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a b s t r a c t

Anovel approach to computing the discrete solution to the challengingmulti-material topology optimiza-
tion problem under total mass constraint is studied in this paper. The challenge of the problem lies in the
incompressibility constraint on the summation of the usage of the total materials, which significantly
increases the associated computational difficulty, and is seldom studied before; a few previous studies
focus on respective mass constraint on each used material, whose solution lies in a strictly feasible
space and is easier to compute. Solution to the optimization problem is derived on a theoretical finding
that the iterative density update in a two-material optimization problem is totally determined by the
rankings of the elemental compliances, which only involves an FE analysis computation, and can be
efficiently achieved. Based on this theoretical insight, a practical regulated iterative numerical approach
is then devised to find the solution to the multi-material topology optimization problem by solving a
series of two-material subproblems. Various 2D and 3D numerical examples demonstrate its capability in
providing structure of better compliance as compared with results obtained using latest approach based
on density interpolation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Topology optimization finds the best material distribution
within a prescribed design domain, solid or void, in order to pro-
duce a structure of optimal performance. Since the seminar work
by Bendsoe and Kikuchi [1], topology optimization has undergone
a remarkable development over the past decades in both academic
research [2–5] and industrial applications [6,7]. Amongst these
developments, most of these approaches generally relaxed the
problem into a continuous parameter optimization problem taking
elemental density (such as SIMP (Solid Isotropic Material with
Penalization) [8]) or structural outer shape as design variables
(such as level set [9,10]), and then solve it based on the tra-
ditional Newton-type (gradient-based) optimization algorithms.
Other researches also compute directly discrete solutions to the
problemusing evolutionary approach (such as BESO (Bi-directional
Evolutionary Structural Optimization) [11,12]) or programming
techniques [13]. A comprehensive comparison between these ap-
proaches are referred to a recent survey [14,3].

In the single-material topology optimization, the material is
specified a-priori and the structure is optimized with respect to it.
In contrast, the multi-material topology optimization is posed to
seek not only the optimal structural form but also simultaneously
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various material distributions, in order to realize specific design
purposes that are otherwise difficult to achieve by single-material
structures [15], or to achieve optimal structural performance. As
compared with the widely studied former problem, the latter
one is much less studied, including approaches based on density
(SIMP) [16], phase field [17–19], level set [20], combinatorial op-
timization [21], or evolutionary approach (BESO) [22]. A recent
detailed discussions on the topic are further referred to [19,16].

Challenges. The challenges of multi-material topology optimiza-
tion are mainly related to its intrinsic mathematical structure of
the design space. In the case of single material, the design variable
is just the occupation of the single material, whose associated
design space is generally sufficiently regular, and can be easily
resolved for instance using the optimality criteria [23] or gradient
projection [18,19]methods; using discrete variables is only studied
by [21]. In contrast, in the case ofmulti-materials on totalmass con-
straint, an additional usage on the summation of the totalmaterials
(the incompressibility constraint) is required, which significantly
increases the computational costs of the corresponding numerical
solution, which is seldom studied before [24–26,21,16].

The different mathematical structures additionally raise chal-
lenging issues on an appropriate topology description model,
which has to effectively indicate distinct materials inside the do-
main, fully covering the design domain but not overlapping. Specif-
ically, each elemental domain has a distinct material and they all
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Fig. 1. An example of four-material topology optimization problem. A, B, C and D
are four kinds of candidate materials with different Young’s modulus and densities.

together, materials and voids, fully cover the design domain. Pre-
vious approaches based on density or shape descriptions and in-
terpolation have to carefully devise various strategies to overcome
it, and also have a risk of having intermediate design elements
with nonphysical materials. The proposed discrete optimization
approach naturally avoids these issues.

Approach and contributions. The paper proposes a novel approach
to multi-material topology optimization under total mass con-
straint, only studied previously in [21,16] to our best knowledge.
The proposed approach is also the first using discrete variables to
resolve the multi-material optimization problem under total mass
constraint. The discrete variable representation thus avoids the
limitations of previous interpolation-based approaches in that they
are not physically based or have intermediate design elements.
Furthermore, the discrete material expression naturally satisfies
the design requirements that all the material densities are sepa-
rated and fully occupy the design domain.

The overall approach is based on an evolutionary mass reduc-
tion strategy, and focuses on the classical complianceminimization
problem. The success of the approach is built on a key observation
under rigorous proof that the optimal material distribution update
in each iteration step only depends on the elemental compliance
ranking in case of two materials, and cases of multi-material can
be reduced to the two-material problem. The convergence of the
overall approach is further improved via introducing a density
regulation approach that ensures smooth density transition during
the optimization process. Performance of the proposed approach is
demonstrated through 2D and 3Dnumerical examples. Its compar-
isonswith results obtained using classical SIMP approach shows its
capability in designing structures of better compliance.

The remainder of the paper is arranged as follows. Problem def-
inition and the theoretical basis to resolve it are given in Section 2.
Section 3 explains technical details on it numerical implementa-
tion. Numerical results on 2D and 3D examples are demonstrated
in Section 4, and the paper is concluded in Section 5.

2. Problem and theory

Suppose Ω = {Ωe, e = 1 . . .N} is a discrete design domain
consisting of N disjoint square FE elements Ωe, (Ej, ρj), j = 1 . . .m
are the m candidate materials of Young’s modulus Ei and density
ρi satisfying E1 ≥ · · · ≥ Em and ρ1 ≥ · · · ≥ ρm; it is assumed
that all the base materials have equal Poisson’s ratios. Apparently,
for candidate materials satisfying Ei ≥ Ej, ρi ≤ ρj, material i is just
superior to material j in problem (1), and we can simply choose
material i instead of j without further topology optimization.

