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a b s t r a c t

A novel generative design approach is developed in this study, which produces a mechanically optimized
topological design while simultaneously mimicking an input exemplar texture. The textures are believed
embedding certain functional information intrinsic to these objects. Designing objects similar to these
textures will not only maintain such functions within the design but also widely expand the design space
to explore more design options. However, simple textural replications or reconstructions cannot produce
expected designs as an ideal structure has to adapt to the variations of the complex stress distributions
caused by external loadings. On the other hand, a simple topology optimization formulation under a single
global similarity constraint may produce undesirable structures exhibiting geometric disconnections or
boundary protrusions.

Due to these considerations, the proposed approach carefully formulates the problem as a classical
topological complianceminimization problem under block-wise similarity constraints between the target
design and an input texture. In addition, a novel physics-adaptive regulator is also proposed, which fine-
tunes the block similarity according to its per-element compliances. Ultimately, we can create a set of
design options both physically optimized and geometrically smooth for generative design. Extensive
numerical results were also tested to demonstrate the approach’s performance.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The recent fast development of addictive manufacturing tech-
nologies has allowed designers to directly fabricate structures of
almost arbitrary shapes, and greatly extends the design space. It
on the other hand raises the challenging issue on reliable structure
design for such complex structures, which is almost impossible to
handle successfully even for an experienced designer. Designers
have thus been exploring generative design as a newway of creat-
ing industrial designs [1].With generative design, the designer sets
up a high-level design objective and constraints, and let computers
automatically find various design options best fitting their criteria.
These options may spark creative ideas or even provide the first
draft toward the final design.
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Generative design reshapes the design viewpoints. Actually,
traditional CAD technologies mainly focus on providing a profes-
sional design tool so that the design expert can create an object
step by step based on their professional experience. In this process,
the expert is in charge of the design, and it usually involves tedious
repeated modifications and simulations before reaching the final
design. In contrast, generative design incorporates the computa-
tional power of modern computing facilities and the intuition and
expertise of designers – generating thousands of design options
and the designermaking the final selection. The importance of gen-
erative design has also been recognized and adopted by leading-
edge CAD providers, for example AutoCAD recently released a
generative design software DreamCatcher [2].

Topology optimization [3,4] is deemed as one of the powerful
candidates to realize the concept of generative design. It aims
to optimally distribute the materials within a design domain for
optimized physical performance under certain design constraints.
However, traditional topology optimization approaches are re-
stricted in only providing a very small number of candidate struc-
tures, which limits the designers’ freedom of choices.

On the other hand, textures are widely found in natural or
man-made objects, and are believed embedding certain functional
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information intrinsic to these objects [5]. Designing objects similar
to these textures will not only have chances to maintain such
functions within the design but also widely expand the design
space to explore more design options. However, simple textural
replications or reconstructions [6–8] cannot produce expected de-
signs as an ideal structure has to adapt to the variations of the
complex stress distributions caused by external loadings.

Based on the considerations, we propose in this paper a texture-
guided generative structural design approach that tightly cou-
ples recent advances on topology optimization [4] and texture
synthesis [8]. It automatically creates various design options by
locally mimicking input textural images under some controlling
parameters for ultimate goal of design space exploration. The
proposed approach rigorously formulates the design problem as
a topology optimization problem under a set of block-wise simi-
larity constraints between the design and the exemplar texture.
In addition, a novel physics-adaptive regulator is also proposed,
which fine-tunes the block similarity according to its per-element
compliances. Ultimately, we can create a set of design options both
physically optimized and geometrically smooth for generative de-
sign, as demonstrated via extensive numerical results.

The study is closely related to the previous excellent work con-
ductedbyMartinez et al. [9] on structure and appearance optimiza-
tion for controllable shape design. Different from the present study
on generative design, their work focuses on generating esthetic
structures using input textures under certain physical reliability.
It consequently takes a global shape similarity as the design tar-
get and physical reliability as a constraint. It is able to generate
various attracting and reliable structures, but on the other hand
leaves much space for performance improvement of the generated
structures. It sometime even may produce undesirable structures
exhibiting geometric disconnections or boundary protrusions [9];
as will be shown in Section 3. Thus, the approach in [9] is not
directly applicable for the purpose of generative design, as studied
here. More details on differences between the two approaches will
be shown in Sections 3 and 6.

The remainder of the paper is organized as follows. Related
work is first discussed in Section 2. After this, the problem on gen-
erative structural design is mathematically formulated in
Section 3. The numerical details are respectively explained in
Sections 4 and 5 on optimization approach and similarity regula-
tion. After demonstrating the numerical examples in Section 6, the
paper is concluded in Section 7.

