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Abstract 

The self-supporting requirement is very necessary in 
additive manufacturing so that the printed structure will 
not collapse during fabrication. Imposing the self-
supporting constraint on topology optimization allows 
for designing a performance optimized structure that is 
ready-to-print, and has recently attracted wide research 
interests. Different from these previous studies focusing 
on topology optimization in a single macro-scale, the 
paper proposes the first approach to constructing a self-
supporting structure within a biscale topology 
optimization framework. It is first observed in this study 
that conducting self-supporting topology optimization 
iteratively for the macrostructure and separately for each 
microstructure is not sufficient to produce an overall self-
supporting structure. As a particular contribution of the 
study, a novel approach to bridge the gap between the 
requirements of self-supporting at the two scales is 
proposed to resolve this issue via distinguishing macro-
elements based on their relative locations. In addition, we 
express the self-supporting constraint as a simple 
quadratic function included in the topology optimization 
in both scales, and a carefully designed convolution 
operator is designed to efficiently implementing its 
detection. Ultimately, a completely self-supporting 
overall structure is generated within a biscale topology 
optimization framework, and extends the potentiality of 
topology optimization for structural design to be directly 
fabricated via additive manufacturing. Performance of 
the approach is also demonstrated via 2D and 3D 
examples. 
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1 Introduction 
Topology optimization and additive manufacturing 

are natural counterparts to each other in that they have a 
very versatile capability of quickly generating and 
realizing new components that did not exist previously 

[1][2]. However, despite the enhanced geometric 
freedom associated with additive manufacturing, specific 
design rules must still be satisfied in order to ensure 
manufacturability. The fabrication overhang angle is an 
example of a rule of paramount importance to ensure that 
the part will not collapse when being fabricated layer by 
layer. A structure satisfying such an overhang angle 
constraint is called self-supporting. Thomas [3] identified 
45 degrees as the typical maximum overhang angle 
through a large number of experiments, for example. 

For a non self-supporting structure, its geometry has 
to be modified or additional support structures need to be 
generated. Modifying the geometry will ultimately 
reduce the structure's physical performance, while 
additional support raises the issues of automatic and 
minimum volume support design [4~9] and further post-
processing activities to remove the unwanted supports. 
Due to these considerations, designing a self-supporting 
structure via topology optimization has thus become very 
important for practical applications and attracts the 
interest of various researchers. Brackett et al. [10] first 
suggested including the overhang angle constraint within 
a structure optimization framework. Various research 
efforts have since been conducted in very recent years, 
mainly based on filter-based SIMP approach 
[1,2,8,11,12,13], as will be detailed later on. These 
studies focus solely on the self-supporting topology 
optimization at the macro-scale. 

In contrast, the paper studies the problem of designing 
a completely self-supporting structure within a biscale 
topology optimization framework. Inspired by biological 
systems, topology optimization can be conducted at both 
the macro-scale and micro-scale, called biscale topology 
optimization, to further improve their structural 
performance [14]. Within this biscale framework, each 
microstructure is associated to a macro-element, and its 
material property is estimated via a homogenization 
approach by performing FE analysis on the 
microstructure [15]. Extending the studies of self-
supporting topology optimization in a single macro-scale 
to a concurrent biscale one will further broaden the 
potentiality of biscale topology optimization for 
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addictive manufacturing. 
However, the extension is nontrivial. It is first 

observed in the study that simply imposing self-
supporting constraint on each single microstructure 
or/and on the overall macrostructure will not produce a 
completely self-supporting structure due to the structural 
gap between the two scales. Specifically, the produced 
whole structure is not completely self-supporting in the 
microscale and may not be directly fabricated via 
additive manufacturing. The issue is resolved via a novel 
approach that performs microstructure topology 
optimization within different regions of design domains 
for differently located macro-elements. Ultimately, a 
completely self-supporting structure is generated in a 
biscale topology optimization framework. Its 
performance is also demonstrated via various 2D and 3D 
benchmark examples. 

We also mention here that various excellent biscale 
topology optimization approaches have been proposed in 
the past, and considers different constraints on the 
microstructures. For example, Huang et al. [14] studied 
totally different microstructures to achieve best structural 
performance while Yan et al. [15] just considers 
microstructures of the same geometry for ease of 
convergence control, storage and fabrication. 
Furthermore, a constraint on material usage may be 
prescribed on the overall structure [15] or respectively on 
each single microstructure [14] for different design 
purposes. In order for the study to be more focused on the 
key issues on resolving self-supporting, we consider the 
case that the microstructures have the same geometry 
under a prescribed volume fraction. Its extensions to 
other cases of biscale topology optimization are to be 
explored in our future work. 

In summary, the main contributions of the study are:  

• The first approach to building self-supporting 
structure within a biscale topology framework, via 
a novel region-restricted topology optimization 
approach for microstructure design. 

