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Porous materials/structures are observed in many natural objects, exhibit exceptional properties, and
have wide industrial applications. The rapid advance in additive manufacturing has also facilitated the
process to fabricate such complex porous structures with fine accuracy control. However, the design of
optimal porous structures with the desired deformation behavior is still very challenging because of
its high computational complexity. In this study, a novel and efficient approach was developed to solve
this problem by designing a semiregular porous structure with a hole within each mesh element of a given
quad/hex-mesh layout of the design domain. The proposed approach ultimately analytically expresses
the displacement of the design model as a function of the design variables, and consequently solves
the optimization problem of porous structure design efficiently. The novelty was mainly achieved by rep-
resenting a compact design space, building approximate analytical structure-property relation, and esti-
mating the displacement variations of material property. The good property was achieved using the
advanced numerical techniques: model reduction, homogenization theory, metamodeling, and the com-
bined approximations. Various numerical examples were also tested to demonstrate the performance of
the approach.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

With the development of additive manufacturing technology,
many research studies have been conducted to explore its poten-
tial utilities to product design and manufacturing. One of the most
exciting problems is to design internal structures that achieve the
desired physical properties. The main challenges are to (i) find an
effective representation of the structure, (ii) accurately predict
the relationship between the physical properties and structure,
and (iii) design highly efficient numerical methods for structure
optimization under specific constraints.

In this study, we show that the novel semiregular porous struc-
ture has great advantages of low-dimensional presentation, accu-
rate property and performance prediction, and efficient
optimization. Porous structures are observed in many natural
materials or objects, such as human bones, woods, plant stems,
and bird beaks. Porous structures are produced by million years
natural evolution, exhibit exceptional properties [1,2] in the case
of wave absorption [3,4], shock resistance [5,6], damping enhance-
ment [7,8], defect tolerance [9–11], and multifunctional usage [12–
16], at a relatively low density. These superior properties are very
important for industrial usage, and have attracted much research
interest.

According to the cell arrangements, two main categories of
engineered porous structures have been studied previously: peri-
odic and stochastic. Both of them have wide industrial applica-
tions. See the first two structures in Fig. 1. The periodically
arranged regular structures were first studied, where completely
identical cell elements (called Representative Volume Element
(RVE)) are assumed to be periodically distributed under periodic
physical boundary conditions. Based on this assumption, various
analytical or numerical homogenization theories have been pro-
posed to predict the associated material properties [17]. The design
of a topological structure for such an RVE of extreme material
properties, such as negative Poisson’s ratio, has also been recently
studied [18].

Among the excellent works in studying periodic structures, Ber-
toldi and co-workers showed the great potential of these structures
both in 2D [19–21] and 3D [22] spaces. When exploring a nonlin-
ear adaptive response [19,20] of structures, they identified proce-
dures to guide the design of 3D soft and active metamaterials,
where buckling provides dramatic changes in the structures
[21,23,24]. Bertoldi’s work opened the way for performance-
oriented cellular structure design and inspired more work on this
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Fig. 1. Porous structures: regular, stochastic or semiregular structures.
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issue afterwards. However, these studies mainly focused on the
experimental studies of such cellular structures, and did not
explore approaches to automatically design and optimize such
structures.

Besides these regular porous structures, randomly arranged
porous structures and their associated physical properties have
also been studied, mainly in the computational material communi-
ties [25]. From the material composition knowledge, the relation
between the physical property and the microstructure distribution
was mainly studied statistically, i.e., predicting the macroproperty
in terms of the statistical parameters of the microstructures [26].
Approaches have also been proposed to find such optimal statisti-
cal parameters for performance optimization [27].

Unlike the two main types of porous structures, the study
focuses on a novel semiregular porous structure, as shown in
Fig. 1(c). This has a similar but not identical cellular shapes
arranged at a certain layout control. The semiregular structure
does not only consider the geometry of cellular elements, but also
their global arrangements. This is very different from the regular
porous structures whose layouts have been fully determined, and
also very different from the stochastic porous structures, which
only consider the statistical information of the cells’ arrangement.
As further explored in this study, the semiregular structure also
allows a possible efficient physical simulation owing to its special
geometric structures. The differences among the three types of
porous structures shown in Table 1 were compared.

Based on the above observations, the problem of designing
semiregular porous structures for the desired deformation behav-
iors of linear elasticity was studied, specifically, certain vertices
of the porous structure deforming to specified locations under
given external forces. The design problem has wide applications
in medical or engineering industrials [28]. Owing to the special
structure representations of semiregularity, the problemwas refor-
mulated as a biscale design problem, by building sequentially the
structure-property relationship, and the property-performance
relationship. Ultimately, the displacement of the design model is
expressed as an analytical function in terms of the design variables
using advanced numerical techniques such as reduced structure
representations, homogenization theory and metamodeling [29–
31], and combined approximation (CA) [32]. Based on this design,
the problem of semiregular porous structure can be efficiently
solved as an optimization problem. Various numerical examples
were also tested to demonstrate the performance and efficiency
of the approach.
Table 1
Difference between regular, stochastic and semiregular structures.

Types Geometry (1) Arrangement (2)

Regular (a) Identical Along X, Y, Z axis
Random (b) Random Random (1), (2)

Semiregular (c) Similar Given (1), (
The remainder of the paper is arranged as follows: The related
work is first given in Section 2. The design problem and overall
approach are described in Section 3. Then, the technical details
are described in detail in Sections 4 and 5. Various numerical
examples are also shown in Section 6 to test the accuracy and effi-
ciency of the approach. The conclusion is given in Section 7.
2. Related studies

Porous structure design has attracted much interest in different
research communities such as computational physics, mechanical
engineering, computational materials and computer graphics. The
research work closely related to the problem includes topology
optimization, descriptor-based material design optimization, and
fabrication-oriented design optimization.
2.1. Descriptor-based material design optimization

The use of computational tools or informatics knowledge to
accelerate the process of novel material discovery is a long-
term goal in material research. The stochastic porous structures
are mainly studied using statistical tools, probably because of
the limitations of material fabrication technology at the begin-
ning. Kalidindi and co-workers [25,33,34] conducted a systematic
study on microstructure-sensitive design for performance opti-
mization. The main idea behind their work was to represent the
distribution of cells or their relative locations in the spectral
space, called first-order, or second-order descriptors, using a small
number of descriptor parameters. Based on this, the structure-
property relationship can be expressed using an explicit function
based on homogenization theory. Chen and co-workers also sys-
tematically studied problem of stochastic multiscale material
design [35–37].