The multi-material topology optimization problem considers
the classical problem of maximizing the stiffness of a structure, or
minimizing its compliance under constraint on the usage of total
mass, as illustrated in Fig. 1 and stated below. Find the optimal
multi-material distribution x such that

min
x

c(x) =
1
2
uTK(x)u

s.t. K(x)u = f, u ∈ U
M(x) ≤ M∗.

(1)

Here x gives the specific material of every finite element as

x = {xe}, xe = {xej}, e = 1, . . . ,N, j = 1, . . . ,m, (2)

where xej = 1 or 0 determines whether element e is filled with the
jthmaterial at an addition requirement that each element e is filled
by one and only one kind of material, that is,

m∑
j=1

xej = 1. (3)

The total mass is defined as follows

M(x) =

N∑
e=1

ρ(xe), for ρ(xe) =

m∑
j=1

xejρj. (4)

In addition, u and U ⊂ RN are the nodal displacement vector
and its admissible space, where certain Dirichlet boundary condi-
tions are prescribed. K(x) is the global stiffness matrix, decided by
material distribution x, which is calculated by

K(x) = {E(xe)k0}, E(xe) =

m∑
j=1

xejEj (5)

for a unit stiffness matrix k0. f is the external force vector. The
structure compliance c(x) is calculated by

c(x) =
1
2
uTK(x)u =

N∑
e=1

m∑
j=1

1
2
xejEjuT

e (x)k0ue(x), (6)

where ue is the displacement vector of element e.
The original problem (1) is equivalently written

min
x∈A

{c(x) | K(x)u = f}, (7)

where the design domain A = {x|M(x) ≤ M∗
}.

The proposed approach to resolving problem (1) is achieved
via gradually reducing the mass from an initial distribution till the
target one, as also used in the well-studied evolutionary approach
BESO [27]. The initial value of x is set as density fully filled by
the material M1 of the largest Young’s modulus among all the
candidate materials, which is an obvious global optimal solution
under the associated mass constraint. Before further explanation
on the overall approach, we first explain below the density update
strategy in each of the optimization step as the base of the pro-
posed approach.

Noticing that the stiffnessmatrixK and displacementu are both
dependent on the density x, taking derivatives on both sides of the
equilibrium equation

K(x)u(x) = f (8)

with respect to the design variable xej gives

∂K(x)
∂xej

u(x) + K(x)
∂u(x)
∂xej

= 0, (9)

and by basic transformation, there is
∂u(x)
∂xej

= −K−1(x)
∂K(x)
∂xej

u(x). (10)

On the other hand, according to the compliance definition and
equilibrium equation (8)

c(x) =
1
2
uTK(x)u(x) =

1
2
uT (x)f, (11)

we have its partial derivative with respect to design variable xej
∂c(x)
∂xej

=
1
2
fT

∂u
∂xej

, (12)



184 X. Yang, M. Li / Computer-Aided Design 102 (2018) 182–192

which is further written, by using (8) (10), as
∂c(x)
∂xej

= −
1
2
uT ∂K

∂xej
u = −

1
2
xejEjuT

e (x)k0ue(x) = −c(xej) (13)

where the component-wise of c(x) is

c(xej) =
1
2
xejEjuT

e (x)k0ue(x). (14)

Besides, the elemental compliance c(x)e is

c(x)e =

m∑
j=1

c(xej). (15)

With the above preparations, we further derive below the den-
sity update from total M1 to M2 for M2 < M1 and close enough.
Specifically, given mass fractions M1, M2, and the corresponding
optimized material distribution xM1

, we hope to update xM1
to

xM2
to minimize the structure compliance at mass constraint M2.

According to Taylor expansion, the objective function is approxi-
mately expressed as

c(xM
2
) = c(xM

1
− (xM

1
− xM

2
))

= c(xM
1
) − c ′(xM

1
)(xM

1
− xM

2
) + O(xM

1
− xM

2
)

≈ c(xM
1
) − c ′(xM

1
)(xM

1
− xM

2
).

(16)

In this situation, the minimizing problem in (7) becomes

argmin c(xM
2
) = argmin c(xM

2
) − c(xM

1
)

≈ argmin−c′(xM
1
)T (xM

1
− xM

2
).

(17)

Further taking into account of (13) and noticing that xM1
is con-

stant, the above equation gives

argmin c(xM
2
) ≈ argmin c(xM

1
)T (xM

1
− xM

2
)

= argmin−c(xM
1
)TxM

2

= argmax c(xM
1
)TxM

2
.

(18)

Consequently, we have an equivalent optimization problem
to (7) at a local region around xM1

,

max
x

{c(xM
1
)Tx | K(x)u = f, M(x) ≤ M2

}, (19)

that is, it is reasonable to solve the optimization problem via
approximately maximizing c(xM1

)Tx , starting from the known
optimal solution xM1

.
The above problem is a typical grouping knapsack problem,

whose solution is usually computed using dynamic planning ap-
proaches. However, the complexity of this method is severely
restricted by the size of the problem. In practice, even for a medial
size problem, the computational cost is almost unaffordable. An
alternative strategy is proposed in this paper, which is relatively
acceptable and efficient, based on the characteristic of the problem
itself.

The proposed approach is based on the observation that in case
of two-material, the mass constraint, together with the constraint
on the number of total elements, strictly determines the numbers
of the twomaterials. Once the number determined, solution to the
problem (19) in case of two-materials is totally determined by the
elemental compliance rankings. The result is summarized in the
lemma below; also depicted in Fig. 2.

