should be binarized.

We thus modify the optimization target as c þ s
R
Iðq2ð1� qÞ2ÞdV ,

where
R
Iðq2ð1� qÞ2ÞdV is the added penalty function and s is its

tuning weight. The minimum of the penalty function is 0 when
q ¼ 0 or 1. When it is approaching 0;q is thus approaching 0 or 1.

The weight s of the added penalty function is a trade-off
between computational cost and penalty effect. Similar to the
problem studied in [37], we set s ¼ 10 here accordingly to achieve
a cost increase of less than 5% while s increases 10 times. Also,
s ¼ 10 here is only empirical and needs only small manual modifi-
cations in some cases.

To sum up, the final optimal problem is defined as

min
fakg

: cðfakgÞ þ s
R
Iðq2ð1� qÞ2ÞdV ;

subject to : 0 6 ak 6 1;

: q ¼
Xn
k¼0

akqk;

9>>>>>=
>>>>>;
; ð26Þ

The above optimization can be easily solved using any opti-

mization tool, such as ‘fmincon’ in Matlab
�

. In practise and in order
to further improve the computational efficiency, we perform Cho-
lesky decomposition for K0 and re-use it, instead of directly solving
the linear system involved in each iterative step in Section 4.3.
Fig. 4. The one-to-one mapping between the microstructure and PCA-based
descriptor: one microstructure and its associated descriptor ða1; . . . ; a100Þ.
6. Performance test

In this section, we aim to test the approach’s performance from
various aspects. Following the approach proposed above, the
preparations for the tests are: we generate a database containing
1000 microstructure images. Each microstructure image is of reso-
lution 100� 100, and has 5–7 random black holes in it. For simpli-
fication, the PCA bases are selected as the first 100 bases with the
largest eigenvalues according to the parallel analysis [35] in Sec-
tion 2.2.2. Consequently, we have a PCA-based descriptor repre-
sented in a 100-dimension vector. The physical problem under
study is shown in Fig. 3(a), where the left side of the cell is fixed
and the load is applied on the bottom right corner. The simulation
results from FEA (finite element analysis) performed on a quadri-
Fig. 3. One random image (a) in the database with the added physical conditions
and its mesh (b).
lateral mesh in Fig. 3(b) are taken as the ground truth for accuracy
evaluation.

6.1. Approximation accuracy of compliance

Two main types of approximation errors are involved in our
design approach. The first comes from the geometric loss when
applying PCA decomposition explained in Section 2.2.1, and the
second comes from the physical loss when simulating using CA
explained in Section 4.3. These accuracy losses add up to the final
error of the target compliance. The simulation accuracy determines
the performance of the proposed approach and was thus tested
here by comparing it with the benchmark results obtained from
FEA.

6.1.1. Accuracy under randomly sampling
We first tested the simulation accuracy of our approach for ran-

domly generated sample microstructures. These samples were
easily generated here via a random sampling of the PCA-based
descriptor space considering their one-to-one mapping to the
microstructure, as illustrated in Fig. 4.

A set of 100 sample microstructures was used. For each sample,
we calculate the compliance respectively using the expression
given in Eq. (24) (denoted as cexpr:) and FEA (denoted as cFEA).
Results of the microstructure samples of the maximum, minimum
and average compliances are shown in Fig. 5. Also the values of
cexpr: and cFEA are shown underneath, together with their relative
error calculated via

Ec ¼ jcexpr: � cFEAj
cFEA

: ð27Þ

All the 100 tested errors are within a acceptable range 1.2–5.2%.
Fig. 5. The three selected microstructure images with compliances as listed: (a)
with the maximum compliance; (b) with the minimum compliance; (c) with the
average compliance.



Fig. 6. The same microstructure degrades from higher to lower resolutions (the
outer frame not included): (a) 100� 100, (b) 50� 50, (c) 30� 30, (d) 10� 10.

Fig. 7. The compliances comparison with FEA and our approach under different
resolutions.

Fig. 8. A fitting example: fitting the five different shapes into a round shape with
the fitting errors underneath respectively.
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6.1.2. Accuracy under different resolutions
We also test the accuracy of our approach under different reso-

lutions considering that the resolution is limited by the micro-
scopes used in reality. In addition, different resolutions may also
show the same phase distribution in different ways. For example
in Fig. 6, the round shape in resolution 100� 100 can degrade to
a square in a low resolution of 10� 10.