These studies have provided promising results and shown prac-
tical engineering applications, but are still limited in several
aspects. First, the statistical geometry representations lose the geo-
metric detail information, and consequently the predicted physical
property may vary in a large range and even has no practical appli-
cation. Second, even if the statistical descriptors are successfully
derived, reconstructing the microstructure from them is still chal-
lenging - usually not unique and expensive to compute, particu-
larly for higher-order descriptors.
Design DOFs Representation Physical property

Only (1) Compact Homo., exact
without exact control Statistical Homo., large range
2) with exact control Reduced Homo., approximate



Fig. 2. A simple illustration of the design problem input and output.
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2.2. Topology optimization

Topology optimization aims to find the optimal solid-void
material distribution within a design domain for structure perfor-
mance optimization. Various approaches have been proposed to
solve this problem including the homogenization-based approach,
SIMP, level set, ESO; see Ref. [38] for a recent review. Basically, the
approaches iteratively update the design’s geometry after simulat-
ing its physical behavior until convergence, and are computation-
ally very expensive.

These topology optimization approaches were initially studied
at the single macroscale [38]. Later on, approaches to design an
optimal RVE were proposed, without considering the macrostruc-
ture. The concurrent topology optimization approaches were also
proposed to simultaneously optimize the macroscale and micro-
scale topology [39] and are much more expensive to compute.
Zhang et al. proposed an approach to design the porous structure
of variable density for compliance minimization with a regular
hex-mesh configuration and is very related to the work proposed
here [40]. In this work [40], the microstructure and material prop-
erties were first built using the homogenization theory. Then, the
conventional topology optimization approach was used to gener-
ate the cell density distribution, which was then mapped to cell
structural parameters (circle/sphere radius here, for example).
However, the previous work only studied the problem of compli-
ance minimization, whereas the desired behavior is studied here.
Moreover, owing to the introduction of various numerical tech-
niques, the porous structure optimization is efficiently resolved.
2.3. Performance-oriented structure optimization

The design of the optimal topology of a structure, particularly
for additive manufacturing, has also attracted much interest in
geometric computing and computer graphics. Wang et al. opti-
mized skin-frame structures with the interior of model via updat-
ing the radii and numbers of struts of an initial frame [41]. A
honeycomb-like Voronoi structures was introduced by Lu et al.
[42] by adaptively updating the centroidal Voronoi diagram and
its interior holes from an initially constructed Voronoi cells. These
approaches initiated the studies on interior design in the graphics
community, but do not fully address the optimization process, and
the aspect of computational cost. Recently, Panetta et al. [43] and
Schumacher et al. [44] also proposed excellent approaches for
microstructure design for elastic performance control. They basi-
cally constructed a library of microstructures by topology opti-
mization or geometric approaches, and then properly placed
these structures with each prescribed hexahedron cell according
to the design requirements or users’ prescriptions. However,
improper connection between the adjacent cells may appear, and
the computations are also expensive.

Model reduction is a commonly used technique in mechanical
engineering or geometric computing [28,45]. Xu et al. [28] demon-
strated an interactive method to design the Young’s modulus dis-
tribution of a material, and Li [45] proposed an approach for
elastic animation editing with space-time constraints based on
rotation-strain (RS) coordinates. In these approaches, model reduc-
tion was performed in the physical space, and the problem of por-
ous structure construction was not studied.
3. Problem statement and approach overview

A linear elasticity problem was studied here: Design a semireg-
ular porous structure so that the displacements of some of its
points are close to certain values, under prescribed external forces.
See also Fig. 2. In the following, the basics of the problem are first
explained. Then, the problem of semiregular porous structure
design is mathematically defined, followed by the approach
overview.

3.1. Semiregular structure and linear elasticity

3.1.1. Semiregular structure
A regular porous structure is a set of completely identical con-

nected porous cells arranged under a specified order, as illustrated
in Fig. 1(a).

A stochastic porous structure is a set of connected porous cells
arranged randomly without any order, as illustrated in Fig. 1(b).

A semiregular porous structure is a set of connected porous cells
of similar geometries arranged under a specified order, as illus-
trated in Fig. 1(c).

3.1.2. Notations about the design domain

X is the solid domain under study (as in Fig. 4(a));
C0 is the fixed boundary of X;
CN is the boundary of X exerted by external forces s;
CD is the boundary of X when the displacements are set as the
design target uD;
XM is the quadrilateral mesh associated to X (as in Fig. 4(c));
e ¼ fei; 1 6 i 6 ng is the quad mesh set; ei 2 e for the i-th mesh
element; e 2 e for a general mesh element;
r ¼ frmin 6 ri 6 rmax; 1 6 i 6 ng is the radius distribution over
model XM;
XM;r is the semiregular porous structure obtained by digging a
hole within the i-th element ei of radius ri 2 r (as in Fig. 4(e));
XM;q is a density model of prescribed density distributions q (as
in Fig. 4(g));
fqkgNk¼0 are the density bases after the model reduction, for the
number of bases N.

3.1.3. Linear elasticity
Following the principle of linear elasticity studied here, the

deformation of X can then be stated as follows: Find the displace-
ment field u satisfying the following equations including a PDE
(partial differentiable equation).