• A proper definition of the self-supporting 
constraints as a simple quadratic function included 
in the topology optimization in both scales, together 
with carefully designed convolution operators to 
efficiently implementing it. 

• 2D and 3D benchmark examples to demonstrate 
performance of the approach. 

The rest of the paper is organized as follows. Related 
work is first discussed in Section 2, and the biscale 
topology optimization problem under self-supporting 
constraints is formulated in Section 3. The numerical 
approach to tackle the problem is detailed in Section 4, 
followed by various 2D and 3D examples in Section 5. 
Finally, the paper is concluded in Section 6. 

2 Related work 
Since the first study in the late 1980s [16], various 

topology optimization approaches have been developed 
during the past decades, such as: homogenization [16], 
SIMP [17], BESO [18,19], level set [20,21], or more 
recently IGA [22] and others. See [23] for a recent and 
comprehensive review on this topic. 

Most of the topology optimization techniques mainly 
focus on the one-scale design problem, either for the 
optimal design of macrostructures to improve their 
structural performance or for material design to develop 
new microstructures with prescribed or of extreme 
properties [16,24,25,26]. In particular, the latter assumes 
a periodic base cell distribution so that the macroscopic 
effective properties of the heterogeneous material can be 
averaged or homogenized according to the 
microstructure of the base cell. Such a microstructure 
design approach greatly enriches the availability of the 
material properties. However, material selection is 
actually a complex process involving not only the 
material properties but also the exterior boundary 
conditions. Thus recently, inspired by biological systems, 
people seek to concurrently design both the 
macrostructure and the material properties in terms of 
their microstructures [14,15]. Different from these 
studies, the proposed approach aims to take into account 
of the additional self-supporting constraint into the 
biscale optimization process for direct usage in additive 
manufacturing. 

Actually, imposing various manufacturing constraint 
on topology optimization is a very important topic long 
studied. For example, Vatanabe et al [27] included 
various manufacturing constraints into topology 
optimization, such as minimum member size, minimum 
hole size, symmetry, pattern repetition, extrusion, turning, 
casting, forging and rolling. A recent excellent review on 
the topic is referred to [28]. Recent research efforts have 
also started to explore imposing self-supporting 
constraints into topology optimization due to the 
requirement from addictive manufacturing. Gaynor and 
Guest [11] generated the first self-supporting structure 
from topology optimization via a wedge-shaped filter in 
2014. Later on, a novel and effective filter with smooth 
approximation to the minimum and maximum function 
was used by Langelaar to generate 2D [1] and 3D [2] self-
supporting structures. Qian [12] presented an impressive 
approach to control both the undercut and the minimal 
overhang angle in a density-based topology optimization 
approach. Guo et al [13] included the self-supporting 
constraint as a set of explicit geometry parameters a 
topology optimization frameworks. A projection method 
in homogenization-based topology optimization was also 
recently prosed by Groen et al [29] to obtain 
manufacturable structures. In addition, Wu et al [8] 
solved the issue in a different viewpoint, via creating a 
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novel rhombic cell that can automatically satisfy the 
overhang constraint. Wang et al [30] overcame the 
difficulty of fabricating voids inside a solid via a support-
free hollowing framework.  Xie and Chen recently also 
generated support-free interior carving for 3D printing 
[31]. Impressive results were produced by the previous 
approaches. Different from these studies, imposing the 
self-supporting constraint within a biscale topology 
optimization framework is first studied here, built on our 
previous study on self-supporting topology optimization 
in macro-scale [32]. 

3 Problem statement and approach 
overview 

In this section, the problem of biscale self-supporting 
topology optimization is mathematically formulated, and 
an overall approach to resolve it is explained. The self-
supporting constraint is described here as a simple 
explicit quadratic function, and can be easily included in 
a topology optimization approach [32]. 

3.1 Definition of self-supporting constraint 
The supported elements generally mean the structural 

elements that can be fabricated via additive 
manufacturing technologies without collapse during the 
fabrication process. They are defined here using a 
concept of a maximum printable supporting angle, or 
overhang angle, which is assumed to be 45 degrees, in 
accordance with a previous study [10]. Extensions of the 
approach to general overhang angles are also explained 
later. We assume in this section that the printing direction 
follows the positive-y axis direction, for ease of 
explanation. 

Suppose we have a set of 2D discrete square element 
labeled as 

ℳ = {(n, m)|1 ≤ n ≤ N, 1 ≤ m ≤ M }. (1) 

where n, m are the indices increasing along the x and 
y axes, respectively. We also use e to represent a square 
element without explicitly mentioning its indices n, m. 

In addition, a density matrix 𝛒𝛒 of size N × M is also 
associated to ℳ, where an entry value 𝛒𝛒(n, m) = 1 or 0, 
respectively, representing a solid or void element. 

 
Figure 1. An element (in orange) can be supported by 
one of the three supporting elements in blue. 

