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Abstract

The simulation of the flux spot reflected by a flat heliostat is one of the fundamental problems in the central

receiver system. In this paper, we propose an improved model based on Gaussian distribution assumption to

more faithfully depict the flux density distribution on the receiver reflected by a flat heliostat, which is also the

basis for study of the focusing heliostat. First, an imaginary flux density distribution is modeled by an elliptical

Gaussian function in the image plane coordinate system. The relationship between the standard deviations

of the Gaussian function and the heliostat length and width is revealed. Shading and blocking effects are

carefully considered and addressed. Then, this distribution is mapped to the receiver plane through oblique

parallel projection along the reflection direction of the heliostat based on the law of energy conservation and

calculus. A state-of-the-art GPU-based ray tracing simulation method is adopted, and satisfactory consistency

between the proposed model and the ray tracing result is found. The experiments and comparisons demonstrate

that the proposed model is as efficient as but more accurate than the related Gaussian models.
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1. Introduction

The solar thermal power tower plant, also called the central receiver system (CRS), is attracting worldwide

attention as a renewable energy technology. The electricity generation efficiency and system operation safety

are two major concerns in such a huge engineering project. Specifically, the thermal flux distribution on the

receiver influences both the system efficiency and receiver lifetime, requiring intensive simulation of the flux

density distribution on the receiver in advance. There are mainly two approaches to achieve the simulation

goal, namely, the ray tracing method and the analytical method. In the classical ray tracing-based approach

(Izygon et al., 2011), a sufficiently large quantity of rays has to be traced to obtain an accurate, reliable and

stable result. The number of rays required is directly related to the heliostat size, heliostat-to-receiver distance,

and heliostat microsurface slope error. According to our experiments, approximately 72 million rays are traced

for a 3.2 m × 2.2 m heliostat, which is located 400 m from the receiver. This process takes 46 ms with a state-

of-the-art GPU ray tracing simulation algorithm (Duan et al., 2019) implemented on a desktop PC equipped

with an NVIDIA GeForce GTX 1080 GPU (Graphics Processing Units). By contrast, the analytical method

outperforms the ray tracing method in terms of efficiency by calculating the flux value with an analytical

expression directly.

Regarding the flux simulation problem, a flux density distribution model for the flux spot reflected by a flat

heliostat is of significant importance. Two types of heliostats exist in CRS plants, i.e., flat and focusing he-
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liostats (including spherically or parabolically focusing heliostats) (Garcia et al., 2008). The latter is composed

of well canted flat mirror facets. Thus, an accurate flux distribution model for the flat heliostat forms the basis

to facilitate the composite focusing heliostat study (Chen et al., 2001). However, this task is complex because

the flux spot is determined by many factors, including the sunlight direction, sun shape, and heliostat position,

size, orientation and microheliostat surface slope error, among others. In addition, the shading and blocking

effects are significant concerns that must be considered for accurate flux power prediction. In general, the

analytical method approximates these effects in terms of a convolution. However, a closed-form solution to this

convolution is a hard problem. Researchers have tried to solve the convolution via numerical approximation

(Walzel et al., 1977) or via model simplification (Schmitz et al., 2006). The HFLCAL (short for Heliostat Field

Layout CALculation) model (Schwarzbözl et al., 2009; Garćıa et al., 2015), which falls into the category of

simplified models, is one of the most widely used analytical models with a simple and closed-form expression.

In this paper, we propose an improved model (iHFLCAL, “i” means “improved”) as an improvement of

the analytical models based on Gaussian distribution assumption to analytically describe the flat heliostat

reflected flux spot on the receiver. First, an imaginary elliptical Gaussian function is established in the image

plane coordinate system, taking shading and blocking effects into account and obeying the energy conservation

principle. The relationships between the standard deviations of Gaussian function and the heliostat edges

are established, thus the flux spots are better approximated. Second, the flux density result on the receiver

plane is obtained by projecting the imaginary function onto the receiver plane through an oblique parallel

projection. Abundant experiments and comparisons against a state-of-the-art ray tracing simulation approach,

the HFLCAL related models and the state-of-the-art convolution-based Cauchy model (He et al., 2019) are

conducted. The iHFLCAL model is demonstrated to be efficient and accurate.