�divrðuÞ ¼ f; on X;

rðuÞ � n ¼ s; on CN;

u ¼ 0; on C0;

u ¼ uD; on CD;

8>>>><
>>>>:

ð1Þ

where divð�Þ is the divergence of a vector, f is the body force vector
defined on mesh vertices, s is the exerted external force on the
boundary CN of outer normal direction n;uD is the preset displace-
ment field on boundary CD and r is the stress tensor defined follow-
ing the generalized Hooke’s Law:



Fig. 3. Flowchart of biscale design of a semiregular porous structure for the desired
deformation behaviors, where r is the radius distribution, q is the density
distribution, a ¼ fakgnk¼0 is the design coefficients after model reduction, C is the
elasticity tensor, K is the derived stiffness matrix associated to a given structure,
and u the computed displacement solution. The efficiency of the proposed approach
is ultimately achieved by expressing the displacement of the design model as a
function in terms of the design variables. Various techniques used to implement
this strategy are also shown in the figure, including homogenization and
metamodeling to build structure-property relationship, CA approximation to build
property-performance relationship, and a model reduction technique to reduce the
number of design variables.
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r ¼ C�; ð2Þ
Here C is the elasticity tensor of the material, � is defined using u
and the geometric deformation function

� ¼ 1
2
ðruþruTÞ: ð3Þ

For the isotropic cases focused in this paper, C can be decomposed
as follows:

C ¼ kI� Iþ 2lI; ð4Þ
where I is the second-rank identity tensor, trð�Þ is the trace of a
matrix, k and l are the Lame constants.

The Lame constants k and l are related to the Young’s modulus
E (a measure of stretch resistance) and Poisson’s ratio m (a measure
of incompressibility) below:

l ¼ E
2ð1þ mÞ ; k ¼ Ev

ð1þ mÞð1� 2mÞ : ð5Þ

For isotropic structures, only two independent variables are
present in the matrix C, i.e. fk;lg; fE; mg, or the matrix elements
fC1111;C1212g.

3.1.4. FEA to solve the equilibrium equations
The linear elasticity (1) can be computed using the finite ele-

ment method (FEM). First, X is discretized (Fig. 4(a)) into a set of
volume elements, denoted as XM (Fig. 4(c)); the same as the dis-
cretization used for the semiregular structure generation in Sec-
tion 3.1.1. When the domain is discretized, the physical fields,
such as u and f are also discretized to vectors.

Then, the associated stiffness matrix K is assembled as follows:

K ¼
X
e2e

Ke; ð6Þ

where Ke 2 R12�12 is the associated submatrix to an element e
defined as follows:

Ke ¼
Z
X
r/T

kCer/ldX; ð7Þ

where Ce is the associated elasticity tensor related to the mesh ele-
ment e;/k;/l are the FE bases associated to the vertices of e.

After the above two steps, the problem of linear elasticity (1) is
formulated as computing solution u to the following linear equa-
tion system in the matrix form:

Ku ¼ b; u 2 Rd; ð8Þ
where d is the degree of freedoms of u;u and b are the vectors of the
displacement solution and external loads.

3.2. Problem statement

As illustrated in Fig. 4, the problem of semiregular porous struc-
ture design is stated below: Find a proper radius distribution vec-
tor r, i.e., to dig a hole of radius re within each mesh element e of
XM, so that the generated porous structure XM;r has the specified
displacement uD along the boundary CD when an external force s
is applied on CN .

In this problem, the mesh model XM is considered as a media
model to generate the porous structure XM;r. The deformation
behavior of XM;r is similarly determined using (1), by replacing X
with XM;r.

Consequently, the problem of semiregular porous structure
design is casted into an optimization problem: To find a radius dis-
tribution vector r such that the deformation of XM;r is close to the
target deformation, i.e.,

min
r

dðr;uD;uÞ; ð9Þ
where u is the computed displacement to the linear elasticity prob-
lem in (1) for the porous structure XM;r, and dðr;uD;uÞmeasures the
difference between the computed displacement u and specified dis-
placement uD:

dðr;uD;uÞ ¼ ju� uDjCD
ð10Þ

j � j is the L2 norm of a vector.
Notably, only the voxelized model was studied here, i.e., models

made of regular hexahedrons. The voxelized model can well
approximate any free-form shape and be easily generated
[43,44]. Thus the limitation does not restrict the problem studied.
Such an approximation requires a mesh refinement, and adds more
design freedoms, but the applied model reduction technique will
reduce this design space.

Moreover, the porous model is created by digging a hole within
each single hexahedral element. The holes are assumed to be sym-
metric with respect to X-Y, Y-Z, Z-X planes, centering at the center
of each hexahedral element. In this manner, one parameter can be
used to describe the variation in the shape, and the homogeniza-
tion theory can also be applied directly. Free-form shapes made
of general cell elements will be studied in the future.

3.3. Approach overview

The design optimization problem (9) is computationally expen-
sive to directly solve considering the nonlinearity, a large number
of design variables, and the fact that each optimization iterative
step involves an expensive FE computation; see also Fig. 4. It will
further add computational efforts because the volume mesh simi-
lar to that shown in Fig. 4(d) is regenerated during each iteration
step because different design variables r will produce different
computational domains.

An efficient optimization approach is proposed in this paper to
overcome these challenges. See also Fig. 3. It essentially expresses
the displacement of the design model as an analytical function in
terms of the design variables. Novelty and good performance are
mainly achieved via two main strategies:

1. Build the structure-property relationship, which relates a hole’s
radius to the quad-element’s elasticity tensor.

2. Build the property-performance relationship, which relates the
radius distributions to the deformation behavior of the target
design.
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This is achieved by the following three main techniques: the
dimension reduction method, homogenization theory and com-
bined approximation technique. The first two strategies build the
structure-property relationship, and the last strategy builds the
property-performance relationship. The derived analytical rela-
tionship avoids the complex FE analysis and mesh regeneration
during each iteration step. Consequently, the original problem of
finding the optimal radius distribution becomes a simple optimiza-
tion problemwithout PDE constraints, and is very efficient to solve.