2. Related work

Related work on topology optimization and texture synthesis is
first discussed in this section.

2.1. Topology optimization

Topology optimization aims to find the optimized material
distribution within a design domain for structure performance
optimization. Most previous approaches relax the problem into
a continuous parameter optimization problem using size, den-
sity or shape, and then solve it based on traditional Newton-
type (gradient-based) or evolutionary optimization algorithms.
Classical topology optimization approaches include homogeniza-
tion [10], density-based method (SIMP, Solid Isotropic Material
with Penalization) [11], evolutionary approaches (BESO,
Bi-directional Evolutionary Structural Optimization) [12,13], level
set [14,15], or techniques in B-spline spaces [16]. The SIMP frame-
work is applied here.

Most previous studies on topology optimization are mainly
concerned with certain physical objectives and constraints at a
prescribed volume budget [4]. Studies on topology optimization

problem under geometric constraints are quite very few, andmost
of them focus on thickness control [17] or shape control [18–21]
and seldom consider texture similarity. Recently, including a geo-
metric constraint on self-supporting for addictive manufacturing
attracts widely research interests [22–25].

In contrast, the proposed approach aims to generate different
shape features from a new point of view using planar texture
exemplars via controlling their geometric similarity. Wu et al. [26]
recently also proposed a very interesting approach to generating
a bone-like structure via including various carefully designed ex-
plicit constraints on feature sizes or local volumes. Different from
this, the present study focuses on using an input exemplar image
to guide the topology optimization results without the huge efforts
devoted in designing the control rule, and is applicable to any kind
of features.

2.2. Texture synthesis

Texture synthesis aims to generate a new 2D or 3D texture
from a 2D exemplar image, and is a long-standing topic in image
processing and computer graphics [27]. The initial work was based
on Markov random fields (MRFs) [6,7]. Later, Kwatra et al. [8]
formulated it as an energy minimization problem defined by the
difference between the exemplar and design structure/image. A
similar strategy is also adopted in the current study. Kopf et al. [28]
extended the synthesis from 2D to 3D by sampling on three slices
orthogonal to the x, y, and z axes. However, no physical perfor-
mance was involved in these studies.

A series of excellent work to synthesize textural structures
was recently conducted by Liu and Shapiro [29,30], focusing on
random heterogeneous or anisotropic material properties. These
approaches are mainly based on reconstruction using two-point
correlation functions [31] using statistical material descriptors,
and optimized topology was assumed given in advance.

3. Problem statement

We aim to generate various 2D structures that exhibit opti-
mized physical performance and simultaneously preserve certain
geometric similarity with an exemplar image, as illustrated in
Fig. 1. These automatically generated structures can be provided
as design candidates for experts to select to ultimately meet the
design requirements.

Let I be an input exemplar image,Ω = {Ωe, 1 ≤ e ≤ N} ⊂ R2

be a discrete design domain under consideration made of disjoint
square elements Ωe, as indicated in Fig. 1(b). A vector of discrete
density ρ = {ρe} is defined over {Ωe}, where ρe = 0 or ρe = 1
indicates whether the elementΩe is void or solid.

We aim to find an optimized 0–1 distribution of density ρ,
solid or void, at a certain volume reduction to meet both the
criteria of physical optimality and visual similarity. The physical
property is measured in terms of the body’s stiffness, or reversely
its complianceC(ρ), representing its resistance to deformation. The
geometric similarity, denoted as

SB(ρ) = ∥B − IB∥
r , B ⊂ Ω, (1)

represents theminimal block-wise difference between a block B ⊂

Ω and one of the exemplar image I of the same size IB, whose
concrete computation will be further detailed in Section 5.

Following the classical FE analysis, the problem of generative
structural design is stated as follows: find the optimized density
distribution vector ρ = {ρe} ∈ RN such that

(P) : min
ρ∈RN

C(ρ) = uTK(ρ)u, s.t. (2)
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Fig. 1. The problem of texture-guided generative structural design: given a certain design problem and exemplar textures, various structures, such as those in (d) and (e),
are created using the proposed approach.