In this test, we randomly generated a microstructure of resolu-
tion 500� 500 and degraded it to lower resolutions: 400�
400;300� 300;200� 200;100� 100;50� 50;30� 30, meanwhile
preserving the relative size and position of the holes. The compli-
ances computed via Eq. (24) and FEA are compared in Fig. 7. We
see that the two compliance curves are becoming closer from left
to right all within a small range of differences, indicating that the
accuracy is acceptable in all resolutions, and noticeably better in
higher resolutions.
6.2. Database shape influences on the optimal results

Next, We assessed the influence of the databases containing
microstructures of different phase shapes on the final optimal
microstructure, as it is important that after the optimization the
derived microstructure maintains expected geometric characters
of the database.

In order to quantify the preservation of the geometric features
of the databases in the optimal structure, we define a ”fitting error”
to measure Efit . It is defined as the relative ratio of the number of
difference pixels with respect to the expected shape to the pixel
number within the smallest square bounding box, or
mathematically,

Efit ¼ ðDPin þ DPoutÞ=Ptotal; ð28Þ

where DPin is the number of void element within the expected
shape and DPout is the number of solid element out of the expected
shape, and Ptotal is the total number of pixels in the square bounding
box.

Taking the circular shape in Fig. 8 as an example, the fitting
error for each shape in the figure relative to the circular shape is
calculated, and the corresponding fitting error is shown below each
figure.
Five different types of databases were used for this test, each
formed by microstructures containing randomly generated circu-
lar, square, upwards and downwards pointing triangle or cross-
shaped holes respectively. We list six randomly selected samples
of each type of database and our corresponding optimal
microstructure in Fig. 9. The associated fitting error of each
obtained optimal microstructure with respect to the five hole
shapes is also given in Table 1. The fitting error in the gray box is
that of the optimal microstructure with respective to its associated
database. We can see from the table that the optimal microstruc-
ture always gives the smallest error, with a maximum of 4:4%.
Otherwise the fitting errors are more than 17:1% when fitted with
other shapes. The expected shapes in our optimal results are well
preserved.

6.3. PCA performance

6.3.1. Optimal PCA base number
A key issue in our approach is to select the proper number of

PCA bases to balance the accuracy and the computational cost,
which is solved by the parallel analysis described in Section 2.2.1.
To test its performance in our approach, we compared the different
approximations to a given microstructure under different numbers
of PCA bases. The approximate microstructure was obtained using
Eq. (1).

In this case, the parallel analysis selected the first 100 bases of
largest eigenvalues, as plotted in Fig. 10. We also manually selected
other number of bases: 40;60;80;120. The corresponding
microstructures are shown in Fig. 11. As can be observed from
the results, when the PCA base number increases, the protrusion
noises decrease. In particular, when the number of PCA bases
reaches 100, only shapes very approximate to disks are left. The
improved results can be explained by the fact that more details
of the microstructures are captured as the increase of the number
of PCA bases, thus resulting in an optimal microstructure resem-
bling the shape character of the database. However, when the
number is raised to 120, the reconstructed microstructure is still
close to the one obtained via 100 bases, with only minor improve-
ments, and is thus not necessary. These results are consistent with
the expectation that the parallel analysis will select an appropriate
number of PCA bases.

6.3.2. PCA descriptor extraction speed
In this section, we compare the speed of extracting the PCA-

based descriptor with those of extracting the first- and second-
order descriptors.

Extracting PCA-based descriptor includes two main steps:

1. Preprocessing: performing PCA on the given microstructure
database or solving an eigenvalue problem;

2. Extracting: decomposing the microstructure image into a linear
combination of its microstructure of the PCA bases as defined in
Eq. (1), which gives the descriptor fakgnk¼0.

On the other hand, extracting the volume fraction (vf) and 2-
point correlation (P2ð1Þ; P2ð2Þ; . . .) function is performed using
Eqs. (2) and (4), called previous descriptors for short. A descriptor



Fig. 10. The descending curve of sorted eigenvalues when using the parallel
analysis to select PCA bases. Parallel analysis selects the PCA bases of which the
eigenvalues are greater than the 95% of the random generated ones, and in this case
100 bases.

Fig. 11. The target microstructure image and five approximating images under
different numbers of PCA bases.

Fig. 9. We present the five different databases respectively with six random samples to show the different geometric characters (disk, square, triangle pointing up/down and
cross) of the images in these databases. Also, we present the optimal result images using the corresponding database to show the shape influence on the results.

Table 1
Average error of fitting holes in the optimal result microstructure to a regular shape. Rows show the
optimized results using for each database and each column corresponds to one fitting shape.

46 C. Xu et al. / Computational Materials Science 130 (2017) 39–49



Table 2
Time cost comparison on extracting PCA-based and previous descriptors. ‘Prepro.’ denotes the preprocessing step of PCA and ‘Pre.’ denotes the previous descriptors.