The strategy is implemented using an overall framework illus-
trated in Fig. 3 and includes seven main steps (Steps 1–7 in the
figure),

� Step 1: build the radius-density relationship.
� Step 2: build the density bases via model reduction, and convert
design of the model’s density distribution into an optimization
problem in a much lower design space of finding the optimal
coefficients to the density bases.

� Step 3: compute the elasticity tensors for a set of sample densi-
ties via a homogenization theory, and then build their analytical
approximation via a metamodeling technique.

� Step 4: assemble the stiffness matrix using the above derived
elasticity tensors for each mesh element, which gives the stiff-
ness matrix in an analytical form with respect to the density
coefficients.

� Step 5: the CA technique is further introduced to approximate
the displacement solution difference due to the elasticity tensor
difference, and thus an analytical function in terms of the
design variables is derived.

� Steps 6 and 7: a generic optimization approach is applied to
compute the optimal density coefficients, and correspondingly
the radius distributions, affording the optimal semiregular por-
ous structures.

Considering the example model shown in Fig. 2, various geo-
metric models and simulation results are plotted in Fig. 4. The solid
Fig. 4. Geometric models and simulation results.
model X, its associated quad mesh XM, one of the porous structure
XM;r built from XM, and the associated density model XX;q are
shown in Figs. 4(a), (c), (e), and (g), respectively. The associated
simulation results are shown in Figs. 4(b), (f), and (h), respectively,
and the mesh model for XM;r is shown in Fig. 4(d). Direct compu-
tation of the simulation result for model XM;r in (e) built on its
mesh model (d) is computationally expensive, whereas simulation
of the property based on model XX;q will be much inexpansive. The
proposed approach is based on such observations.

The technical details are explained below.
4. Structure-property relationship

In this section, the structure-property relationship that relates a
porous element’s design parameters to its elasticity tensor was
first built by considering the fact that the number of design param-
eters is as large as the number of mesh elements. A model reduc-
tion approach was applied here, confining the design space to a
linear space that significantly reduced the design parameters. To
achieve this, the circular radius of an element was first converted
to the corresponding density. Then, the homogenization simula-
tion was applied to compute the relationship between each sam-
pled design density with its associated elasticity tensor. Based on
this, a metamodeling approach was used to build an approximate
analytical structure-property relationship. The details are now
explained.
4.1. Dimension reduction of microstructure design space

Before we start, one parameter was assigned to each cell, i.e.,
density q. As the cell had the size 1� 1 in the 2D space and
1� 1� 1 in the 3D space, with the round hole centered at the ele-
ment’s center, the round hole radius r < 0:5 should describe the
degree of freedom of the cell well. For reducing the power of the
analytical expression of u derived later, density q was introduced
along with one-to-one mapping to r,

q ¼ 1� pr2; in 2D space;
1� 4

3pr
3; in 3D spcae;

(
ð11Þ

and in this sense, the density distribution describes all the degrees
of freedom and is selected as the design parameters. However, the
density distribution is also with high dimensions for complex
structures.

The model reduction technique, as widely used in image pro-
cessing, maps the image pixel space to the new space formed by
a set of selected principle bases, thus significantly reducing the
variable number, from the number of pixels to a few base coeffi-
cients. Inspired by this powerful capability, the design area was
considered as an image pixel space by giving a ‘‘pixel” value (i.e.,
density) to each cell, and then the model reduction method was
used similarly. As the image libraries are not available, the bases
were derived by computing the eigenvectors to the following
Laplacian eigenvalue problem:

r2qj ¼ �kjqj; ð12Þ

where r2 is the Laplacian operator, kj is the j-th eigenvalue, and qj,
a vector of dimension n, is the associated eigenvector.

We then define the material base density set as follows:

fq1; . . . ;qi; . . . ;qNg; ð13Þ

where qi is the eigenvector of the i-th largest eigenvalues, and N is
the number of selected bases with N � n.
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Consequently, we define the target density distribution q over
the design area as the linear combinations of these eigenvectors,
that is,

q ¼ q0 þ
XN
k¼1

akqk; ð14Þ

where q0 is a preset unified density distribution, and ak are the coef-
ficients to be determined.

Note that some elements in qi may be negative. However, the
elements of q would not be negative in practice as the elements
of q0 are sufficiently positive and large to prevent negative values,
with further constraints on coefficients �1 6 ak 6 1; k ¼ 1;2; ::;N.

4.2. Structure-property relationship via homogenization

Given a density model XM;q, here, we hope to determine the
associated elasticity tensor C of each element in terms of its den-
sity, or building the structure-property relationship. This relation-
ship was achieved here with the classical homogenization
approach [46], which computes the elasticity tensor for each sam-
pled radius, and the metamodeling technique, which ultimately
builds an approximate analytical structure-property relationship
based on the computed results for the sampled cell.

4.2.1. Homogenized elasticity tensor
The homogenization theory essentially aims to calculate an

average material property for each cell element. In this study, the
area of the cell was assumed to be relatively small enough so that
it can be seen as a homogenized point in the macroscopic scale,
filled with evenly distributed virtual material. In this sense, each
virtual material’s elasticity property was characterized by a
homogenized elasticity tensor, describing the elastic behavior of
each cell in the area X of the macroscale; see also the stiffness
matrix assembly process involved in (6) and (7).