Lemma 1. Let xM1
be an optimal solution to problem (1) under

mass bound M1, and M2 be another mass bound satisfying M1
≥

M2, |M1
− M2

| ≤ δ, δ > 0. Then the solution to problem (1) under
mass bound M2 can be approximatively solved by

max
x

c(xM
1
)TxM

2
, (20)

whose solution can be easily determined by choosing the top elements
of bigger compliances c(xM1

)e whose sum of masses is less thanM2. In
addition, the obtained solution is the best solution to problem (19) .

Proof. See Appendix.

Based on the above result, in order to successfully handle the
general case of m-materials, where m > 2, we can reduce the
problem into a series of two-material problem via iterating all the
possible material combinations. Due to the constraints on the total
mass and the number of design elements, the iteration number can
be confined within a relatively small range.

The overall approach is summarized in the left in Fig. 3, where
Ωj (j = 1, . . . ,m− 2) prescribes the range of all the possible num-
bers of certain material, confined by the usage of total mass and
the number of design elements. The iteration starts from an initial
density, fully filled with material m1 of highest Young’s modulus,
at default total massM1. It then iteratively reduces the target total
mass from M i to M i+1 within all possible material ranges Ω i+1

=

Ω1 × · · · × Ωm. The process reduces the multi-material problem
into a series of two-material problem. The iteration repeats until
reaching the target mass and satisfying certain stopping criteria.

In addition, each iteration process of each sub-loop all involves
a novel density regulation process for optimization convergence
control. It involves stages of preprocessing, upward and downward
searching. The preprocessing stage transfers the current optimized
multi-material density into another proper density in the density
range for usage in the next iteration. The upward and downward
stages searches the best density for all the possible material com-
binations from the current optimized one.

3. Numerical approach

This section gives the technical details of implementing the pro-
posed strategy, including two-material problem and more-than-
two-material problems, which are arranged from easy to difficult.
For further explanation, the latter is illustrated by three-material
and four-material problems separately.

3.1. Two-material problem

In case of two materials, the structure is only composed of N
elements and satisfies the total mass constraint, prescribing{

n1 + n2 = N
n1ρ1 + n2ρ2 ≤ M∗ ⇒

⎧⎨⎩n1 ≤
M∗

− Nρ2

ρ1 − ρ2
n2 = N − n1

(21)

where ni is the number of elements filled with material i.
Supposing E1 ≥ E2, ρ1 ≥ ρ2, we accordingly have the number

of material 1 and 2, that is n1 and n2 is set to be

n1 = ⌊
M∗

− Nρ2

ρ1 − ρ2
⌋, n2 = N − n1. (22)

The whole procedure of two-material optimization is outlined
below:

Step 1: Input material properties, total mass constraintM∗, evolu-
tionary ratio ER, domain size nelx, nely, and initial density consist-
ing of only material 1.

Step 2: Set the next target mass as follows

M i+1
= max(M i(1 − ER),M∗). (23)

Step 3: Calculate elemental compliances {cM
i

e } via (14), (15) via FE
analysis.

Step 4: Determine the number of materials 1 and 2 in the design
domain

n1 = ⌊
M i+1

− Nρ2

ρ1 − ρ2
⌋, n2 = N − n1. (24)
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Fig. 2. Illustration of Lemma 1. From left to right, the first figure shows the input structure xM1
satisfying mass constraint M1 . The second shows the value of c(xM1

). The
third shows the resulted density after maximizing c(xM1

)TxM2
. The last shows the optimized structure xM2

under mass constraint M2 as output.

Fig. 3. Overview of the proposed approach. The left illustrates themainmass deduction process and an iteration in searching for all the possible numbers of materials, which
ultimately reduces the multi-material optimization problem to a series of two-material optimization problems. The right figure indicates the density regulation process for
optimization convergence control.

Step 5: Update density xi+1 via filling the top n1 elements of large
compliances {cM

i
e } by material 1, and others by material 2.

Step 6: Repeat steps 2–5 until the objective mass is achieved and
the convergent criterion is satisfied

error =
∥xi+1

− xi∥
∥xi+1∥

≤ τ (25)

In this paper, the superscript usually refers to themass iteration,
and the subscript denotes the finite element or a certain kind of
material. In addition, various kinds of element-based filters can be
added before step 4 [3].

We also comment here the difference between the proposed
approach and thewell-studied BESO [28]. Technically speaking, for
two-material problem, the proposed method is pretty similar to
BESO as the number of two materials are totally determined from
the constraint on the total mass. However, the fundamental mo-
tives are rather different: BESO is heuristically based on elemental
sensitivities, while the proposed is driven by the result in Lemma
1, which states the important role of the element number. This
difference enables the proposed method to be extended to more-
than-two-material problems easily and straightforward.

3.2. Three-material problem

For more-than-two-material problems, the main difficulty of
applying Lemma 1 is that it is basically impossible to select the best
amount of eachmaterial directly, because the bargain between any
twomaterials is not independent. Noticing that in the case of three
materials, once the number of one kind of material is decided, the
numbers of the other two are correspondingly determined, notic-
ing that their constraint on total mass and on element number.
Therefore, a new relatively efficient traversal method is proposed
to resolve the case of three-material problem via searching for the
possible amount of each material. In addition, in order to achieve
smoothness and stability of the optimization, pre-processing pro-
cedure is added at the beginning in each mass iteration, instead of
setting xi as the initial value at massM i+1. What follows illustrates
it in detail.