Fig. 12. Reconstruction results and time comparisons using our approach and Monte Carlo approach running three times (MC 1, 2, 3) on three different test examples (Test 1,
2, 3).
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vector of 100-dimension is used here for both approaches for a ran-
domly selected image. Specifically, the PCA-based descriptor uses
its 100 highest eigenvalues, and the previous descriptor uses
vf ; P2ð1Þ; P2ð2Þ; . . . ; P2ð99Þ as defined in Eqs. (2) and (4).

The time costs for extracting the descriptors for 1, 10 and 100
microstructure(s), respectively, are summarized in Table 2. In case
of a single microstructure, the time of extracting previous descrip-
tors is 21:9 times larger than that of our approach. In case of 10 and
100 images, the speed-up is respectively 164:2 times and 469:1
times, thus demonstrating the efficiency of the proposed
descriptor.

6.4. Microstructure reconstruction speed and accuracy

The descriptor can also be mapped to its associated microstruc-
ture via a reconstruction process for later use. Numerous recon-
struction approaches [13–19] have been proposed from the
first- and second- descriptors, and the proposed descriptor can also
give a reconstructed microstructure via Eq. (1). Two different
reconstruction approaches were also compared in this section, a
recent approach using Monte Carlo approach [38,39] for compar-
ison of aspects of computational time and reconstruction accuracy,
as well as our approach.

6.4.1. Experimental settings
Using PCA descriptors for reconstruction consists of the two fol-

lowing steps:

1. Extract the PCA descriptors from the target microstructure
image;

2. Construct the microstructure from the descriptor via Eq. (1).

Using previous descriptors for reconstruction consists of the
two following steps:
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1. Extract the first- and second- order descriptors from the target
microstructure image, such as volume fraction (vf), cluster
number (N) [7] and sampled 2-point correlation function
(P2ð1Þ; P2ð2Þ; P2ð3Þ; . . .) [7];

2. The structure starts from a random one, evolves using the prob-
ability given by the current and target descriptors’ distance and
stops when the distance is lower than a preset constant.

For the two approaches, we randomly select three reconstruc-
tion target microstructure from the database, and let the numbers
of descriptors be 100 in both cases. As the reconstruction results
using the first- and second- order descriptors are different every
time we run the process, we thus ran the reconstruction three
times (denoted respectively MC 1,2 or 3), all shown in Fig. 12.

6.4.2. Reconstruction time and accuracy comparisons
The reconstruction accuracy here is defined using the Cheby-

shev distance L2res;tar ,

L2res;tar ¼ jðxres � xtarÞTðxres � xtarÞj
1
2:

where xres;xtar are the density distributions of the reconstructed
microstructure image and the target microstructure image,
respectively.

As can be observed from these results, the reconstructed
microstructure of our result is visually more similar to the target
than the results obtained using the previous approach. Taking a
specific examination of Test 1, and denoting the pixel value distri-
bution respectively as xtar ;xours;xMC1;xMC2;xMC3, we have

L2ours;tar ¼ 3;

L2MC1;tar ¼ 25:1; L2MC2;tar ¼ 33:2; L2MC3;tar ¼ 30:4:

i.e. the error of our approach is much smaller.
Furthermore, the distances between the reconstructed results

of the same approach were

L2MC1;MC2 ¼ 46:8; L2MC2;MC3 ¼ 33:8; L2MC3;MC1 ¼ 42:9;

which is due to the random character of the Monte Carlo approach
and is hard to produce a unique result.

In addition, the reconstruction time using the first- and second-
order descriptors is around 100s which is more time-consuming
compared to 0:01s taken by our approach. This can be explained
from the fact that the proposed PCA-based descriptor only needs
some additions for reconstruction, while the Monte Carlo approach
needs numerous iterations.

7. Conclusions and future work

A material design approach is proposed in this paper based on a
novel PCA-based descriptor. This descriptor is derived from a data-
base of binary images, which can be obtained from SEM/TEM
images after image processing. The novel descriptor has the follow-
ing advantages over previous studies: First, it is computationally
easier to extract than the classical 2-point correlation functions.
Second, a microstructure can be directly reconstructed without
expensive computational cost, and yields unique results, unlike
previous reconstruction approaches. Third, a polynomial
structure-performance relation is deduced. Based on this, the iter-
ative simulation process was avoided, and thus the optimization
can be solved much faster. Numerical experiments were also per-
formed to testify these advantages.

The proposed approach is to be extended in the future in the
following aspects. First, we are going to compare the optimization
results with those obtained with classical topology optimization
approaches. Second, we are going to explore other dimension
reduction based descriptors to explore their usages in microstruc-
ture design. Data mining approaches are also to be introduced to
extract the appropriate microstructure descriptor that are essential
in determining their physical properties.
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