⎧⎪⎨⎪⎩
K(ρ)u = f(ρ), u ∈ Rn,

V (ρ) ≤ νV0,

SB(ρ) ≤ δB, B ⊂ Ω,

ρe = 0 or 1, e = 1, . . . ,N.
Here, u ∈ Rn is the vector of the nodal displacement to be com-
puted,K(ρ) is the overall stiffnessmatrix, f(ρ) represents the nodal
external loadings, V (ρ) is the volume of the computed structure,
and ν is the desired volume fraction, or specifically,

K(ρ) =

N∑
e=1

Ee(ρe)K0
e ∈ Rnn, (3)

V (ρ) =

N∑
e=1

ρeVe, Ve = Vol(Ωe), (4)

and

Ee(ρe) = Emin + ρp
e (E0 − Emin), (5)

where K0
e is the unit per-element stiffness matrix, E0 is the Young’s

modulus of the material, Emin is a very small modulus assigned to
void regions to avoid singular stiffness matrix, and p is a penalty
factor (typically p = 3) introduced to produce a near black-and-
white solution.

Note here taking the input textures, the volume fraction ν, and
the similarity bound δB as design parameters will provide various
optimized design options for generative design.

3.1. Discussions

Several other options may be chosen to formulate the problem,
for example,

(Pλ) : argmin
ρ

(Sa(ρ) + λC(ρ)), for a constant λ, (6)

or

(PG) : argmin
ρ

(Sa(ρ)), s.t. C(ρ) ≤ Cmax, (7)

where Sa(ρ) is the global similarity measure set as the average of
SB(ρ), that is,

Sa(ρ) =

∑
B⊂Ω SB(ρ)

M
, (8)

whereM is the number of blocks in the domain, Cmax has a default
value of 1.2CO for an optimized compliance CO derived from clas-
sical topology optimization approach.

Both of the above formulations use the global similarity (8),
and formulation (PG) usually produces better results [9]. However,
neither of the two formulations was chosen here due to following
observations. Using the global measure (8), the optimizer has to
distribute materials into some unimportant regions to maintain
the overall geometric similarity. As a result, it unfortunately will
deteriorate the structural rigidity or even produce a disconnected
structure. Instead, the block-wise similarity SB in P is able to
finely tune the material contribution with respect to each block.
Ultimately, it produces a mechanically more reliable structure,
which is geometrically connected and smooth. Further details are
to be shown in Section 4.

Alternatively, similar as previous studies [26], a soft-max
p-norm was also able to reduce the number of constraints in
problem P . Specifically, it has the following form,

max
B⊂Ω

(SB(ρ)) ≈ ∥SB(ρ)∥p = (
∑
B⊂Ω

Sp
B (ρ))

1
p , (9)

and the texture similarity constraint becomes

SN
B (ρ) =

(
∑

B⊂Ω Sp
B (ρ))

1
p

|{B}|
≤ δB. (10)

However, as our experiment demonstrates, structures induced by
the p-norm aremore plausible to generate uneven tiny or big holes
and to present bigger compliance. It is believed that the aver-
aged similarity of the p-norm is lack of strict local enforcement.
The comparisons between the numerical results is detailed in
Section 6.1.

4. Optimization approach

4.1. Overall approach

Numerical approach to resolve the optimization problem P
in (2) is first explained in this section. It involves two main steps:
best-matching region detection, and density update. The region
matching is based on previous study [8] while the density up-
dating follows a gradient-based optimization and uses the well-
established Globally Convergent Method of Moving Asymptotes
(GCMMA) [32].

In addition, in order to further improve the approach’s con-
vergence and iteration speed, a multi-resolution scheme was also
applied using a similar technique as that applied in [8]. It first
starts from an optimization at a low resolution, and then up-
scales to the next higher resolution using the lower resolution
solution as an initial value. In particular, in order to improve the
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Fig. 2. Framework of multi-resolution optimization.

structure connection of the final produced structure and its global
smoothness, a physics-adaptive similarity regulator is designed.
The overall optimization approach is briefly explained inAlgorithm
1, followed by the algorithmic details.

Algorithm 1 Texture-guided topology optimization.
Input: exemplar image I, texture similarity bound δB, target vol-
ume fraction ν
Output: final deign field ρ

1: Initialize: design field value ρ = ρ0, block size d = d0
2: for each resolution do // according to Section 4.2.
3: while∆ρ > ϵ do
4: Compute u in problem P by FEM
5: Detect the best matching IB for each B
6: Compute the texture energy SB(ρ) for each B and the

volume V (ρ)
7: Compute the sensitivities of the objective and con-

straints with respect to ρ using approaches in Section 4.3
8: Do global similarity regulations and histogrammatching

using approaches in Section 5
9: Update ρ via GCMMA using the above computed objec-

tive and constraints, and their associated sensitivities
10: Update up-scale ρ, d = 2d

4.2. Multi-resolution optimization

Amulti-resolution optimization procedurewas applied to avoid
undesirable localminimumand to improve the convergence speed,
as also observed by Kwatra et al. [8]. A three-resolution opti-
mization procedure is applied in this study. It first starts from an
optimization at a low resolution by using design domainΩ , whose
size is set as a quarter of size of the target domain. Meanwhile,
the associated block size for B ∈ Ω is also set as a quarter of the
prescribed one of default value 80. The derived optimized solution
to this low resolution problem was then up-scaled to the next
higher resolution as an initial value to find the next optimized
solution. The up-scaled procedure was achieved using a bilinear
interpolation scheme, both for the design domainΩ and the block
B. The framework of multi-resolution optimization about a bridge
example is shown in Fig. 2.