We now explain details of computing the elasticity tensor using
the homogenization theory. Consider a porous structure XM;r; see
also Fig. 5. Let e be the X-th cell with respect to XM, or the cell’s
coordinate in the macroscale, and � the size of the cell. Let y be
the coordinate of a point inside e in the microscale, and x the coor-
dinate of the point in the microscale. Correspondingly, we have the
association between the micro- and macro-coordinates

x ¼ Xþ y; 0 6 y 6 �: ð15Þ
For the specific linear elasticity problem studied here, the

homogenization theory aims to approximate the elasticity tensor
CHðeÞ for cell e via equalizing their potential energy at the macro-
and micro- scales. This classical theory is well studied as shown
in the following result:

Lemma 1. [46]Let Cijpqðe; yÞ be the elasticity tensor at every micro-
point y for a cell e located at X;Cijpqðe; yÞ takes zero for void material.
For each specific pair of 1 6 i; j; k; l 6 2, the homogenized elasticity

tensor CH
ijklðeÞ can be approximated as
Fig. 5. The macro- and micro- scale in the homogenization theory.
CH
ijklðeÞ ¼

1
jej
Z
e

CijklðX; yÞ � CijpqðX; yÞ
@lkl

p

@yq

 !
dy; ð16Þ

where the virtual displacements lkl
p is obtained via solving the follow-

ing problem,

Z
e

Cijkl � Cijpq

@lkl
p

@yq

 !
@v1i

@yj
dy ¼ 0; ð17Þ

where v1i denotes one arbitrary micro- displacements, and the product
here means the Einstein Notation, as the summation of the products
under all the possible indexes.

Note that the above lemma applies to every pair of ði; j; k; lÞ, but
we only need to compute two specific elements in CH for isotropic
geometries, because CHðXÞ only has two independent variables.
4.2.2. Metamodeling
Metamodeling is a widely-used method to model complex rela-

tions. For example, Ghasemi et al. [29–31] used metamodeling to
capture uncertainties in multiscale modeling for complex struc-
tures like fiber-reinforced structures. In this study, based on the
homogenization theory in Lemma 1, for a set of sample cells of dif-
ferent density q, the elasticity tensors were separately computed
and denoted with q as CðqÞ. Then following the Gibson-Ashby
model [47], a second-order polynomial function was used to build
their approximation,

CðqÞ ¼ C0 þ C1qþ C2q2; ð18Þ

where C0;C1;C2 are constant elasticity tensors with respect to C.
The numerical approach to build the structure-property rela-

tionship using the metamodeling technique is explained below.
Inputs: A unit cell X of elasticity tensor C in the microscale

determined by its material;
Outputs: The analytical density-elasticity relationship in a form

as shown in (18) for cell X.

1. Sample uniformly a set of different pore radii r of a unit cell.
2. For each r, calculate its corresponding elasticity tensor

C1111;C1212 based on Lemma 1 as follows:
� Compute the virtual displacement lkl

p by solving (17) as a
local linear elasticity problem defined in cell X using FEA.

� Compute the effective elasticity tensor CH
ijkl by substituting

solution lkl
p into (16).

3. For each r, map r to its corresponding q via (11). Build the
approximation relation C1111ðqÞ;C1212ðqÞ in the form as (18)
using the results from Step 2. Other elements in CðqÞ can also
be derived.

5. Property-performance relationship

Once the elasticity tensor C for each design cell X is derived ana-
lytically in terms of the density coefficients, an analytical relation-
ship between the microstructure and the target displacement was
further derived in this section.

The analytical relationship is mainly achieved based on the fol-
lowing observations. Different design parameters (i.e. density base
coefficients), produce different cell density distributions and thus
their associated elasticity tensors. From the FE assembly process
introduced in Section 3.1.4, different stiffness matrices are ulti-
mately produced. The associated displacement solutions to the dif-
ferent stiffness matrices, can then be approximated by the newly
introduced combined approximation (CA) technique. The details
are as follows:



290 C. Xu et al. / Computers and Structures 182 (2017) 284–295
5.1. Stiffness matrix expansion

From the model reduction process built in Section 4.1, various
density distributions can be designed by changing the density base
coefficients in the linear combination (14). In further combination
with the FE method, a similar linear relationship also exists
between the density base coefficients and their associated stiffness
matrices as explained below.

Lemma 2. Let q be a density distribution in a form as (14), and K the
stiffness matrices for q. We have

K ¼ K0 þ MK; ð19Þ
where

MK ¼
XN
k¼0

akKk þ
XN
m¼0

XN
n¼0

amanKmn; ð20Þ

and K0;Kk;Kmn are assembled cell by cell using K0;e ,Kk;e;Kmn;e, which
are associated to q0;qk;qmqn as follows:

K0;e ¼
Z
Xe

r/T
i C

0
0r/jdX; Kk;e ¼

Z
Xe

r/T
i C

0
1qkr/jdX;

Kmn;e ¼
Z
Xe

r/T
i C

0
2qmqnr/jdX: ð21Þ
Proof. Given in Appendix A. h
5.2. State solution relation

Once the relationship between the density base coefficients and
stiffness matrices is built, their corresponding state solutions can
then be related as well. Specifically, the solution u can be
expressed in an analytical form with respect to the coefficients

a ¼ fakgNk¼0. This advantage is obtained by introducing the
approach of the combined approximation (CA), first introduced in
structure reanalysis [32]. The CA approach combines the Taylor
series expansion with the reduced base approach, taking base vec-
tors as the terms in the binomial series. For low-rank and moder-
ately high-rank modifications to structures, the CA approach can
produce the solution approximation, both accurate and computa-
tionally efficient.

Combining results from Lemma 2 and (8), we have

K0u0 ¼ f; Ku ¼ ðK0 þ MKÞu ¼ f; ð22Þ
where u0;u are state solutions, and MK is linearly correlated with a.

Following the result of CA directly, the following results were
obtained on approximating u using solution u0.

Lemma 3. [32] Wehave the following approximation solution for (22)

u ¼ u0 �
Xt
i¼1

qiui ¼ u0 � Dq; ð23Þ

where each ui is iteratively defined as follows

K0ui ¼ �MKui�1; i ¼ 1; . . . ; t; ð24Þ
and the coefficients q are determined by solving the following reduced
system

DTðKþ MKÞDq ¼ DTMKu0: ð25Þ
where the matrix D is a collection of ui as shown in (23).