The nomenclature used in this paper is as follows:
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Nomenclature

• GPU Graphics Processing Units.

• HFLCAL Heliostat Field Layout CALcula-

tion.

• iHFLCAL improved HFLCAL.

• ID sun direct normal irradiance (DNI).

• Seff heliostat effective reflection surface

area.

• ηaa atmospheric attenuation factor.

• d the distance between the heliostat and re-

ceiver.

• ρ heliostat reflectivity.

• σ standard deviation of Gaussian function.

• cos θ heliostat incidence cosine efficiency.

• cosϕ receiver cosine efficiency.

• r reflection direction of the heliostat.

• N heliostat surface normal.

• N r receiver panel normal.

• c receiver plane center.

• SA microsurface area on the image plane.

• SA′ area of the projected microsurface on

the receiver plane.

• Fh flux density on the heliostat surface.

• Fimg flux density on the image plane.

• Frecv flux density on the receiver plane.

• I the unitary matrix

• SH total heliostat reflection surface area.

• P r the flux power of ray tracing method.

• P a the flux power of analytical model.

• Fmax
r the flux peak of ray tracing method.

• Fmax
a the flux peak of analytical model.

• erms root mean squared error.

• epower the flux power error.

• epeak the flux peak error.

The rest of the paper is organized as follows. Section 2 reviews the relevant work on analytical models for

flux density distribution simulation, including the HFLCAL model and its variations. Section 3 elaborates the

derivation of the model. Section 4 presents extensive experiments and comparisons with the related models

and discusses the properties of the proposed model. Section 5 draws the conclusions and indicates planned

future work.

2. Related work

2.1. Analytical flux simulation models

The analytical models place emphasis on fast simulations that essentially approximate the heliostat reflected

flux spot on the receiver with a statistical function. In that function, multiple factors, including the sun

parameters, heliostat parameters and atmospheric impact, are congregated in the form of convolution.

Biggs and Vittitoe (1976) numerically solved the convolution-based flux distribution expression through

Fourier transformation. Walzel et al. (1977) adopted the 2D Hermite function to statistically simulate the

flux density distribution on the receiver that is reflected by a flat heliostat. The computing time is cut down

to a tenth of that of previous analytical models. Lipps and Walzel (1978) suggested a numerical method to

calculate the flux density distribution of a heliostat of arbitrary shape, taking shading and blocking effects

into account, which is more accurate but less efficient than the Hermite approximation approach. Hennet and

Abatut (1984) established a complex analytical model based on the convolution between the solar disc and
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the principle image of a heliostat on the rece iver. Shadowing effects were addressed by uniformly decreasing

the flux power according to the proportion of heliostat effective reflection surface area. Collado et al. (1986)

proposed the UNIZAR model in the integral form through image plane transition for a focusing heliostat,

which is the convolution of several Gaussian error functions and is thus computationally expensive. He et al.

(2019) proposed the convolution-based Cauchy model with a general and closed-form expression (Closed-form

expression, 2019) to analytically model the flux distribution on the receiver, which can be directly evaluated. A

model simplification may lead to a new solution, e.g., the HFLCAL model. Huang and Yu (2018) proposed to

approximate the flux density distribution of a rectangular focusing heliostat with an elliptical Gaussian model

but provided little discussion about the model parameters with the heliostat curving property.

2.2. Evolution of the HFLCAL model

The HFLCAL model was initially developed for fast annual power generation estimation of a well canted

focusing heliostat and heliostat field layout optimization for a CRS (Schmitz et al., 2006). Schwarzbözl

et al. (2009) published an overview of the original HFLCAL model, which had been acquired by the Ger-

man Aerospace Center (DLR) in the early 1980s. In this model, the flux image reflected by each heliostat

is modeled as a simple circular Gaussian distribution directly defined on the receiver plane, which is a com-

prehensive result of several distribution functions and justified by the central limit theorem (Schmitz et al.,