As illustrated in Fig.1, given a density 𝛒𝛒 , a solid 
element (n, m) ∈ ℳ  (in orange), it is supported, or 
called a supported element, if at least one of the three blue 
elements beneath it is solid. We formulate the self-
supporting condition in a continuous form as follows: an 
element (n, m) ∈ ℳ  is supported if its associated 
density matrix 𝛒𝛒 satisfies 

� 𝛒𝛒(𝐫𝐫,𝐦𝐦−𝟏𝟏)
{n−1< r< n+1}

> 0. (2) 

Correspondingly, the supporting set ℳ𝑆𝑆(𝛒𝛒) 
associated to 𝛒𝛒 is the set of all its supported elements, 
that is, 

ℳ𝑆𝑆(𝛒𝛒) = {(n, m) ∈ ℳ|m = 1  
or � 𝛒𝛒(𝐫𝐫,𝐦𝐦− 𝟏𝟏)

{n−1< r< n+1}

> 0}. 
(3) 

Correspondingly, the set of unsupported elements to 
𝛒𝛒 is denoted 

ℳ𝑈𝑈(𝛒𝛒) = ℳ\ℳ𝑆𝑆(𝛒𝛒). (4) 

The self-supporting constraint, as first introduced in 
[32], is formulated below in terms of controlling the sum 
of squares of the unsupported elements' densities 𝛒𝛒 under 
a very small positive value τ 

𝑈𝑈(𝛒𝛒) = � 𝛒𝛒𝐞𝐞
𝑒𝑒∈ℳ𝑈𝑈(𝛒𝛒)

2
≤  ϵ. 

(5) 

3.2 Biscale topology optimization under self-
supporting constraint 

Different from previous studies on topology 
optimization under self-supporting constraint at a single 
macro-scale, the self-supporting constraints on the 
microstructure are required. Direct optimization in the 
microscale is very computationally challenging, and we 
hope to resolve it in a biscale topology optimization 
framework. To properly state the problem, the self-
supporting constraints are imposed both on the macro- 
and micro- structures, within the biscale topology 
optimization framework. Its further algorithmic 
improvement to produce an overall self-supporting 
structure in micro-scale will be further explained later. 

In order that the paper is more focused on resolving 
the biscale self-supporting issue, it is assumed here that 
all the microstructures exhibit the same geometry all 
under the same prescribed volume constraint. Similar 
topic, without considering self-supporting constraint, 
was also studied in previous work [36]. 

Consider a design domain Ω under certain boundary 
conditions and external forces, as illustrated in Fig.2. 
Each macro-element is composed of a micro structure ω, 
which is assumed homogeneous throughout the macro-
object Ω . The distribution of the macro-element is 
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described via a macro-density 𝛒𝛒, and the distribution of 
micro-elements in ω is described via a micro-density 𝐱𝐱. 
The optimization objective is to find the optimal 
topologies for both the macrostructure and the micro-
structures, so that the resulted biscale structure has the 
minimal compliance under certain volume constraint. In 
addition, the self-supporting constraint is required at both 
the macro- and micro- scales. 

 
Figure 2. The problem of biscale topology optimization 
problem. 

The problem is mathematically formulated as: find 
the optimal density distribution of 𝛒𝛒 , describing the 
macrostructure Ω, and distribution of 𝐱𝐱, describing the 
microstructure ω, satisfying 

min
𝛒𝛒,𝐱𝐱

𝑐𝑐(𝛒𝛒, 𝐱𝐱) = 𝐮𝐮T𝐊𝐊(𝛒𝛒, 𝐱𝐱)𝐮𝐮, 𝑠𝑠𝑠𝑠 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝐊𝐊(𝛒𝛒,𝐱𝐱)𝐮𝐮 = 𝐅𝐅,

� 𝛒𝛒e ≤ VA
1≤e≤NA

,

� 𝐱𝐱e ≤ VI
1≤e≤NI

,

𝛒𝛒min ≤ 𝛒𝛒e ≤ 1, e = 1,⋯ , NA,
𝐱𝐱min ≤ 𝐱𝐱e ≤ 1, e = 1,⋯ , NI,

𝑈𝑈(𝛒𝛒) = � 𝛒𝛒𝐞𝐞
𝑒𝑒∈ℳ𝑈𝑈(𝛒𝛒)

2
≤  ϵ1,

𝑈𝑈(𝐱𝐱) = � 𝐱𝐱𝐞𝐞
𝑒𝑒∈ℳ𝑈𝑈(𝐱𝐱)

2
≤  ϵ2.

 

(6) 

where 𝐮𝐮  is the vector of global displacements, the 
objective function c  is the compliance of the resulted 
biscale structure, 𝐅𝐅 is the nodal force vector, VA, VI are 
the prescribed volume usage, NA ,  NI  are element 
numbers at the macro-scale and micro-scale, respectively, 
and ϵ1 and ϵ2 are prescribed error bounds. 