As defined iteratively above, ui is i-th order polynomial expres-
sion of parameter a, and generally for saving computational costs,
q was set as the all-one vector. Therefore, the order of the polyno-
mial approximation uðaÞ will be t.
5.3. Optimization

Based on the above analysis, the design of porous structures sat-
isfying a certain displacement requirement uD is as follows:

Theorem 1. Solution to the minimization problem in (9) can be
obtained by solving the following minimization problem:
min
fakg

ju0 � Dq� uDj; ð26Þ

where

D ¼ ½u1u2 . . .ut �; �1 6 ak 6 1; k ¼ 1;2; . . . ;N;

q ¼ q0 þ
XN
k¼1

akqk; ð27Þ

Notably, the optimization problem defined in (26) is very differ-
ent from the optimization problem defined in (9). The latter has a
polynomial goal with linear constraints, and is very easy to solve,

whereas the former expression is explicit in its variables fakgNk¼1.
Many existing sophisticated algorithms can handle this problem,
such as BFGS [48] (Broyden Fletcher Goldfarb Shanno algorithm,
a Quasi-Newton Method).
6. Performance test

The proposed approach was implemented using COMSOL Mul-
tiphysics� and Matlab on a computer with Intel Core i3-2100
CPU. Various aspects of the proposed approach were tested. In all
the tests, a regular planar rectangular of size 30½mm� � 10½mm�
was taken. The model was made of a material of Young’s modulus
E ¼ 50½MPa� and Poisson’s ratio m ¼ 0:3. For the first three exam-
ples, the model was fixed along its left side, and pulled at its right
bottom point of a load of �1½kN�. The goal was to design a cellular
structure so that the right-bottom point has a desired displace-
ment; the fourth will be explained later. In all the tests, 12
eigen-bases were selected in the model reduction process, as they
demonstrate a good balance between computational accuracy and
efficiency.

6.1. Accuracy test of analytical expression

The derived analytical displacement expression in (23) forms
the base of the proposed approach, and its accuracy determines
that of the final result. Thus, the simulation results based on (23)
were first compared with those derived by the homogenization
approach and those by the direct FE analysis.

The approach works similarly for other cases of holes, and four
different hole cases were tested here: random distributed circular
holes, square holes, hexagon holes, or cross holes, as shown below
and in Table 2 from the left to the right.

In these tests, the maximal inscribed circle, square, or hexahe-
dron was first built, and then each cellular hole was scaled at dif-
ferent factors ranging from 0.3 to 0.9 for testing.

Appendix B shows the concrete analytical expression to (23) for
the case of circular holes for a concrete impression of the analytic
displacement expression.

The test results are summarized and compared in Table 2. The
first row shows the computed micro-structures and their deforma-
tions at the scaling factor 0:5. The second row compares the



Table 2
Test of simulation accuracy of four different porous structures.

C. Xu et al. / Computers and Structures 182 (2017) 284–295 291
computed displacement of the right-bottom point derived by
the three different approaches. They demonstrate close
approximation.

Table 3 also compares the maximal simulation errors between
the FEA and analytical solution, between the FEA and the homog-
enization, and between the homogenization and the analytical
solution, known as A-error, H-error and HA-error, respectively.
The results indicate the final A-error was 	12:0%, and is accept-
able. Notably, the HA-error ranges from 2:9% to 5:6%, and is much
smaller than the H-error, ranging from 8:1% to 17:8%. This tells us
that the approximation A-error is mainly due to the homogeniza-
tion process (H-error), and the CA approximation (HA-error) is
much smaller compared to it. Both of them contribute to the A-
error. More accurate homogenization technique may further
improve the simulation accuracy. The table also shows that the lar-
ger the hole sizes, the larger the error caused by the approxima-
tion. This is probably because the homogenization theory works
better for cells of smaller sizes.

6.2. Grid resolution influence test

The derived porous structure is dependent on the resolution of
the prefixed regular quad-mesh. We test here the impacts of the
grid resolution on the final results of porous structures. In this test,
the design area size, the external loadings are kept the same as
before, and the grid resolutions are varied differently, respectively,
12� 4;18� 6;24� 8 and 30� 10. The four derived optimal porous
structures and their corresponding pore size distributions are
shown in Fig. 6.

As can be observed from the results, different grid resolutions
produce different pore sizes within the design domain. However,
the size distributions are very similar, as can also be observed from
the colormap in Fig. 6. It tells us that the proposed approach is
quite independent of the grid resolutions, based on which numer-
Table 3
Maximal error comparisons of the four different cases in Table 2: (a) A-error: error
between the FEA and analytical simulation; (b) H-error: error between the FEA and
homogenization; (c) HA-error: error between the homogenization and analytical
solution.

Sample Approach

A-error (%) H-error (%) HA-error (%)

Circular 12.8 17.2 �5.1
Square 13.0 9.9 2.9
Hexagon 11.5 17.8 �5.6
Cross 11.4 8.1 3.0
ical coarsening and refining is feasible for different design pur-
poses. We also notice that as higher resolutions are applied,
more detailed holes may appear in the final design, and the design
target is approximated more accurately as seen from Table 4.

6.3. Computational efficiency tests

Computational efficiency is one of the main contribution made
in this study. Its efficiency was further stated by comparing its run-
ning times with that of directly solving (9) by MMA (Moving
Asymptotes Method) [49], a classical optimization approach
widely used in topology optimization.