2006). By calculating the integral of this distribution over the receiver plane, spillage loss is easily obtained,

which is an important criterion for receiver tower height optimization for a specific heliostat field. Landman

et al. (2016) added the effects of the solar beam incidence angle on the heliostat on the Gaussian distribution

function. Since the standard deviation parameter “σ” of the Gaussian function is determined by other factors

and is thus complex to analyze, Collado (2010) optimized “σ” according to the measured data by minimizing

the flux peak difference with the ground truth, i.e., the one-point-fitting method. This model was then applied

to heliostat aiming strategy optimization (Salomé et al., 2013; Besarati et al., 2014). Garćıa et al. (2015)

refined the HFLCAL model and applied it to a flat heliostat by first modeling the reflected image as a circular

normal distribution on the heliostat and then projecting the distribution to the receiver through homography

transformation. This procedure produces a more accurate representation of the tilted flux spots reflected by

most heliostats due to the oblique incidence of the reflected beam on the receiver. Shading and blocking effects

were handled by including a factor which reduces the overall received power. He et al. (2017) proposed a novel

rendering pipeline-based simulation framework developed on the GPU and achieved satisfactory efficiency with

the refined HFLCAL model. Shading and blocking effects were better considered by the z-buffering algorithm;

thus, the flux power was consistent with the ground truth.

3. Model analysis and derivation

A new model based on Gaussian assumption will be derived for the flux spot simulation on a receiver plane,

with emphasis on the derivation of the flux density distribution equation and shading and blocking effects.

3.1. Overview of the model and the coordinate systems

For flux spot modeling purpose, all the heliostats are assumed to be precisely adjusted adopting the azimuth-

elevation mode (Chen et al., 2004) to reflect the sunlight to the center of the receiver.

Four Cartesian coordinate systems (namely, the global coordinate system O-XYZ , the heliostat local

coordinate system o-st, the image plane coordinate system c-xy and the receiver plane coordinate system

c-uv) are employed, as shown in Figure 1a. The global coordinate system O-XYZ is left-handed, which is

consistent with the graphics API (i.e., Direct3D) that we adopt. Its origin is at the tower base, and the X -axis

and Z -axis point to the geographical east and north, respectively. In this paper, the azimuth of the sun is
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defined clockwise from X -axis in degrees, and the elevation is defined upwards from the horizon. The origin of

the receiver plane coordinate system c-uv lies at the center of the receiver surface, and the u-axis is parallel

with the ground. The image plane coordinate system c-xy is perpendicular to the heliostat reflection direction

r , its x -axis is parallel with the projection of the horizontal axis of the heliostat, and y = x × r .

The modeling process consists of two steps. First, an imaginary elliptical Gaussian function is established

on the image plane, which is a virtual plane that passes the center of the receiver and is perpendicular to

the reflection direction of the heliostat. Then, this function is projected to the receiver plane through an

oblique parallel projection (Figure 1b). Thus, the flux density distribution on the receiver is obtained, and

the distorted flux spot, i.e., typically of anisotropic elliptical Gaussian distribution pattern, is well described.

The flux density distribution equation is deduced according to the energy conservation principle, geometrical

relationships between the heliostat and the receiver, and calculus.
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Figure 1: Overview of the model: (a) four coordinate systems (global coordinate system O-XYZ , heliostat coordinate system
o-st, image plane coordinate system c-xy and receiver plane coordinate system c-uv ) are adopted for the modeling purpose, and
(b) the final flux spot on the receiver is the projection of an imaginary elliptical Gaussian distribution function defined in the
image plane coordinate system, which is modeled according to the heliostat projection silhouette on the image plane.

3.2. Flux spot analysis

From a theoretical point of view, the flux spot on the receiver is influenced by many factors (Lovegrove and

Stein, 2012), including the sunlight direction, sun shape, heliostat position, size, orientation, and microsurface

slope errors, among others, as shown in the schematic drawing in Figure 1b. The sunlight beam reflected by

the heliostat is scattered due to the imperfect reflection of the practical mirror surface, which is subjected to

the heliostat slope error and commonly modeled as a Gaussian-distributed function in the hemisphere in front

of the surface. In computer graphics, the Beckmann distribution model (Katzin, 1963; Cook, 1982) perfectly

describes the reflectance of microfacets of the mirror, which is a physically based model and depicts the intensity

distribution of the reflected light as a Gaussian pattern. The diffusion phenomenon of the reflected light beam

becomes more evident as the mirror slope error or the distance between the heliostat to the receiver increases,

in which the scattering effect caused by the heliostat microsurface and sun shape takes the dominant position

relative to the heliostat size. On the other hand, according to the central limit theorem (Central limit theorem,