In addition, 𝐊𝐊(𝛒𝛒, 𝐱𝐱) is the overall stiffness matrix at 
the macro-scale, defined as 

𝐊𝐊(𝛒𝛒, 𝐱𝐱) = �𝛒𝛒e
p

𝐍𝐍A

e=1

𝐊𝐊0(𝐱𝐱), 
(7) 

p (usually set as p = 3) is the penalty parameter, and 
𝐊𝐊𝟎𝟎 (𝐱𝐱) is the elemental stiffness matrix defined as 

𝐊𝐊0(𝐱𝐱) = � 𝐁𝐁T𝐃𝐃MA(𝐱𝐱)𝐁𝐁dω
ω

, (8) 

where 𝐁𝐁  is the strain-displacement matrix at the 
macro-scale, 𝐃𝐃MA(𝐱𝐱)  is the stiffness tensor of a solid 
element computed via homogenization for a 
microstructure ω, 

𝐃𝐃MA(𝐱𝐱) =
1

|ω|� 𝐱𝐱p𝐃𝐃MI(𝐈𝐈 − 𝐛𝐛𝐛𝐛)dω
ω

= 𝐱𝐱p𝐃𝐃MA, (9) 

where 𝐃𝐃MI is the micro element stiffness tensor, 𝐛𝐛 is 
the micro strain-displacement matrix, and 𝐛𝐛 is the vector 
of micro nodal displacement. 

Note that the self-supporting constraint is essentially 
required for the overall microstructures, instead of 
respectively at the macro- and micro- scales. Actually, 
the requirements in Eq.(6) are not sufficient to produce 
an overall self-supporting structure in the micro-scale. 
The is because that the self-supporting constraint is 
imposed on each microstructure separately ignoring the 
inter-dependence between them.  Additional strategy has 
to be further proposed to resolve the issue, as detailed 
next. 

3.3 Overall approach 
The biscale topology optimization problem is solved 

by iteratively computing the self-supporting structure at 
the macro-scale and micro-scale for minimal compliance 
of the overall structure. The optimization algorithm uses 
the classical MMA (Method of Moving Asymptotes) [37]. 

The overall procedure is depicted in Fig.3, and also 
explained below. 

 
Figure 3. The flowchart of alternating iteration 
between two the macro- and micro- scales. 

When computing in the macro-scale with a previously 
computed macro- density 𝛒𝛒, the micro-structure density 
𝐱𝐱 is assumed fixed. The associated elasticity tensor 𝐃𝐃MA 
for 𝐱𝐱  with respect to a macro- element can then be 
computed using homogenization approach, as described 
in Section 3.2. Then, the unsupported elements ℳ𝑈𝑈(𝛒𝛒) 
are detected via an efficient convolution operator, which 
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correspondingly gives the self-supporting constraint 
𝑈𝑈(𝛒𝛒).  After performing sensitivity analysis of the target 
and constraint with respect to the macro density 𝛒𝛒, as 
further explained in Section 4.2, the MMA optimizer is 
applied to produce a self-supporting macro- structure 
until convergence. 

Subsequently, when updating the micro-density 𝐱𝐱 , 
the the macro- density 𝛒𝛒 is fixed. In order to bridge the 
self-supporting gap between the macro- and micro- 
scales, the macro-elements are classified into different 
types to produce self-supporting microstructures via 
topology optimization. Specifically, different design 
domains are selected for the these different types of 
macro-elements. After this, the overall optimization 
procedure just has one main difference from the macro-
scale case - we need to compute the sensitivity of the 
optimization target and constraint with respect to the 
micro- density 𝐱𝐱, instead of the macro- density 𝛒𝛒. The 
chain rule will be involved in the step. 

These two optimization procedures at the macro- and 
micro-scale are iterated until the optimization target 
𝒄𝒄(𝛒𝛒, 𝐱𝐱)  converges, ultimately producing the final 
optimized self-supporting structure. 

4 Algorithmic aspects 

4.1 Unsupported element detection 
The problem in Eq.(6) requires detecting the un-self-

supported elements U(𝛒𝛒) or U(𝐱𝐱). A direct enumeration 
would be very time-consuming, and a convolution 
operator is further introduced below to accelerate the 
detection process [32]. An acceleration of 10 times is 
observed experimentally owning to the usage of the 
convolution operator. 