3.2.1. Basic idea
Since there are three kinds of materials to choose from, taking

into account the mass and volume constraints, once the amount
of any one among them is fixed, the rest two can be settled corre-
spondingly. Furthermore, when a reasonable initial structure xM i

is
given, the next newmaterial distribution xM i+1

can be obtained di-
rectly on the principle of maximizing c(xM i

)TxM i+1
from Lemma 1.

The key problem here is to find the best quantity of each
material. The strategy taken here is to loop over a relatively small
set of possible material combinations, and choose the best one
amongst them. It thus correspondingly reduces the three-material
optimization problem to a series of two-material optimization
problem.

Suppose there are threematerials satisfying E1 ≥ E2 ≥ E3, ρ1 ≥

ρ2 ≥ ρ3 without loss of generality. Considering themass constraint
M i+1 in current iteration, the possiblemaximumnumbern1_maxof
material 1 and theminimum n3_min ofmaterial 3 can be calculated
by{

n1 + n3 = N
n1ρ1 + n3ρ3 ≤ M i+1 ⇒

⎧⎨⎩n1 ≤
M i+1

− Nρ3

ρ1 − ρ3
n3 = N − n1

, (26)

which gives the upper bound of n1 and lower bound of n3 as

n1_max = ⌊
M i+1

− Nρ3

ρ1 − ρ3
⌋, n3_min = N − n1_max. (27)

Moreover, once given a mass constraint M i+1 and the number
n1 ofmaterial 1, the amount of the other twomaterialsmust satisfy{

n2 + n3 = N − n1

n2ρ2 + n3ρ3 ≤ M i+1
− n1ρ1

. (28)

Consideringmaterial 2 is superior tomaterial 3 in Young’smodulus
as E2 > E3, apply the main idea of two-material problem to (28),
there gives

n2 = ⌊
M i+1

− n1ρ1 − (N − n1)ρ3

ρ2 − ρ3
⌋, n3 = N − n1 − n2. (29)
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Fig. 4. Preprocessing stage of three-material problem.

Accordingly, in each mass deduction iteration, the proposed
method will construct and search a set of feasible material combi-
nations Ω = Ω1 ×Ω2 ×Ω3, mainly confined by the feasible range
Ω1 = [n1_min, n1_max] of material 1. Ω1 is the range for minimal
and maximal allowable numbers of elements taken by material
1. In order for algorithm efficiency, we basically set the value of
n1_min as 0.9 · n1_max according to our experimental results.

Now the main issue left to be resolved is the search strategy
of these combinations. To prevent an abrupt density variation
during the iterationwhilemeanwhile keeping efficient, this search
step is further decomposed into three sub-iterations for clarity,
including preprocessing iteration, upwards searching iteration and
downwards searching iteration, as shown in the dashed frame in
Fig. 3.

3.2.2. Preprocessing stage
The preprocessing stage aims to ensure a smooth density transi-

tion from the last best structure to a feature structure in its feasible
region in the current iteration. The process neglects the total mass
constraint tentatively.

Supposewehave an optimal density xi consisting of threemate-
rials respectively of number (ni

1, n
i
2, n

i
3) in last main-loop iteration

step at mass constraint M i. We hope to update xi to xi+1 at mass
constraint M i+1. Suppose the new feasible interval of material 1 is
Ω1 = [n1_min, n1_max] for mass constraint M i+1. A pitfall here
is that ni

1 may not be in Ω1. The preprocessing stage is designed
here to regenerate a new density x̃i ∈ Ω1 following the procedure
below.

The preprocessing step gradually find x̃i ∈ Ω1 via iterating
different numbers of domain material compositions, specifically,

1. Moving from (ni
1, n

i
2, n

i
3) at mass constraintM i,

2. via to an intermediate composition (ni
1, 0,N − ni

1) at mass
M i+1,

3. till reaching (n1_max, 0,N − n1_max) at massM i+1.

In each step of material number variations, the associated den-
sity distribution x is found via the proposed optimization approach.

It is noted here that above preprocessing usually much im-
proves the iteration stability, at a cost of additional FE analysis for
density updating. The well-ensured convergence demonstrates its
validity and worthwhile (see Fig. 4).

3.2.3. Upwards and downwards stage
Once the n1 of an initial structure lies inΩ1, as described above,

the best density distribution can be iteratively achieved via a two
sub-iterations: upwards searching procedure from n1 to n1_max,
and downwards searching procedure from n1 to n1_min. In this
stage, n1 is increased or decreased at certain, and the values of n2

and n3 are determined accordingly via (29). The structures with
minimum cup in upwards stage and cdn in downwards are denoted
xup and xdn, respectively. The best of them gives the next update
density.

3.3. More-than-three-material problem

This above described approach is easily extended to optimiza-
tion with more candidate materials. Suppose we have a four-
material design problem with Ei ≥ Ei+1 and ρi ≥ ρi+1, for i =

1, . . . , 3, and the outer-most main-loop is determined by material
1. For a given n1 and mass constraint M i, the feasible region of n2
to be searched is calculated by

n2_max = min(⌊
M i

− n1ρ1 − (N − n1)ρ4

ρ2 − ρ4
⌋,N − n1), (30)

and we set n2_min = 0.9n2_max by default.
During each n2 iteration, n3 is calculated by

n3 = min(⌊
M i

3 − n2ρ2 − (N3 − n2)ρ4

ρ3 − ρ4
⌋,N3 − n2), (31)

where

M i
3 = M i

− n1ρ1, N3 = N − n1, (32)

and n4 = N3 − n2 − n3.
Once the range of material composition determined, the above

described preprocessing, upward and downward searching will
also be conducted as similar as the case of three materials, and are
not further explained here.