2018), the sum of these independent effects tends toward a normal distribution on a plane that is perpendicular

to the reflection direction, i.e., the image plane, which is consistent with the ray tracing-based simulation

statistical results. Finally, the proportion of the projected edges of the rectangular heliostat on the image

plane should be considered (Figure 2). In summarize, it is more reasonable to first approximate the imaginary

flux spot on the image plane with an elliptical Gaussian function and then map this spot to the receiver.
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Figure 2: The assumption of an elliptical Gaussian distribution pattern on the image plane is more reasonable than a circular
Gauss to depict the flux spot reflected by a flat rectangular heliostat: (a) a rectangular flat heliostat reflects the sunlight to a
vertically placed receiver; (b) comparison of the normalized flux density contours of the ray tracing result, the results based on
elliptical Gaussian assumption and the circular Gaussian assumption (Schwarzbözl et al. (2009); Garćıa et al. (2015)).

3.3. Imaginary elliptical Gaussian flux density distribution on the image plane

In this part, we propose to model the imaginary flux density distribution on the image plane as an elliptical

Gaussian function. This function takes shading and blocking effects into account and will later be projected

onto the receiver along the reflection direction of the heliostat.
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Figure 3: (a) The incident sunlight beam (red parallelepiped) and reflected one (yellow parallelepiped) of a heliostat are occluded
by the neighbor heliostats; (b) the shading and blocking objects are projected to the blocked heliostat, and the effective reflection
surface (yellow area) is obtained with the Weiler-Atherton clipping algorithm.

To handle shading and blocking effects, a light beam traversal algorithm (He et al., 2017) is implemented

to quickly determine the shading and blocking relationship for each heliostat in parallel on the GPU. Then,

the shading and blocking heliostats are projected to the investigated heliostat along the sunlight direction and

counter-reflected direction of the heliostat, respectively. Finally, the projections of the occluders are clipped

off with the Weiler-Atherton algorithm (Weiler and Atherton, 1977), and the effective reflecting surface area

Seff (m2) is obtained (Figure 3). Considering the shading and blocking effects, the reflected power of the

investigated heliostat is calculated as

Ph = ID · Seff · cosθ · ρ, (1)

where ID is the solar DNI (W/m2), θ is the angle (rad) between the sun direction and heliostat normal, and

ρ is the heliostat reflectivity. That is, the reflected power is reduced in proportion to the shaded and blocked
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area of the heliostat.

Based on the analysis in Section 3.2, the reflected flux density distribution on the image plane can be

modeled as an elliptical Gaussian pattern. A normalized elliptical Gaussian function is expressed as

G(x, y) =
1

2πσ1σ2

√
1− γ2

e
− 1

2(1−γ2)
[
(x−µ1)2

σ2
1

−2γ
(x−µ1)(y−µ2)

2σ1σ2
+

(y−µ2)2

σ2
2

]
. (2)

Since the flux spot center is the origin of the image plane coordinate system and the light beam scattering

effects along the x -axis and y -axis are independent, so µ1 = µ2 = 0, γ = 0. Thus,

G(x, y) =
1

2πσ1σ2
e
− 1

2 (
x2

σ2
1
+ y2

σ2
2
)
. (3)

According to the energy conservation principle and accounting for the atmosphere attenuation effect, the

flux density (W/m2) of any point p(x, y) on the image plane is modeled as

Fimg(p) = Fimg(x, y) = Ph · ηaa ·G(x, y) = ID · Seff · cosθ · ρ · ηaa ·
1

2πσ1σ2
e
− 1

2 (
x2

σ2
1
+ y2

σ2
2
)
, (4)

where ηaa ∈ (0, 1) is the atmosphere attenuation factor, which can be calculated as a function of the distance

d between the heliostat and the receiver by empirical models, e.g., the model proposed by Leary et al. (1979):

ηaa =

0.99321− 0.0001176 ∗ d+ 1.97 ∗ 10−8 ∗ d2 d ≤ 1000 m

e−0.0001106∗d d > 1000 m
(5)