4.3. Sensitivity analysis and filters

Even with the relaxations from the discrete optimization to
a continuous optimization problem, the topology optimization P
in (2) is still very challenging due to the inclusion of the nonlinear
similarity constraint,which results in an overall complex nonlinear
and nonconvex optimization problem. The classical optimal crite-
ria (OC) approach is not applicable to resolve this issue because of
the additional similarity constraint. Due to these considerations,
the well-established optimization approach GCMMA was applied
here [32]. It approximates the original nonconvexproblem through
a set of convex subproblems by using the gradients of the optimiza-
tion objective and constraints with respect to the design density.
Details are explained below.

The approach depends on computation of the derivatives of the
objective function C(ρ) and constraintsSB(ρ), as defined inP in (2),
with respect to the density ρe. They are derived as follows:

∂C(ρ)
∂ρe

= −pρp−1
e (E0 − Emin)uT

eK
0
eue, (11)

∂V (ρ)
∂ρe

= Ve/N, (12)

∂SB(ρ)
∂ρe

=
2wB(B − IB)

δB
, (13)

where N is the number of discrete elements Ωe. The derivative of
similarity constraint in Eq. (13) is based on the similarity expres-
sion later given in Eq. (19).

The direct use of the above-derived sensitivities usually pro-
duces undesired structures of checkerboard patterns and large
regions of gray scale. To avoid this issue and to ensure solution
existence, the above-computed sensitivities were further filtered
by the following approach.

Let

ρ̃e =
1∑

i∈De
Hei

∑
i∈De

Heiρi, (14)

whereDe is the set of elementsΩi with distance toΩe smaller than
a given radius rmin, and

Hei = max(0, rmin − ∥Ωi −Ωe∥). (15)

Then the sensitivity can be computed following the chain rule

∂ψ

∂ρe
=
∂ψ

∂ρ̃e

∂ρ̃e

∂ρe
=
∂ψ

∂ρ̃e
·

1∑
i∈De

Hei
Hei, (16)

where functionψ can be the objective function C(ρ) or constraints
SB(ρ) and V (ρ).

In addition, the smooth filter proposed byWuet al. [26]was also
implemented in the approach to ensure a black-and-white solution
and for convergence improvement.

5. Similarity and regulation

Details on defining the similarity measure SB(ρ) involved in
problem (2) are explained in this section. In particular, the physics-
adaptive regulator is defined and its usages are explained.

5.1. Similarity measure

Given a structure ρ and an input texture exemplar image I,
their similarity can be defined by any type of energy whose first
derivatives are available. A sufficient condition for a structure
ρ being similar to an exemplar image I is that all blocks B of
certain prescribed size in the structure are similar to some blocks
in exemplar I. See Fig. 3 for an illustration.

Inspired by this, a local block-wise texture energy, or block-
wise similarity, is proposed for fine-tuned local feature control, fol-
lowing a global energy defined in [8]. Specifically, given a discrete
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Fig. 3. Illustration of the definition of block-wise similarity SB(ρ) between a design
density ρ and an input texture exemplar I for a specific block B.

meshelementΩe, wedefined its associated blockB(Ωe),B for short,
as the set of discrete elementsΩj surroundingΩe, that is,

B(Ωe) = {Ωj | ∥Ωj −Ωe∥ < d/2, Ωj ∈ Ω}. (17)

Let IB ⊂ I be a neighborhood of size d in I that is the most
similar to B in terms of the p-norm in Euclidian space. We defined
the texture similarity energy of Bwith respect to IB as normof their
point-wise density difference, that is,

SB(ρ) = ∥B − IB∥
r
= (

∑
e∈B

(Be − Ie)r )
1
r . (18)

In practical computation of SB(ρ), we build a KD-tree of textures
and find the best matching neighborhood IB for every B ⊂ Ω ,
based on a previous approach in [6,7]. It has an average time
complexity of searching of O(logM), for the block numberM in the
domain. Using KD-tree to find nearest neighborhood can efficiently
eliminate the large portions of the search space.