3.4. Termination criterion

The termination criterion is generally determined by the con-
vergence of objective function or design variables, and the pro-
posed approach is able to converge at this condition. On the
other hand, various experiments also indicates that the optimal
structures are usually found once the target mass constraint is
satisfied. The criteria is thus taken in practical experiments to save
computational costs.

3.5. Filter scheme

In order to avoid numerical instabilities such as checkerboard
and mesh-dependency, various filters can be applied here follow-
ing previous studies in [22,23,27]. The filter applied here is mainly
designed based on computing an elemental compliance ci via av-
eraging those around it within a length scale rmin, or specifically,

ĉi =

∑S
j=1 w(rij)cj∑N
j=1 w(rij)

, (33)

where S is the total number of nodes involved, and rij denotes the
distance between the center of the element i and node j, and w(rij)
is a weight factor given as

w(rij) =

{
rmin − rij
0

for rij < rmin
for rij ≥ rmin.

(34)

The filter is specifically involved in the following stages: each step
after a preprocessing, and each step after generating an optimal
structure in each mass reduction process in the main iteration-
loop.
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(a) A half MBB beam problem. (b) (c)

Fig. 5. Problem definition and candidate materials. (b) Materials in Section 4.1. (c)
Materials in Section 4.2.

4. Numerical examples

The proposed approach has been implemented in Matlab, and
run on a PC of Intel Core i5-4590 of 3.2 GHz CPU and 16GB RAM.
Its performance is tested on various 2D and 3D examples. Specif-
ically, the two-material case is the base of the approach and is
first tested and compared in Section 4.1 with the classical BESO
approach. Next, results on a three-material example are shown
in Section 4.2, mainly demonstrating the convergence process, in
particular the density regulation technique in convergence control.
After this, results on a four-material example are also shown in Sec-
tion 4.3, showing the effects of material properties on producing
different optimal structures and the usage and necessity of using
multi-material in structural design. Then, comparison between the
proposed approach and the latest ordered SIMP approach [16] is
given in Section 4.4, demonstrating its potentiality in producing
structures of better targets. In the end, 3D examples under different
numbers of candidate materials are shown. The computational
time for the examples are summarized and compared in Table 1.

The 2D examplemainly uses the classical MBB examples, under
two different boundary conditions as described in Figs. 5(a) and
13(a), where the former is a half MBB example while the latter a
full MBB example under symmetry requirement. The 3D example
uses a classical Cantilever example in Fig. 16 as detailed later. Other
optimization settings are also summarized below.

Initial value. As explained in Section 2, the proposed method is
conducted in an evolutionary way via consequent mass deduction.
The initial density value is set as a structure fully-filled with the
material of the largest Young’s modulus and density. The initial
total mass constraint is the associated mass determined by the
initial density.

Mass constraint. Unless a specific statement is made, mass con-
straint is represented by mass fraction Mc , defined by the ratio
between a currentmassM∗ and the possiblemaximummassMmax,
orMc

=
M∗

Mmax .
Structural compliance and estimated compliance. Structural com-

pliance creal is the actual value of the optimized structure dur-
ing each iteration step, while estimated compliance is the one
computed as its approximation, or specifically citer = c(xi)Txi+1.
The two values are compared during the optimization process
in order to verify the results in Lemma 1. Iteration gap. In case
of more-than-two materials, step refers to the step size in the
iteration process as involved in the three sub-processing stages:
preprocessing, upwards and downwards stages. The iteration step
is set as step = 0.3%N in the following examples for efficiency
without much changing the optimization result.

In the end, the evolutionary ratio ER = 0.02 and the filter
rmin = 2.5 by default.

4.1. Two-material

The approach’s effectiveness for two-material optimization
problem is the most basic case, and also determines its perfor-
mance in case of more than two materials. It is thus first tested

Fig. 6. Iteration histories of the compliance, mass constraint and topology at mass
constraintMc

= 0.5. The solid material has (EA = 1, ρA = 1), and the void element
has (EVoid = 0.001, ρVoid = 0.001). cour = 76.5, cbeso = 75.8.

in this section on two cases: a special solid–void case, and a two-
material case.

The exampleworks on the halfMBB beam in Fig. 5(a), consisting
of 60 × 30 quadrilateral FE elements. The three involved testing
materials A, B and Void, as shown in Fig. 5(b), are given as follows:

(EA = 1, ρA = 1), (EB = 0.2, ρB = 0.1),

(EVoid = 0.001, ρVoid = 0.001). (35)

The Young’s modulus void element EVoid is set to be a small value
to avoid producing singular stiffness matrix as widely used in
previous studies in SIMP or BESO approaches. Its corresponding
material density is also set to be a very small value in this mass
constraint problem.

4.1.1. Solid–void materials
The proposed approach can work directly on the basic solid–

void problem as a special case of two-material problem. Its per-
formance is first shown in this section using the materials A and
C described above, and compared with the benchmark results
obtained via the classical discrete evolutionary approach BESO [2],
as shown in Fig. 6 . In these figures, the upper figures show the
corresponding structures during the iteration at steps 1, 5, 15,
25, 35, 45, and the lower figures show the variation histories of
objective functions cour for ours and cbeso for BESO method. The
target mass Mc

= 0.5, and both the proposed approach and the
BESO gradually decrease the mass from the initial maximal one
till the target, and thus share the same mass fraction curve in the
figures. The BESO and the proposed approach demonstrate similar
performance although BESO produces structure of slightly better
compliance.