Theoretically, the standard deviations (σ1 and σ2) of the elliptical Gaussian function are closely related to

the heliostat projection edges on the image plane (Figure 1b). An experiment has been conducted to determine

the proportion of σ1 to σ2 empirically. That is, we aim to figure out a proper function f(x):

σ1

σ2
= f(

l′

w′ ). (6)

Four candidate elementary functions are considered, i.e., {f1(x) = x, f2(x) = ln(x)+1, f3(x) =
√
x, f4(x) =

log10(x) + 1}. The trend of these functions in the range of 0.0 ∼ 3.0 are show in Figure 4.

ln

Figure 4: Curve visualization of four elementary functions.

According to the experiments, when σ1

σ2
= f4(

l′

w′ ) = 1+ log10
l′

w′ , the elliptical Gaussian function achieves a
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relatively better simulation results in terms of flux density distribution, which can be quantitatively measured

by the normalized root mean squared error (e′rms, (17)), as shown in Figure 5:
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Figure 5: Comparison of the normalized flux density distribution results under four function relationship assumption.

So, we assume that
σ1

σ2
= β = 1 + log10

l′

w′ . (7)

Note that β can be analytically calculated based on the heliostat and receiver parameters.

Substituting (7) into (4) and replacing the symbol σ1 with σ, we have

Fimg(p) = Fimg(x, y) = Ph · ηaa ·G(x, y) = ID · Seff · cosθ · ρ · ηaa ·
β

2πσ2
e−

x2+β2y2

2σ2 , (8)

σ is the standard deviation of the Gaussian function approximating the comprehensive effect of the sun shape

and various normal distributions (Schwarzbözl et al., 2009), e.g., beam quality (depicted by the heliostat slope

error σs), and astigmatism error (σast), among other effects (Schmitz et al., 2006; Collado, 2010; Besarati et al.,

2014):

σ =
√
d2(σ2

sun + (2σs)2 + σ2
ast) (9)

d is the distance between the heliostat and receiver.

3.4. Flux projection from the image plane to the receiver plane

The imaginary flux density distribution defined on the image plane can be mapped to the receiver plane

analytically. First, the receiver is discretized into grids. Second, the center of each receiver grid is projected

to the image plane. Third, the relationship of the flux density of the point on the receiver and that of the

corresponding point on the image plane is deduced mathematically. These procedures are processed on GPU

in parallel for each receiver grid.

According to the ray-plane intersection equation, any point p ′ = (p′x, p
′
y, p

′
z)

T on the receiver plane can

be projected to point p = (px, py, pz)
T on the image plane along the heliostat reflection direction through an

oblique parallel projection:

p = Mp ′ + ar , (10)

in which

M =

1− rxrx −ryrx −rzrx

−rxry 1− ryry −rzry

−rxrz −ryrz 1− rzrz

 = I− rrT, (11)

where I is the unitary matrix, r = (rx, ry, rz)
T is the normalized reflection direction, a = r · c, and c is the

receiver plane center.
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Then, the flux density relationship between p ′ and the projected point p on the image plane can be deduced

using calculus. Suppose p is the central point of a microsurface (with area SA) on the image plane (Figure 1a).

The microsurface is sufficiently small that the flux density on it can be assumed to be constant. SA′ is the

area of the projection of this microsurface on the receiver plane under parallel projection along the reflection

direction of the heliostat. According to the geometric relationship, we have

SA = SA′ · cosϕ, (12)

where ϕ is the angle between the heliostat reflection direction and the normal of the receiver plane. Equation

(12) reveals the well-known receiver cosine effects. According to the energy conservation principle, we obtain

Frecv(p
′) · SA′ = Fimg(p) · SA, (13)

in which Frecv(p
′) represents the flux density (W/m2) of point p ′ on the receiver.

Substituting (12) and (8) into (13), we obtain

Frecv(p
′) =

Fimg(p) · SA

SA′
= Fimg(p) · cosϕ = ID · Seff · cosθ · ρ · ηaa · cosϕ · β

2πσ2
e−

x2+β2y2

2σ2 . (14)

Note that (x, y) is the coordinate of the corresponding point p in the image plane coordinate system, which

can be calculated by (10) and coordinate transformation from 3D to 2D on the image plane:x = (p − c) · i

y = (p − c) · j ,
(15)

i and j are the unit vector of the x -axis and y -axis of the image plane coordinate system.