6.3.1. Design under varying resolutions
The proposed approach was tested on a design domain with dif-

ferent numbers of mesh elements, i.e., 12� 4;18� 6;24� 8;30�
10;80� 20;120� 30 and 200� 50. The comparison results are
summarized in Table 5. As shown from the left part of Table 5,
the overall speed-up ranged from 70:9 to 179:1 times.
Fig. 6. Microstructures and the corresponding distribution colormaps generated
under four different grid resolutions: (a) 12� 4; (c) 18� 6; (e) 24� 8; (g) 30� 10.
The colormaps (jet) show the hole radius distribution, red corresponding to the
larger radius and blue corresponding to the smaller radius.



Table 4
Percentages of maximal displacement error under different resolutions between the targets and results after the design.

Error Res.

12� 4 18� 6 24� 8 30� 10

Error PCT. (%) 14.6 11.2 10.3 9.7

Table 5
Algorithm efficiency comparison with MMA in both single and multiple editing situations.

Model Time

Our solver Iter. MMA Iter. Speed-up No. of editing Our solver (total) MMA (total) Speed-up (total)

12� 4 0.11s 5 8.31s 255 75:5� 10 0.21s 83.1s 395:7�
18� 6 0.18s 4 12.77s 350 70:9� 10 0.28s 127.7s 456:1�
24� 8 0.25s 6 32.29s 853 129:2� 10 0.35s 322.9s 922:6�
30� 10 0.57s 4 102.1s 3122 179:1� 10 0.67s 1021s 1523:9�
80� 20 8.70s 5 888.3s 8595 102:1� 10 8.8s 8883s 1009:4�
120� 30 29.60s 6 4716.9s 15,723 159:4� 10 29.7s 47,169s 1588:2�
200� 50 103.1s 5 16626.5s 33,251 161:3� 10 103.2s 166,265s 1611:1�
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Furthermore, as the resolutions increased, the number of iterations
increased significantly in the MMA approach, but almost remained
the same in our approach, demonstrating the proposed approach’s
nice convergence. This was also observed in the plot of conver-
gence curve in Fig. 7 for the 18� 6 mesh.

We also compare the error relative to the target displacement in
each critical iterative step of our approach andMMA in Table 6. The
two approaches start from the same evenly distributed structure,
Fig. 7. Convergence speed comparison between MMA and the proposed approach
when solving the same problem.
evolves close to the preset target. In this case, our approach has a
significant advantage in the convergence speed and a small advan-
tage in the final error control.
6.3.2. Design under varying targets
The efficiency of the proposed approach was further tested in

designing porous structures under different design targets using
the same models used as above. The target right-bottom point dis-
placements were sampled 10 times in the range 0.1–0.3[mm] in
the Y direction.

The numerical results are summarized in the right part of
Table 5. Compared to the time cost for one design target, the pro-
posed approach costs almost the same time while MMA takes
almost 10 times. Taking the 12� 4 as an example, the computa-
tional cost of our solver increased from 0:11½s� to 0:21½s�, whereas
MMA increased the cost from 8.31[s] to 83.1[s]. Further study
showed that the time cost in computing the analytical expression
(23) is 	0:10½s�, whereas the optimization step costs only
	0:01½s�, which is much smaller.

These results indicate that the proposed approach is very effi-
cient in porous structure design mainly because of its derived ana-
lytical displacement expression shown in (23). Such a nice
expression will be used in each optimization iteration step and also
many times for different design targets. In both the cases, the ana-
lytical expression can only be computed once, involving one step of
expensive FE computations, and other steps of optimization are
almost computationally negligible.
6.4. Multitarget design

The ability of the proposed approach in meeting multiple dis-
placement targets was tested. The example shown in Fig. 8(a) con-
sisted of 18� 6. Both the left and right sides of the model are fixed,
and a load of �10 kN=m2 was exerted on its top. We aimed to
design a porous structure that deforms to fit a preset cubic Bézier
curve with control points CP1;CP2; CP3, and CP4. Three tests were
performed: We fixed CP1 ¼ ð0;0Þ;CP4 ¼ ð30;0Þ;CP2 ¼ ðcy;20Þ, and
CP3 ¼ ðcy;30Þ for different cy ¼ �0:08;�0:16;�0:24. In these tests,
a set of 18 sampling points were selected at the bottom of the test
beam, so that they will approximate the target Bézier curve respec-
tively. For each test case, the computed porous structures using the
proposed approach and its deformation are plotted in Fig. 8(b)–(d).
The deformation was also compared to their corresponding Bézier
curve, and they all showed close shape approximation.



Table 6
Error relative to the target displacement in each critical iterative step of our approach and MMA.

Ours Step

1 2 3 4 5

Error (%) 40.2 35.2 16.8 14.0 11.3

MMA Step

1 100 200 300 350

Error (%) 40.2 22.5 16.4 13.8 12.1

Fig. 8. Example of multitarget design: The cellular model was designed to fit three different types of Bézier curves under the same boundary condition.

Fig. 10. Inner structure of the voxelized automobile hubcap after our design
approach. The final designed hubcap is the subtraction of the original hubcap and
this inner structure.
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6.5. 3D example

The performance of the proposed approach was also tested for
the 3D complex automobile hubcap models shown in Fig. 9. In
the test, the hubcap was made up of material ‘‘A356” of
E ¼ 6:9� 104½MPa�; m ¼ 0:33, and q ¼ 2690½Kg=m3�. The hubcap
takes a volume of 0:8½m� � 0:15½m� � 0:8½m�.The outer wheel rim
has a radius of 0:4½m� and a width of 0:05½m� with no groove. The
five ribs of the wheel have a width of 0:03½m�. And the inner circle
has a radius of 0:2½m� and the circle hole has a radius of 0:04½m�.

The test was performed with the following physical constraints:
The inner circle was fixed (in the area labeled blue), and an exter-
nal load of sum F ¼ 1081½N� was added averagely on the wheel rim
(as shown by the arrows). The displacement (of the red point in the
red box) was set as 0:2½mm�.