4.1.2. Two non-zero materials
The performance of two non-zero materials, using materials A

and B described above under the mass constraint Mc
= 0.6, was

also tested, and the convergence histories was plotted in Fig. 7.
Here, the produced structures as some key frames were also plot-
ted on the top. As can be observed from the convergence histories
in Fig. 7, the structural compliance increases initially as the mass
fraction decreases, and then converges to an almost constant value
after the objective mass is achieved. The final structure converges
to a stable topology after 30 iterations; additional iteration steps
are further plotted here to show its convergence.

We also compare the actual structural compliance creal with the
estimated compliance citer in Fig. 7, where citer shows bigger value
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Fig. 7. Iteration histories of the compliance, mass constraint and topology for two
materials (EA = 1, ρA = 1), (EB = 0.2, ρB = 0.1), at mass constraint Mc

= 0.6. The
compliance creal = 59.6.

and less smooth convergence, but leads the iterative procedure to
an expected structure. It comes to the objective value creal = 59.6
and takes 2.1s for computation.

4.2. Three-material

Extending the two-material case to three-material case mainly
involves an iterative searching for the best structure at the same
mass constraint, which reducing from the initial maximal one to
the target. The searching process involves additional steps of pre-
processing, upwards, downwards searching stages, as explained
in Section 3.2. Some important details will be further shown and
explained in this section using a demonstrative three-material case
on the same MBB example in Fig. 5. The target mass fractionMc =

0.3, and the three materials A, B and C are shown in Fig. 5(c):

(EA = 1, ρA = 1), (EB = 0.6, ρB = 0.4),
(EC = 0.01, ρC = 0.1).

(36)

Two different iterations are involved in the optimization pro-
cess: themain-loop each step of which produces an optimal struc-
ture at certain mass constraint, and the sub-loop at each main-
loop step which searches for the best structure for all the possible
candidate numbers of materials at a given mass constraint. The
iteration details are shown in Fig. 8. The middle figure shows the
main-loop while the four sub-figures around it shows sub-loop
at each step of the main-loop. The sub-loop process consists of
the preprocessing procedure, upwards and downwards searching
procedures, each respectively represented by squares, upward-
pointing and downward-pointing triangles. In addition, the inner
iteration is controlled by the number of material A, and denoted by
n1.

The sub-loop at each main step iteratively searches for the best
structure at certain total mass constraint, where the produced
structures are shown in each sub-figure. Each sub-loop produces
an optimal structure and outlines it in a green box in the sub-
figure. In order to improve the convergence stability, the produced
structure was further optimized with a few additional steps using
filters, and the produced associated structure was outlined in an
orange box in themiddlemain figure. The produced nice structures
also reveals the necessity and feasibility of the proposed density
regulation process in ensuring convergence stability and in pro-
ducing an optimal structure.

The variations of the associated volume and mass fraction of
each material during the main iteration process were also plotted
in Fig. 9. The quantities of different materials may vary in differ-
ent directions until they together reach the optimal structure, of
minimal compliance satisfying certain total mass constraint.

The proposed approach is also able to handle structures at high
resolution, and it is demonstrated for the half MBB example in
Fig. 5(a) using the following three kinds of materials:

(EA = 1, ρA = 1), (EB = 0.5, ρB = 0.4), (EC = 0.01, ρC = 0.1).
(37)

The domain respectively consists of 60× 30 and 200× 100 square
meshes, taking 31.2 s and 439.1 s to reach an optimal multi-
material structure shown in Fig. 10(a), (b).

4.3. Four-material

The examples of four-materials are mainly designed for two
purposes. The first is to test the effect of the number of candidate
materials, and the effects of candidatematerials in determining the
final produced structures.

4.3.1. Effect of number of candidate materials
In order to test whether using a higher number of candidate

materials will produce physical better structure, the MBB example
in Fig. 5(a) was tested using the following four types of materials:

(EA = 2, ρA = 1), (EB = 1, ρB = 0.6),

(EC = 0.6, ρC = 0.4), (ED = 0.01, ρD = 0.1). (38)

The example was tested using various types of material combi-
nations, using four, three and two candidate materials under the
same total mass constraint M∗

= 900. The produced structure for
each type of material combination was shown in Fig. 11. The used
candidate materials were indicated in the figures, and the asso-
ciated structural compliances were shown in the figure captions.
As can be observed from the results, the usage of more materials
indeed produces structures of better compliance. In addition, it
clearly shows the that usage of filter is able to remove unnecessary
checkerboards and produces stable structures.

4.3.2. Effect of material properties
In order to further test the effect of the candidate material

properties, for example the ranking of the Young’s modulus or the
modulus–density ratio, in determining the final produced struc-
ture, various different types of four-materials were tested and
compared here. All the three cases are optimized by four candidate
materials, while the material properties and target mass fraction
are different, i.e. materials A, B, C and D are different in different
cases. The produced structures were compared in Fig. 12.

In case 1, material A is much better than B and C, where EA >

EB > EC and EA/ρA > EB/ρB > EC/ρC , and the approach produces
a structure composed by A and D only. In case 2, material B is the
best in E/ρ, where EB/ρB > EA/ρA > EC/ρC > ED/ρD. However
due to constraint of mass constraint and the Young’s modulus
EA > EB > EC > ED, the final produced structure is composed
of materials A, B and D. In case 3, there are four irregular ladder-
like materials, where EA > EB > EC > ED and EA/ρA > EB/ρB >

EC/ρC > ED/ρD, and all the four different materials were involved
in the final produced structure. There is no clear evidence on the
dependence of the final produced structure on property ranking of
the materials.