Its usage is based on the observation that an element 
is supported if the summation of the densities of its 
supporting elements is larger than zero. Thus, noticing 
that the overhang angle is 45 degrees, we introduce the 
following 2D self-supporting convolution kernel matrix 
𝐇𝐇0, 

𝐇𝐇0 = �
1 1 1
0 0 0
0 0 0

�. 
(10) 

Accordingly, a new matrix 𝛒𝛒 indicating the supported 
elements can be computed via performing the 
convolution between the density matrix 𝛒𝛒 and 𝐇𝐇, that is, 

𝛒𝛒S = sign(𝛒𝛒 ∗ 𝐇𝐇) ∧ 𝛒𝛒, (11) 

where ∧stands for element-wise boolean "and", 𝛒𝛒 ∗ 𝐇𝐇 
is the convolution between matrices 𝛒𝛒 and 𝐇𝐇, and the 
sign function 

sign(x) = �0, if  x = 0
1, if  x > 0, (12) 

Procedure of performing the convolution operator is 
also depicted in Fig.4. 

 
Figure 4. The discrete convolution procedure in 2D for 
detecting supported elements using the designed self-
supporting Kernel matrix 𝐇𝐇. 

Correspondingly, the matrix 𝐔𝐔  of unsupported 
elements can be computed efficiently as follows, 

𝐔𝐔 = 𝛒𝛒 − sign(𝛒𝛒 ∗ 𝐇𝐇) ∧ 𝛒𝛒, (13) 

where 𝛒𝛒 is taken as a 0-1 matrix. 

4.2 Sensitivities analysis 
First consider the macrostructure design, where the 

microstructure density 𝛒𝛒 is taken as fixed. The overall 
structural compliance can be expanded as the sum of each 
element, that is, 

c(𝛒𝛒, 𝐱𝐱) = 𝐮𝐮T𝐊𝐊(𝛒𝛒, 𝐱𝐱)𝐮𝐮 = �𝛒𝛒e
p𝐮𝐮eT𝐊𝐊0(𝐱𝐱)𝐮𝐮e

𝐍𝐍A

e=1

, 
(14) 

Accordingly, the sensitivity, or the partial derivative, 
of the compliance c with respect to the macro density 𝛒𝛒 
is given: 

∂c
𝜕𝜕𝝆𝝆𝑒𝑒

= p𝛒𝛒e
p−1𝐮𝐮eT𝐊𝐊0(𝐱𝐱)𝐮𝐮e, 

(15) 

where 𝐊𝐊0 is a constant matrix for a fixed 𝐱𝐱, and 𝐮𝐮e is 
the displacement with respect to an element e. 

Next consider the microstructure design, where the 
macrostructure 𝛒𝛒  is taken as fixed. Accordingly, the 
partial derivative of the overall compliance with respect 
to each micro-element density 𝐱𝐱i is derived as follows, 

∂c(𝛒𝛒, 𝐱𝐱)
∂𝐱𝐱i

= �𝛒𝛒e
p𝐮𝐮eT(� 𝐁𝐁T

∂𝐃𝐃MA(𝐱𝐱)
∂𝐱𝐱i

𝐁𝐁dω
ω

)𝐮𝐮e

𝐍𝐍A

e=1

, 
(16) 

In particular, the partial derivative of the stiffness 
tensor computed by homogenization is derived as, 

∂𝐃𝐃MA(𝐱𝐱)
∂𝐱𝐱i

=
p𝐱𝐱p−1 

|ω| �𝐃𝐃MI(𝐈𝐈 − 𝐛𝐛𝐛𝐛i)dω
ω

, 
(17) 

According to the chain rule, the partial derivative of 
compliance c with respect to the micro-density 𝐱𝐱 can be 
derived by substituting (17) into (16). 

The sensitivity of the self-supporting constraint is 
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straightforward, which ultimately results in a linear 
function in terms of the design density $\brho$ in the 
macro- case, that is, 

∂U(𝛒𝛒)
𝜕𝜕𝝆𝝆𝑒𝑒

= �2𝝆𝝆𝑒𝑒 , if  𝑒𝑒 ∈ ℳ𝑈𝑈(𝛒𝛒)
0,      if  𝑒𝑒 ∉ ℳ𝑈𝑈(𝛒𝛒), (18) 

The case in the the micro- density 𝐱𝐱  is similarly 
derived. 

4.3 Types of micro-scale design domains in 2D 
As explained previously, conducting the self-

supporting topology optimization both for the 
macrostructure and for each microstructure cannot 
produce a totally overall self-supporting structure. We 
further classify the macro-elements in 2D into four types 
of design domains to resolve the issue. In addition, a 
novel efficient convolution operator is also introduced to 
classify these types for computational efficiency. 

Consider the example in Fig.5. The derived overall 
structure in the macro-scale after classical topology 
optimization, without considering self-supporting 
constraint, is given in Fig.5(a). If performing one more 
cycle of self-supporting topology optimization at the 
micro-scale, the structure in Fig.5(b) is obtained. Some 
unsupported elements in micro-scale are observed in the 
resulted structure, which are respectively shown in red, 
yellow and orange in Fig.5(b) to indicate their different 
types of locations. Using the proposed approach, on the 
other hand, will produce a completely self-supporting 
structure shown in Fig.5(c). It consists of four types of 
different microstructures depending on the locations of 
their associated macro-scale design domains. 