In addition, it is desirable not to considerably change block B
if it is already close to IB. Therefore, we set exponent r = 1.2,
which allows the optimization to be more robust against outliers,
following a strategy similar to that used in [8]. Alternatively, we
apply iteratively re-weighted least squares (IRLS) [33] on similarity
measure SB(ρ) and Eq. (18) becomes

SB(ρ) = ∥B0 − I0
B∥

r−2
∥B − IB∥

2
= wB∥B − IB∥

2, (19)

where weightswB are taken as constants in each iteration step and
evaluated using the value of B0 and I0

B in the last iteration. Note also
IB is the parameter to be determined in the optimization process.

In practice, in computing the solution to problem P , only a
subset of {Ωe} is considered to reduce the computation efforts.
The subsets are supposed to sufficiently overlap with each other,
and are empirically chosen to comprise block centers d/4 apart, as
indicated in Fig. 3; similar strategy was also used in [8]. This choice
prevents the final generated structures from becoming extremely
blurry in regions between overlapping blocks.

Fig. 5. Comparisons between structures generated based on block-wise similarity
and geometry-adaptive similarity for theMBB example in Fig. 1. The exemplar is on
the bottom left in (a).

5.2. Similarity regulation

Directly utilizing the block-wise similarity measure (19) in the
optimization problem P still has difficulty in balancing the com-
pliance minimization and geometric similarity, and may produce
disconnected regions; see for example in Fig. 5(a). And the unde-
sirable protrusions are to be improved via a novel physics-adaptive
similarity regulator as detailed below.

Block-wise geometry-adaptive regulation. First consider the exam-
ple in Fig. 5(b) as a failed example first shown in [9]. In order to
resolve issue, the priority of each block in contributing to the final
design is further included in Eq. (19), where the similarity require-
ment is less enforced for nearly void region.We consequently have
the regulated geometry-adaptive similaritymeasured as follows,

SG
B (ρ) = bBwB∥B − IB∥

2, (20)

where bB is a weighted positive real value to indicate the contribu-
tion of each block, that is,

bB = (
∑
e∈B

ρe)/|B|, (21)

Fig. 4. Different similarity measurements produce very different optimized structures. The block-wise geometry-adaptive similarity may produce structures exhibiting
protrusion outlined in red in (a). The physics-adaptive similarity produces a mechanically sound and geometrically smooth optimized structure . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Given a complex and sharp texture in Fig. 1(a) and certain design problem
in Fig. 1(b), the structure generated by geometry-adaptive regulation has many
undesirable protrusions in red boxes in (a). But physics-adaptive regulation still
produces smooth structure . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

where |B| stands for the number of elements in block B. The regu-
lation is block-wise and the similarity measure SG

B (ρ) is computed
per-element.

Using the novel geometry-adaptive regulated similarity, a re-
gion connected and mechanically stable structure is created as
shown in Fig. 5(c). Its structural compliance is also smaller than
those derived by the other two approaches (Fig. 5(a) and (b)). Note
that the work of Martinez et al. [9], as similarly defined in PG, does
not seek tominimize the compliance explicitly, but only constrains
it to stay below a given threshold.

Physics-adaptive regulation. The above geometry-adaptive simi-
larity in Eq. (20) helps resolve the structural connection issue
but may still produce unsmooth structures. See for example the
undesirable protrusions in red boxes in the optimized structure in
Fig. 4(a).

Taking a close observation of the per-element compliance dis-
tribution in Fig. 4(b) — the undesirable local regions have very
small compliance. In addition, we also notice that the geometric
smoothness is essentially a natural consequence from mechanical
soundness, as can also be observed from the various structures
derived via classical topology optimization approaches. Based on
the observations, we can thus design a physics-adaptive regulator
to further adjust the similarity measure in Eqs. (20), which takes
the following form,

SP
B (ρ) = bBwB

∑
e∈B

∥ce(Be − Ie
B)∥

2, (22)

where ce is the compliance of each element Ωe in block B. Using
the novel similarity ultimately produces the structure in Fig. 4(d)
of smooth boundary.

Smooth boundary is guaranteed and it does not rely on the inte-
rior smoothness of the texture. Even for complex and sharp texture
in Fig. 1(a), physics-adaptive regulation still work, as shown in
Fig. 6.

5.3. Histogram matching

Direct application of the above-mentioned approaches may
produce some blurry blending or aberrant elements. We further
resolve this issue by adopting position and index histogrammatch-
ing of global statistics, first proposed by Kopf [28]. Kopf also dis-
covered that the histogram matching could avoid local minimum
and match exemplar better, meanwhile dramatically improving
the convergence of the iteration.