4.4. Comparison with ordered SIMP

The problem of multi-material topology optimization under
total mass constraint is only studied in previous work [21,16].
Comparison between the structures produced by the proposed
approach and by the approach in [16] were conducted here. Note
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Fig. 8. Iteration process of a three-material problem, including sub-procedures. The middle figure shows the main-loop and the four sub-figures around it shows sub-loop
at each step of the main-loop. The optimal structure in each sub-loop is outlined in green, which is then filtered (resulting in the structure outlined in orange) to improved
convergence and used in the main-loop for next iteration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

(a) Volume fraction. (b) Mass fraction.

Fig. 9. History of variations of the volume andmass fraction of eachmaterial during
the optimization procedure.

(a) 60 × 30. (b) 200 × 100.

Fig. 10. An example of different meshing sizes.

also that the approach in [16] focuses on the multi-material op-
timization under cost function although the problem without the
cost constraint is also studied. The totally same example proposed
in [16]was tested, using the bridge example in Fig. 13(a) consisting
of 100 × 50 square elements, imposed by unit external force F,
and using four different types of candidate materials shown in
Fig. 13(b). The target total mass fraction isM∗

= 0.4.
The produced structures for the example are shown in Fig. 14,

using four different cases of material combinations: (a) A, B, and C;
(b) B andC; (c) A andC; and (d) C only. The cases (a)–(c)were solved
using the recently proposed novel ordered-SIMP method in [16],
whereas case (d) is solved using the classical SIMP method [29].

The optimal structures computed by ordered SIMP or SIMP
were shown in the right column Fig. 14; similar results were also
shown in [16]. Different candidate material combinations pro-
duced different optimal structures in these results almost using
all the candidate materials. It is also interesting to observe that
the structure produced using more types of materials may exhibit
worse compliance than the structure produced using less types
of materials. The unexpected cases were also observed by the
authors in [16], demonstrating the challenges of multi-material
topology optimization under total mass constraint. As comparison,
the structures produced by the proposed approach were plotted
in the left column in Fig. 14. All the final structures only consists
of material C and the void, and they exhibiting better compli-
ance than those produced by ordered SIMP, demonstrating the
powerfulness of the proposed approach in detecting the optimal
structures while avoids being stuck in local minima. The single-
material optimal structure may be explained by the fact that ma-
terial C has the largest stiffness–density ratio (E/ρ) among these
four materials in Fig. 13(b), as noted in [16].

The convergence process of the proposed approach is also
shown in Fig. 15. The Figs. 15(a) and 15(b) gives the results of
the estimated compliances and of the actual structural compli-
ances. We can observe that from the results that the estimated
compliances produced in the three cases (optimized by more than
two materials) show high similarity with the actual ones. In the
case of single material, the estimated compliances different much
with the actual one. However, the two cases still exhibits similar
convergence trend, and ultimately produces a structural optimal
structures. In addition, as can be seen from Table 1, given certain
size of the problem, the calculation time of the ordered-SIMP
approach just changes slightly when the number of candidate ma-
terials varies, while the proposedmethod is significantly impacted.

4.5. 3D examples

In this section, we investigate the performance of the proposed
approach in 3D case using the 3D Cantilever beam in Fig. 16(a)
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Fig. 11. Results of four-material optimization. The four materials are shown in
black, red, blue and white, respectively, and c is the structure’s compliance. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

under a sine-shaped load at the bottom of the free edge [30].
The design domain consists of 64 × 24 × 32 FE elements. The
multi-grid preconditioned conjugate gradients (MGCG) solver [30]
is introduced here to reduce the computation cost and to speed
up the calculation. The associated computation time is also sum-
marized in Table 1. The derived optimal structures in case of
two, three or four kinds of candidate materials are respectively
shown in Figs. 16–18, where the used candidatematerials, value of
objective function and computing time are also described. Similar
convergence performance was observed as that in 2D cases, which
is not further explained here.

5. Conclusion

The paper proposes a novel approach using discrete variables
to resolve the multi-material optimization problem under total
mass constraint. The theoretical insights and the numerical tech-
niques based on density regulations ensure a physical optimal
structure produced. Performance of the approach was also tested
on various numerical examples, using different types of material
properties or using different number of candidate materials. In
addition, the comparisons of the proposed approachwith the latest
approach [16] using ordered SIMP approach also demonstrates its
capability in finding structures of a relative better compliance and
in avoiding being stuck in local minima.

(a) Case 1: (EA = 2, ρA = 1), (EB = 0.4, ρB = 0.6), (EC = 0.2, ρC = 0.4),
(ED = 0, ρD = 0). Mc

= 0.4.

(b) Case 2: (EA = 2, ρA = 1), (EB = 1.4, ρB = 0.6), (EC = 0.6, ρC = 0.4),
(ED = 0.01, ρD = 0.1). Mc

= 0.5.

(c) Case 3: (EA = 2, ρA = 1), (EB = 1, ρB = 0.6), (EC = 0.6, ρC = 0.4),
(ED = 0.01, ρD = 0.1). Mc

= 0.4.

Fig. 12. An optimized structure may consist of different numbers of material
types depending on the ranges of these materials, illustrated via a four-material
optimization problem for the half MBB beam example.

(a) Definition of MBB-beam problem. (b) Material properties.

Fig. 13. Problem definition in Section 4.4.

Table 1
Summary of computation time (in seconds), including the 2D examples in Sec-
tions 4.1.1, 4.2, 4.4 and the 3D examples in Section 4.5. In the ‘‘SIMP/BESO∗ ’’ row,
∗ refers to the result by BESO, and the rest are by SIMP.