 
Figure 5. The self-supporting macro- and micro- 
structures: (a) is a self-supporting macro structure, (b) 
is a two-scale self-supporting structure not ready to be 
fabricated and the colored elements cannot be 
supported, (c) is a modified two-scale self-supporting 
structure which can be manufactured, (d) is a self-
supporting microstructure embedded in the black 

elements in (c); (d),(e),(f) are self-support 
microstructures embedded in the orange, red and 
yellow elements in (c) respectively. 

The proposed approach is based on the observation 
that a microstructure cannot be fully supported owing to 
the fact that its bottom elements are not supported. In 
order to resolve this issue, a proper design domain for the 
microstructure optimization within each macro-element 
has to be properly selected. The selection is based on 
relative locations of these macro-elements, and we 
classify them into four different types (see also Fig.6(a)): 
edge-supported(in blue),  left-corner supported(in red), 
right-corner supported(in orange) and two-corner 
supported (in green). Different types determine different 
regions of design domains, as illustrated in orange in 
Fig.6(b-e). 

 
Figure 6. The macro-elements in 2D are classified into 
four types according to the range of their micro-
elements to be supported: edge-supported (blue element 
0), left-corner supported (red element 1), right-corner 
supported (orange element 2), two-corner supported 
(green element 3). The different types determine 
different design domains (in orange) for self-supporting 
microstructure design, as shown in (b-e). 

Directly detecting the four different types of macro-
elements via simple enumeration is very time consuming. 
We further accelerate the process via introducing novel 
convolution operations. Specifically, similar as the 
definition of the convolution kernel matrix 𝐇𝐇0 in Eq.(10), 
the following three convolution kernel matrices are 
introduced: 

𝐇𝐇1 = �
0 0 1
0 0 0
0 0 0

� ,𝐇𝐇2 = �
1 0 0
0 0 0
0 0 0

� ,𝐇𝐇3 = �
1 0 1
0 0 0
0 0 0

�  

 

(19) 

Conducting a convolution operation between the 
density matrix 𝛒𝛒 with each kernel gives 

𝛒𝛒i = 𝛒𝛒i ∗ 𝐇𝐇i, (i = 0,1,2,3), (20) 
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whose entry value indicates the number of elements 
supporting the element in this location. 

We also define an indication matrix δ(𝛒𝛒�, q)  to 
represent whether an entry value of a matrix 𝛒𝛒� is equal to 
a specified value, specifically, 

δnm(𝛒𝛒�, q) = �1, if 𝛒𝛒�(n, m) = q
0, if 𝛒𝛒�(n, m) ≠ q, (21) 

for an integer 0 < q < 3. 
Using the indication matrix δ(𝛒𝛒�, q),  the four types of 

macro-elements can be accordingly determined via the 
following four different types of matrices: 

⎩
⎨

⎧
𝐖𝐖1 = δ(𝛒𝛒0, 1) ∧ δ(𝛒𝛒1, 1) ∧ 𝛒𝛒,
𝐖𝐖2 = δ(𝛒𝛒0, 1) ∧ δ(𝛒𝛒2, 1) ∧ 𝛒𝛒,
𝐖𝐖3 = δ(𝛒𝛒0, 2) ∧ δ(𝛒𝛒3, 2) ∧ 𝛒𝛒,

𝐖𝐖4 = sign(𝛒𝛒0) −𝐖𝐖1 −𝐖𝐖2 −𝐖𝐖3,

 

(22) 

where 𝐖𝐖1 = 1  indicates the set of right-corner 
supported elements, 𝐖𝐖2 = 1  left-corner supported 
elements, 𝐖𝐖3 = 1  two-corner supported elements and 
𝐖𝐖0 = 1 edge-supported elements. 

After identifying these different types of macro-
elements, the self-supporting microstructure 
optimization is performed in each type of corresponding 
design domain, that is, the orange region in Fig.6. In 
addition, in order to control the connectivity between 
adjacent micro structures, the symmetry requirement is 
also imposed on 𝐖𝐖1. 

4.4 Types of micro-scale design domains in 3D 
Extension of the above approach to 3D case follows 

a similar procedure, but has to consider much more types 
of macro-element locations, as explained below. 

 
Figure 7. The macro-elements in 3D are classified into 
sixteen types according to the range that their micro-
elements are to be supported, and have three different 
situations. The first is the one supported right by the 
element beneath it (in (a)), the second is the four basic 
types shown in (b-e). The other types can be seen as 
combinations of these situations shown in (f-p). 