Technically, let Hρ and HI be the histograms of ρ associated to
domainΩ and the input exemplar image I. We define a modified

weight w̃B involved in (19)

w̃B =
wB

1 + max(0,Hρ(IB) − HI(IB))
, (23)

where, Hρ(IB) stands for the number of IB being chosen as best
matching neighborhoods for all sample blocks in the density field
ρ, HI(IB) counts the number of neighborhoods in I geometrically
similar to IB. The corresponding regulated similarity is then de-
fined

SG
B (ρ) = bBw̃B∥B − IB∥

2, (24)

or

SP
B (ρ) = bBw̃B

∑
e∈B

∥ce(Be − Ie
B)∥

2 (25)

6. Experiments

The proposed approach was implemented in MATLAB on a
computerwith an Intel Core i7, 3.7 GHz CPU and 32GBRAM. All the
design domains are assumed comprising of materials of Poisson’s
ratio ν = 0.3, Young’s modulus E0 = 1 and Emin = 1e − 9.
A three-resolution optimization process was adopted. In the first
resolution, the block size is d = 20, and the design domain size
is a quarter of the size of the target domain. The design domain
in the second resolution is half the size of the target domain. In
addition, the iteration step is set 100 in the low resolution, 150 in
the middle resolution, and 50 in the high resolution. Experiments
show that the settings generally result in a convergent solution.
The associated computation time is also summarized in Table 2.

All the examples use the physics-adaptive regulator (22) except
the one in Fig. 12 using geometry-adaptive regulator in (20).We set
by default the similarity bound δlow = 3.5 in the low resolution,
δmiddle = δlow + 0.3 and δhigh = δmiddle + 0.3, as involved in (2).

The smoothness of the derived structures is quantitativelymea-
sured using the number edges of its outer boundary, extracted
using Sobel operator detection method [34,35]. The smaller the
value, or less number of outer boundary edges, the more smooth
the structure.

6.1. Overall performance and comparisons

The overall performance of the proposed approach was first ex-
plained using the example in Fig. 7, including its comparisons with
various other possible similarity measures, and its convergence
performance.

Comparison. We first compare the optimized structure obtained
via benchmark topology optimization, direct texture synthesis,
Martínez et al. [9], soft max p-norm similarity, geometry-adaptive
similarity, and the proposed physics-adaptive similarity, respec-
tively shown in Fig. 7(a–f). Table 1 also compares the concrete
values of the derived structures’ compliance, smoothness, running
time using these different approaches.

As can be seen from the results, the structure produced by
geometry-adaptive regulator has the best compliance amongst
them, while simply texture synthesis produces the worst. Notice
that the structure produced via physics-adaptive regulator is very
smooth in its boundary while either the one produced by the
geometry-adaptive one or by Martínez et al. [9] has unwanted
protrusion. We also observe that the running time of the proposed
approach is higher than that of [9]. This is understandable as in-
cluding more design constraints usually results in a more complex
optimization problem. P-norm similarity spends the least time
by reducing the number of similarity constraints. However, the
averaged similarity is more possible to generate uneven tiny or big
holes.
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Fig. 7. Given an exemplar texture and certain design problem in (a), the structures generated by various optimization approaches are produced. In particular, (f) overcome
the difficulties of region disconnections in [9] and removes the protrusions in (c) and (e).

Fig. 8. Convergence curves of the proposed optimization approach on the variations of the scaled structural compliance and associated average similarity energy defined
in (8).

Table 1
Comparison and measurements of different regulation strategies.
Regulation Model Physical performance C Geometry similarity Sa(ρ) Smoothness Total time

Martínez Fig. 7(c) 136.7 3.4 543 3.3
P-norm Fig. 7(d) 139.7 3.4 372 2.4
Geometry- Fig. 7(e) 121.9 4.0 403 10.0
Physics- Fig. 7(f) 132.9 3.7 367 10.0

Table 2
Summary of time costs for the numerical examples.
Figure Model Domain size Exemplar size Simulation time Matching time Total time

Fig. 7 Bridge 200 × 600 200 × 200 0.9 0.4 10.0
Fig. 9 MBB 120 × 720 200 × 200 0.6 0.2 4.1
Fig. 15 Interior 200 × 200 150 × 150 0.8 0.1 2.8
Fig. 16 L-Beam 200 × 200 100 × 100 0.6 0.1 13.7
Fig. 17 Tower 100 × 600 150 × 150 0.9 0.1 10.8

*Times measured in minutes.

Convergence. We further explore during the iteration process the
variations of the structural compliance and the averaged similarity
energy in (8), and depicted it in Fig. 8. Since the size of design
domain has changed during themulti-resolution optimization pro-
cess, we scaled accordingly the base element’s stiffness matrix for
consistent comparison across different resolutions.