Problem Size Mc m Our SIMP/ BESO∗ Fig.

Half MBB 60 × 30 0.5 2 3.9 6.7∗ 6

0.3 3 31.2 – 9(a)

200 × 100 439.1 – 9(b)

MBB 100 × 50 0.4

4 422.9 172.2 14(a)

3 346.5 165.3 14(b)

345.5 174.0 14(c)

2 11.4 138.5 14(d)

Cantilever 64 × 24 × 32 0.4 2 516.2 – 16

3 2024.6 – 17

0.7 4 6108.4 – 18
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Fig. 14. Comparisons between the results produced by our approach and those
produced by the latest ordered SIMP [16] using the examples proposed in [16]
at mass fraction Mc

= 0.4. The proposed approach is always able to produce
structures of better objectives for all the different cases.

(a) Estimated compliance.

(b) Structure compliance.

Fig. 15. Comparisons between the iteration history between the actual structural
and the estimated compliance during optimization.

The present method is mainly limited to the traversal searching
strategy in spite of its merit in producing a relatively better solu-
tion. Our future work is to develop an alternative efficient search-
ing approach to overcome the limitation. In addition, it is interest-
ing to note that the optimal structure in Fig. 14 only contains two
materials instead of all the candidate materials. It deserves further
research efforts to reveal the theoretical understanding behind
the phenomenon. Our future work is also to extend the proposed

(a) Problem. (b) Overall. (c) Material A. (d) Material B.

Fig. 16. A 3D Cantilever beam under a sine-shaped load at the bottom of the free
edge using two kinds of candidate materials: (EA = 1, ρA = 1), (EB = 0.2, ρB =

0.1). The target totalmassMc
= 0.4, and the derived structural compliance is 653.9.

(a) Overall. (b) Material A. (c) Material B. (d) Material C.

Fig. 17. Structure optimized under three kinds of candidate materials: (EA =

1, ρA = 1), (EB = 0.6, ρB = 0.4), (EC = 0.01, ρC = 0.1). The target total mass
Mc

= 0.4, and the derived structural compliance is 623.4.

(a) Overall. (b) Material A.

(c) Material B. (d) Material C. (e) Material D.

Fig. 18. Structure optimized by four kinds of candidatematerials: (EA = 2, ρA = 1),
(EB = 1.4, ρB = 0.6), (EC = 0.8, ρC = 0.4), (ED = 0.01, ρD = 0.1). The target total
mass Mc

= 0.7, and the derived structural compliance is 261.1.

approach to find the optimalmulti-materialmicrostructure, and to
handle the cases of large deformations.
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Appendix

Proof to Lemma 1 in Two-Material Situation. Suppose the num-
bers of elements filled with materials 1 and 2 are respectively n1
andn2. Suppose the number ofmaterials determined via the results
in Lemma 1 gives strategy A, and another strategy B can be set as
n1 − t and n2 + t , for t ∈ Z+ and 0 ≤ n1 − t, n2 + t ≤ N . Let

Q (f , nf
1, n

f
2) = c(x0)Txf , f = A, B, (39)

where the numbers of material 1,2 is respectively nf
1 and nf

2.
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We can see from the results obtained by strategies A and B,

Q (fA, nA
1, n

A
2) = E1

∑
i∈A1

ci + E2
∑
i∈A2

ci,

Q (fB, nB
1, n

B
2) = E1

∑
i∈B1

ci + E2
∑
i∈B2

ci
(40)

where Aj, Bj, j = 1, 2 are the sets of sequence numbers whose
corresponding element are filled by material j.

Apparently, there is

nA
1 = n1, nA

2 = n2, nB
1 = n1 − t, nB

1 = n1 + t, (41)

A1 = {1, . . . , n1}, A2 = {n1 + 1, . . . ,N},

B1 = {1, . . . , n1 − t}, B2 = {n1 − t + 1, . . . ,N}.
(42)

Taking (41), (42) into (40) gives

Q (fA, n1, n2) − Q (fB, n1 − t, n2 + t)
= E1(

∑
i∈A1

ci −
∑
i∈B1

ci)

+E2(
∑
i∈A2

ci −
∑
i∈B2

ci)

= E1(
∑

i∈A1∩B2

ci −
∑

i∈A2∩B1

ci)

+E2(
∑

i∈∈A2∩B1

ci −
∑

i∈A1∩B2

ci)

= (E1 − E2)(
∑

i∈A1∩B2

ci −
∑

i∈A2∩B1

ci).

(43)

Since
NA1B2 = |A1 ∩ B2| = |A1| − |A1 ∩ B1|,

NA2B1 = |A2 ∩ B1| = |A2| − |A1 ∩ B1|,
(44)

cmin
A1B2 = min{ci|i ∈ A1 ∩ B2},

cmax
A2B1 = max{ci|i ∈ A2 ∩ B1},

(45)

and

NA1B2 ≥ NA2B1, cmin
A1B2 ≥ cmax

A2B1, (46)

we have from (43) that

Q (fA, n1, n2) − Q (fB, n1 − t, n2 + t)
= (E1 − E2)(

∑
i∈A1∩B2

ci −
∑

i∈A2∩B1

ci)

≥ (E1 − E2)(NA1B2 · cmin
A1B2 − NA2B1 · cmax

A2B1)
≥ (E1 − E2)(NA1B2 − NA2B1) · cmax

A2B1
≥ 0

(47)

which means it is always verified that c(x0)TxA ≥ c(x0)TxB. □
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