In 3D situation, an element is supported if at least one 
of the five elements beneath it exists, as can be seen in 
Fig. 1(b). Accordingly, the 3D macro-elements can be 
classified into sixteen types according to their relative 
locations, as depicted in Fig.7. They have three different 
situations. The first is the one supported right by the 
element beneath it (in (a)), the second is the four basic 

types shown in (b-e). The other types can be seen as 
combinations of these situations, as shown in (f-p). 
Correspondingly, similar as 2D case, the design domain 
for the self-supporting microstructure optimization can 
be obtained. Fig.8 gives the corresponding design 
domains for the four basic types in  Fig.7(b-e). Other 
cases are obtained as the combination of the four basic 
design domains according to the type of the macro-
elements, and are not further explained here. 

 
Figure 8. The four basic design domains for designing 
self-supporting microstructure. 

4.5 Extensions to general overhang angles 
This above described approach can also be extended 

to deal with cases of general overhang angles larger or 
smaller than 45 degrees. As can be seen in Fig.9(a), if the 
angle is smaller than 45 degrees, only the orange 
elements are chosen as the domain for its associated 
microstructure design. However, the case that the 
overhang angle is larger than 45 degrees cannot be 
similarly handled as this, as it otherwise would produce 
disconnected micro-structures, as illustrated in Fig.9(b). 
In this case, all the FE elements are not generated as 
square or cubic elements, and are instead scaled to 
rectangular domains as shown in Fig.9 (c). 

 
Figure 9. The design domain in a macro-element used 
for self-supporting microstructure generation with 
overhang angle θ different from 45 degrees. 

5 Numerical performances 
Various numerical examples are presented to test 

performance of the proposed approach. For illustration 
purposes, the load and geometry data are chosen to be 
dimensionless. The Young's modulus and Poisson's ratio 
of the solid material are set as E = 1 and υ = 0.3 for all 
examples. The overhang angle is set to 45 degrees and 
the printing direction is selected during each optimization 
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process and marked in each example figure. 

5.1 2D cantilever 
Fig.10 shows the classic cantilever problem in a 

rectangular domain of size 60 × 20 with a concentrated 
vertical loading at the center of the right edge. In addition, 
each macro-element consists of  15 × 15 square micro-
elements. The total number of micro-elements becomes  
900 × 300 in this case. The target volume fraction is 
50% at the macro-scale and 60% at the micro-scale. The 
maximal iteration step is set to 200 at each scale. The 
printing direction is chosen from left to right. 

 
Figure 10. The design domain of a two-scale cantilever 
problem. 

5.1.1 Optimized structure 

The final optimized structure is shown in Fig.11, 
where the macrostructure and the associated 
microstructures, associated to the four different types of 
macro-elements in different colors, are respectively 
shown in (a) and (c-f). Ultimately, the produced print-
ready structure is plotted in Fig.11(b) with its close-up. 
As can be seen from the results, by further classifying the 
four different types of macro-elements in the micro-scale 
optimization process, a completely self-supporting 
structure is produced. 

 
Figure 11. The produced self-supporting biscale 
structure for the cantilever example in Fig.10, where the 
four micro-structures for the four types of macro-
elements in Fig.5 are plotted in the bottom. 

The optimization target, or the compliance, of our 
derived structure is 175.4. We also compare it with two 
other benchmark results. Firstly, we conducted a single-
scale optimization at macro-scale at size 60 × 20 with a 
volume fraction 0.3, which gives a structure of 
compliance 157.6. Secondly, we conducted a single-scale 
optimization at micro-scale at size 900 × 300  with 
volume fraction 0.3, which gives another structure of 
compliance  137.3. As can be seen from the comparison, 
compliance of the derived structure is larger than those 
of the other two. This is reasonable considering the 
additional constraints on self-supporting and on each 
micro-structure; see also Eq.(6). 

5.1.2 Procedure 

The structure is derived by iteratively performing 
topology optimization at the macro-scale and at the 
micro-scale. The entire optimization process takes 1026 
steps to obtain the final multi-scale design shown in 
Fig.11. 

 
Figure 12. The compliance and volume variation during 
the iterations for the example in Fig.11. 
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The convergence curve of the overall iteration 
process is depicted in Fig.12(a). Specifically, during the 
overall steps, the macrostructure topology optimization 
is first conducted with a maximal iteration number of 200. 
The produced structure gives an initial design domain for 
the microstructure topology optimization to start with. 
The micro-scale topology optimization usually 
converges in a few steps, giving an optimal 
microstructure for the current macro-scale design. The 
above described steps are iteratively performed until 
convergence; see also the overall approach in Fig.3. It is 
also interesting to note that the micro-scale optimization 
almost converges without further iterations in the last few 
overall iteration loops. 

Further convergence details on the first macro-scale 
iteration loop and on the first micro-scale loop are also 
respectively depicted in Figs.12(b),(c). In Fig.12(b), the 
blue and orange lines respectively represent variations of 
the compliances and volume fractions. In addition, the 
heights of the gray bars represent the number of 
unsupported elements, where an auxiliary background 
grid shows the height units. As can be observed, the 
compliance first decreases sharply and then falls into a 
stationary state. The number of unsupported elements 
increases at first and then becomes constant, to one or 
zero, after several steps of iterations. 