We can observe from the results, abrupt compliance jumps
happen in the highest resolution, but it does not change the overall
convergence of the whole optimization approach. In addition, the
similarity curve (about average similarity energy Sa(ρ) in (8))

remains flat during the whole iteration steps. This interesting
phenomenon indicates that the similarity requirement is generally
satisfied during the optimization process.

6.2. Effect of optimization parameters

We further test for problem (2) in this section the effect of
the design parameters, specifically similarity bounds δB, volume
fractions ν and input exemplars, in generating different
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Fig. 9. Numerical results on different similarity requirements for the MBB example in Fig. 1. The volume fractions v = 0.5.

Fig. 10. Numerical results on different volume fractions for the MBB example in Fig. 1. The similarity bounds δB = 3.5.

Fig. 11. Numerical results on hole size control for the MBB example in Fig. 1. The volume fractions v = 0.5, and the texture similarity bounds δB = 3.0.

optimized structures. The MBB example in Fig. 1 is used for this
test.

Different similarity bounds δB. In this test, the similarity bounds
δB are respectively set 4.5, 3.5, 2.0 and 0.01, and their associated
optimized structures are shown in Fig. 9(a–d). The benchmark
structure produced via classical topology optimization approach is
also shown in Fig. 1(c) for comparison. We can see from the results
that δB nicely balances the geometric similarity and structural
compliance. As δB decreasing from (a) to (d), the similarity require-
ments are enforced more strictly, producing structures of better
appearance approximations but of large compliance or equiva-
lently worse physical performance. These different structures may
apply to different design purposes.

Different volume fractions ν. In this test, we keep the similarity
bound δB = 3.5 unchanged and the volume fractions ν are respec-
tively set 0.45, 0.50, 0.55, 0.60. The produced structures are respec-
tively shown in Fig. 10(a–d). As can be seen from the results, as the
material volume ν increases, more solid regions start to appear in
the optimized structures of smaller associated compliance.

Different block sizes b. The block size b is up-scaled to the next
resolution in our approach, as described in Section 4.2. This is
different from previous approaches that used fixing block size
across different resolutions so that blocks at the low resolution
cover more spatial extent. In order to explore their difference, we
also show the result in Fig. 13 at fixing block size b = 20; see its
comparison of up-scaled size in Fig. 9(b). Some undesired protru-
sions are also observed in the results in Fig. 13. Their respective

constraint numbers are 1450 and 46, taking time 135.9 mins and
4.1 mins to obtain the result. As we can see, the case of fixing block
size dramatically increases the number of constraints, which leads
to larger computational time.

Effect on hole sizes. Adjusting the sizes of an input exemplar image
via up-scaling the input exemplar, as shown in Fig. 14, is also able
to control the hole sizes of the optimized structures for different
design purposes (see Fig. 11). In this example, the target volume
fraction ν is 0.5, and the similarity bound δB is 3.0. As can be seen
from the results, the holes in the produced structures becomes
larger as the input exemplar size increases. In addition, the overall
porous structuresmaintain their similarity with the different sized
input textural exemplars, demonstrating the effect of the proposed
approach.

Effect on structural thickness. The proposed approach’s ability in
controlling structure thickness is tested and shown in Fig. 12. In
this example, the similarity bounds δB = 2.1, the target volume
fractions are respectively 0.5 and 0.6. This time, we particularly
choose the geometry-adaptive regulator for better geometric sim-
ilarity. The produced structures demonstrate their close geometric
similarity to the input exemplar images in all the cases, while si-
multaneously exhibiting close compliance to the benchmark result
produced by classical topology optimization.

6.3. Different design problems

Effect of interior design at distributed forces. The square examples
at distributed forces in Fig. 15 are tested. The volume fractions are
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Fig. 12. Numerical results on thickness control on the MBB example in Fig. 1. The exemplars size is104 × 99, and the texture similarity bounds δB = 2.1.

Fig. 13. Numerical results on fixing the block size across different resolutions (C =
428.0, times = 135.9 mins).

set 0.5, 0.6 and 0.7, and the associated structures are respectively
shown in Fig. 15(d–f). The complex boundary conditions raise
further optimization challenges, and expected examples were also
produced for the various design cases.

Effect of L-Beam example. We also test the approach’s performance
on the classical L-Beam in Fig. 16, which does not have left–right
symmetry. In this example, the block size d is maintained the same
in the middle resolution to achieve more delicate texture control,
and it is scaled three times in the highest resolution to reduce
the constraint number. Its comparison with the classical topology
optimization result in Fig. 16(b) shows that the proposed approach
also works well in such case.