The derived hole distribution is shown in Fig. 10; subtracting
these holes from the original hubcap affords the final design. As
observed from the hole distribution, the holes in the five ribs will
be made relatively smaller than those in the wheel, indicating that
the ribs provide the main resistance against the forces and must be
stiffer. Moreover, the uneven hole distributions either in the outer
rim or the inner circle show that some characters of PCA bases
remain in the final result.
Fig. 9. External forces (around the hubcap), fixed part (inner blue part) and focused
point (the red point in the red box) of the automobile hubcap.
7. Conclusions and future work

Based on a novel concept and representation of a semiregular
structure, the problem of biscale porous structure was studied
for desired deformation behavior. Due to the usage of various
advanced numerical techniques, the target displacement was ulti-
mately expressed as a function in terms of the design variables,
and thus the associated optimization problem were efficiently
solved. Various numerical examples were also tested to demon-
strate the approach’s accuracy, dependency on mesh resolution
and computational efficiency.

Limitations. For some complex structures, our approach can
not fully approximate the design region, particularly with curve
edges/surfaces. Although the area and effect of edges/surfaces are
small, they still affect the overall performance. In the future, we
plan to resolve this issue using homogenization method over an
arbitrary hex mesh. Furthermore, the proposed approach mainly
focused on a porous structure made by digging a isotropic hole
within its interior, which may limit the range of the material’s
physical property and consequently the final design performance.
In the future, other types of complex shapes will be studied for per-
formance improvement. For such problems, the model reduction
applied here may not work well, and other advanced model reduc-
tion techniques should be developed. In addition, the proposed
approach is limited when being extended to microstructures other
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than porous structures, such as fiber-reinforced microstructures.
We will follow the biscale flowchart and advance the homogeniza-
tion method for the extension in the future.
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Appendix A. Proof to Lemma 2

Proof. Consider a mesh element e of XM;r. Let Ce be its elasticity
tensor. Substituting the decomposition form (14) of the density q
into (18) gives

CeðqÞ ¼ C0 þ C1 q0 þ
XN
k¼1

akqk

 !
þ C2 q0 þ

XN
k¼1

aiqi

 !2

: ð28Þ

Rearranging the above equation as an equation of variables
a ¼ fakgNk¼0 gives

CeðaÞ ¼ C0
0 þ

XN
k¼1

C0
1qkak þ

XN
m¼1

XN
n¼1

C0
2qmqnaman; ð29Þ

where

C0
0 ¼ C0 þ C1q0 þ C2q2

0; C0
1 ¼ C1 þ 2C2q0; C0

2 ¼ C2: ð30Þ
Then we have the sub-matrix Ke to element e

Ke ¼
Z
Xe

r/T
i CeðaÞr/jdX

¼ K0;e þ
XN
k¼0

akKk;e þ
XN
m¼0

XN
n¼0

amanKmn;e;

ð31Þ

where

K0;e ¼
Z
Xe

r/T
i C

0
0r/jdX; Kk;e ¼

Z
Xe

r/T
i C

0
1qkr/jdX;

Kmn;e ¼
Z
Xe

r/T
i C

0
2qmqnr/jdX:

ð32Þ

Considering the assembly process (6), we have

K ¼ K0 þ MK; ð33Þ
for

MK ¼
X
k

akKk þ
X
m;n

amanKmn: ð34Þ
Appendix B. The analytical displacement expression

Analytical displacement expression of (23) for the case of circu-
lar holes in in Section 6.1:

u ¼ �9:694þ 0:2139a1 þ 0:2593a2 � 0:8453a3 þ 0:3508a4

� 1:614a5 þ 0:2823a6 � 0:8797a7 þ 0:2724a8 � 4:732a9

þ 0:3525a10 þ 1:291a11 þ 0:1932a12 � 0:01653a2
1 � 0:02771a22

þ 0:1036a23 � 0:03201a2
4 þ 0:07688a25 � 0:02419a2

6 þ 0:1223a2
7

� 0:03089a2
8 þ 2:367a2

9 � 0:07833a210 � 0:04033a2
11

� 0:01743a212 � 0:01038a1a2 þ 0:03219a1a3 � 0:1227a1a4

þ 0:07268a1a5 � 0:01284a1a6 þ 0:03882a1a7 � 0:01374a1a8
þ0:9520a1a9 � 0:01872a1a10 � 0:2889a1a11 � 0:01017a1a12

þ 0:02379a2a3 � 0:02019a2a4 þ 0:8902a2a5 � 0:01233a2a6

þ 0:03482a2a7 � 0:02214a2a8 þ 0:9721a2a9 � 0:02561a2a10

� 0:3122a2a11 � 0:01312a2a12 þ 0:2891a3a4 � 0:7821a3a5

þ 0:02109a3a6 � 0:7452a3a7 þ 0:2844a3a8 � 1:2771a3a9

þ 0:6722a3a10 þ 0:7913a3a11 þ 0:01689a3a12 þ 0:5224a4a5

� 0::02459a4a6 þ 0:05270a4a7 � 0:02894a4a8 þ 0:8719a4a9
� 0:04876a4a10 � 0:3779a4a11 � 0:02287a4a12 þ 0:2836a5a6
� 0:7836a5a7 þ 0:3512a5a8 � 4:128a5a9 þ 0:4528a5a10

þ 1:097a5a11 þ 0:1628a5a12 þ 0:1927a6a7 � 0:0233a6a8

þ 0:9535a6a9 � 0:02632a6a10 � 0:1283a6a11 � 0:1928a6a12

þ 0:1288a7a8 � 2:389a7a9 þ 0:2781a7a10 þ 0:7983a7a11
þ 0:1287a7a12 þ 0:8273a8a9 � 0:02315a8a10 � 0:1045a8a11
� 0:01245a8a12 þ 1:348a9a10 þ 3:314a9a11 þ 0:3812a9a12
� 0:2247a10a11 � 0:04672a10a12 � 0:07624a11a12:
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