In Fig.12(c), the red solid line and the dashed line 
respectively represents variations of the compliance of 
the overall structure and the volume fraction of the 
microstructures. Here, the orange dashed line shows the 
volume fraction of first-type elements, the green one 
shows those of the second- and third- type elements, and 
the blue one shows that of the fourth-type elements. In 
addition, the gray bars represent variation of the total 
numbers of unsupported elements. We also note that the 
compliance of the overall structure mainly depends on 
the structure of first-type elements which occupies more 
than $90\%$ of the overall structure, as can be observed 
from the example in Fig.5(b). 

5.2 2D bridge at distributed force 
Fig.13 shows a 2D bridge problem in a rectangle 

domain of size 150 × 50  with a distributed vertical 
loading at the upper edge, and each macro-element 
consists of 30 × 30  square micro-elements. The total 
number of micro-elements becomes 4500 × 1500 in this 
case. The target volume fraction is 40% at the macro-
scale and 60% at the micro scale. The printing direction 
is determined from top to bottom. 

The final produced results are shown in Fig.13, where 
the macrostructure, the produced print-ready structure in 
micro-scale, and the associated microstructures for the 
four different types of macro-elements are respectively 
shown in (a),(b) and (c-f). A close-up of the produced 
print-ready structure at the microscale is also plotted in 

Fig.13(b). The proposed approach produces the expected 
self-supporting structure for the design problem at 
distributed forces. 

 
Figure 13. The design domain of a two-scale bridge 
problem. 

 
Figure 14. The produced self-supporting biscale 
structure for the bridge example in Fig.13, where the 
four micro-structures for the four types of macro-
elements in Fig.5 are plotted in the bottom. 

5.3 3D wheel 

 
Figure 15. The problem of a two-scale 3D wheel is in 
(a). The optimized macro-structure is shown in (b), 
each of which consists of one of the nine types of 
microstructures listed in Fig.16. 

The proposed biscale topology optimization approach 
under self-supporting constraint was also implemented 
and tested for 3D examples. Fig.15(a) shows a 3D wheel 
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problem of size 20 × 20 × 10 , exerted by a vertical 
loading at the center of the bottom. The design domain in 
the micro-scale consists 10 × 10 × 10 unit cubes. The 
total number of volume elements is 4,000,000. The target 
volume fraction is 25%  in macro-scale and 40%  in 
micro-scale. The printing direction is determined from 
bottom to up. The final produced macro-structure is 
shown in Fig.15(b), which consists of 9 types of 
microstructures as listed in Fig.16. The overall structure 
achieved an optimal compliance satisfying the self-
supporting constraint ready to be printed without 
additional usage of support structures. 

 
Figure 16. The computed 9 types of optimal micro-
structures, each of which is embedded in the macro-
elements as a result for the 3D wheel example in Fig.15. 

6 Numerical performances 
As can be seen from the numerical results, an overall 

self-supporting structure of large scale is achieved using 
the proposed approach. This is the first approach that 
includes self-supporting constraint into biscale topology 
optimization both for 2D and 3D cases. Simply including 
self-supporting constraints fir the macro- structure and 
separately for each micro-structure cannot ensure it. It 
has to take into account of the gap between the two scales 
by classifying the macro-elements into four (2D) or 
sixteen (3D) types, and respectively optimize them. A 
carefully designed convolution operator much improves 
the algorithmic efficiency, and a novel and proper 
definition of the self-supporting constraints simplifies the 
optimization procedure. 

The proposed approach can be improved in the 
following aspects. Firstly, due to the homogenization 
approach applied, the structural simulation is not as 
accurate as direct simulation in micro-scale. As a 
consequence, the overall biscale topology optimization 
approach may not converge to a stable solution. In 
addition, the intrinsic average property of the 
homogenization approach does not full take into account 
of the geometry of the microstructure, and thus may even 
produce disconnected micro-structures. More accurate 
biscale numerical homogenization approach, such as FE2 
[38], may help to resolve the issue. 

Secondly, the self-supporting constraint is included 
as a local constraint in the present work. The constraint 

thus may vary when the intermediate generated structure 
varies during the iteration steps, which may raise 
convergence issues. Introducing other approach to define 
the self-supporting constraint and devising an appropriate 
optimization approach is worthy of future research 
efforts. 

Thirdly, the micro-structures, expect for some special 
one, are assumed to be of the same geometry. The 
assumption is made so that the study is focused on 
building an overall self-supporting structure, and to 
bridging gaps between the macro- and micro- scales. It 
however on the other hand also deteriorates performance 
of the final optimized structure. Taking into account of 
micro-structures of different geometries on  the other 
hand will raise various other challenges, such as 
computational efficiency, homogenization accuracy, and 
is to be studied in our future work. 
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