Effect of tower example. Themore complex example of a simplified
Eiffel Tower is also conducted to further test the approach’s per-
formance. The problem was constructed based on the study of the
Johns Hopkins University3 and Warshawsky [36]. In this example,
the two solid areas inside the tower are designed to imitate the
platforms for man riding. Three types of loads act on the Eiffel
Tower: its ownweight, the weight of people andmachinery on the
platforms andwind load. The tower-weight is indicated by the two
red arrows, and the bottom is twice as that of the top to indicate
their gravity weight relation. The wind load is equivalent to an
idealized point load acted at the top and halfway up the tower, and
indicated by the blue arrow.

The produced structures are shown in Fig. 17, compared with
the benchmark topology optimization result. As we can see, apart
from well-balanced appearance similarity, all the derived struc-
tures showed close structure compliances to that of the benchmark
topology optimization result. We particularly notice that the com-
pliance of generated structure in Fig. 17(c) even demonstrates a
smaller compliance (better structure) than that of the benchmark.

6.4. Generative design

Using different input textures and controlling parameters ν, δB
is able to produce huge amount of optimized structures for
generative design. One of the results is shown in Fig. 18 for the
Bridge example in Fig. 7. For every group of structures, the input
texture is shown on the bottom left, and the corresponding struc-
tural compliance and design parameters are also shown below
each figure. These generated various structures provide a large
range of design candidates for the designer.

As can be observed from the results, the approach is able to
adapt to various kinds of textures, subject to certain similarity

3 Perspectives on the Evolution of Structures, http://www.ce.jhu.edu/
perspectives/studies/Eiffel/%20Tower/%20Files/ET_Loads.htm.

Fig. 14. Generating exemplars of different sizes via up-scaling, from sizes
100 × 100 to 150 × 150.

Fig. 15. Numerical results on constraints of different volume fractions for an
interior design at distributed forces. The texture similarity bounds δB = 3.0.

Fig. 16. Numerical results on classical L-Beam. The texture similarity bound δB =

3.0 and the volume fraction v = 0.5.

requirement δB and volume constraint ν prescribed in (2). Gener-
ally the smaller value of the similarity requirement δB, the worse
structure produced with larger compliance. In addition, a larger
value of volume constraint ν allows more material usage, and
thus usually produces better structure of smaller compliance. The
results indicate such consistency in general. We also notice that
it is however not always the case due to the unavoidable local
optimality of topology optimization problem; see for example the
results in the second or last row in Fig. 18 for the cases δB = 3.5
and 4.0.

http://www.ce.jhu.edu/perspectives/studies/Eiffel/%20Tower/%20Files/ET_Loads.htm
http://www.ce.jhu.edu/perspectives/studies/Eiffel/%20Tower/%20Files/ET_Loads.htm
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Fig. 17. Numerical results for simple simulation of the Eiffel Tower. The volume fractions v = 0.45, the texture similarity bounds δB = 5, and the texture exemplar size is
150 × 150.

Fig. 18. Gallery of the generative designs created using different input textures, similarity bounds δB , or volume fractions ν.

7. Conclusion

The paper proposes a novel approach for generative design
via producing various mechanical optimized structures guided by
input image exemplars. The problem was formulated as a com-
pliance minimization problem under a set of block-wise texture-
similarity constraints. Owing to its novel problem formulation and

physics-adaptive regulator, the approach is able to produce
various geometrically and physically reasonable structures, as
demonstrated by various numerical examples.

The proposed approach still have much room for improvement
particularly on the following aspects. Firstly, further taking into
account of texture orientation in the optimization design may
help to align the texture features with the stress distributions to
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further improve its physical property. The recent excellent study
conducted by Liu and Shapiro [30] has demonstrated the usage of
texture orientations and may help to resolve the issue.

Next, the present approach has demonstrated its performance
in various feature controls such as hole size or thickness control,
and produces a structure globally similar to the input texture
image. However, it is not able to accurately control the geomet-
ric features of the structure, for example, requiring its overall
thickness strictly within certain range; see also the results in
Fig. 15. Developing more advanced similarity measures or dif-
ferent controlling techniques may be able to help resolve the
issue.

Finally, the present approach is mainly developed for generat-
ing various 2D structures. Its extension to generating 3D structures
using a single 2D exemplar image will further explore its practical
industrial applications, and is also much more demanding. It in-
volves a topics on generating 3D structures from 2D images [28],
and associated topology optimization approach, not to mention
the much high computational complexity. The topic is under our
present study.
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