3.5. Comparison with related models

Table 1: Comparison of flux density functions based on the Gaussian distribution assumption.

Models flux density equation Gaussian type heliostat type modeling process
Circular Gaussian model
(Schwarzbözl et al., 2009)

Frecv(u, v) =
ID·SH ·cosθ·ρ·ηaa

2πσ2 e−
u2+v2

2σ2 circular focusing on the receiver

Refined HFLCAL
(Garćıa et al., 2015)

Fh(x, y) =
ID·Seff ·ρ·ηaa

2πσ2 e−
x2+y2

2σ2 circular focusing/flat heliostat to receiver

Huang and Yu (2018) Fimg(x, y) =
ID·SH

2πD2σxσy
e
− 1

2D2 ( x2

σ2
x
+ y2

σ2
y
)

elliptical focusing image to receiver

iHFLCAL model
β = (1 + log10

w′

h′ ),

Fimg(x, y) =
β·ID·Seff ·cosθ·ρ·ηaa

2πσ2 e−
x2+β2y2

2σ2

elliptical flat image to receiver

A comparison of the related models that based on the Gaussian distribution assumption is listed in Ta-

ble 1. The symbols are consistent with the preceding definitions. Fh(x, y), Fimg(x, y) and Frecv(u, v) represent

the flux density expression on the heliostat, image plane and receiver, respectively. The circular Gaussian

model (Schwarzbözl et al., 2009) directly depicts the flux spot on the receiver with a circular Gaussian func-

tion, regardless of the heliostat shape and projection. The refined HFLCAL (Garćıa et al., 2015) model better

approximates the tilted flux spots by introducing homography transformation from heliostat to the receiver

plane, considering the shading and blocking effects. Huang and Yu (2018) modeled the flux spot reflected by

a focusing heliostat with an elliptical Gaussian function on the image plane. Since the focusing heliostat is

considered, two independent parameters (σ1, σ2) are required to be optimized to approximate the flux spots.
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In our model, because the curvatures of the flat heliostat surface along the long and short edges are the same

(equal 0), a single parameter is adequate and reasonable.

4. Experiments, comparisons and discussions

In this section, the accuracy and efficiency of the iHFLCAL model are demonstrated. The properties of the

iHFLCAL model is discussed through experiments and comparisons with the ray tracing method (Duan et al.,

2019) on a synthetic rectangular heliostat field. The accuracy of the iHFLCAL model is compared with the

circular Gaussian model (Schwarzbözl et al., 2009), the refined HFLCAL model (Garćıa et al., 2015), and the

convolution-based Cauchy model (He et al., 2019), which are all analytical models with closed-form expression.

These models were implemented in a versatile GPU rendering-pipeline-based framework (He et al., 2017) on a

desktop PC with an Intel core (TM) i5-3450 @3.10 GHz CPU and an NVIDIA GeForce GTX 1080 GPU.

Table 2: Two sun positions for the experiments and comparisons

Altitude Azimuth DNI (W/m2)

Early morning 9.5◦ 30.0◦ 681.0

Midday 80.2◦ 95.0◦ 1000.0

Table 3: Parameters of the heliostats used in the experiments and comparisons

Heliostat id x (m) y (m) z (m) d (m) Length (m) Width (m) Reflectivity (ρ)

980 172.5 1.5 125.0 213.03 3.2 2.2 0.88

1960 97.5 1.5 175.0 200.33 3.2 2.2 0.88

2113 -132.5 1.5 185.0 227.56 2.5 2.5 0.88

2899 -182.5 1.5 225.0 289.71 3.2 2.2 0.88

3005 -150.0 1.5 250.0 291.55 2.0 2.0 0.88

4684 -212.5 1.5 335.0 396.72 2.0 2.0 0.88

5900 -102.5 1.5 395.0 408.09 2.0 2.0 0.88

6933 87.5 1.5 475.0 482.99 2.0 1.5 0.88

7875 -177.5 1.5 525.0 554.2 2.0 1.5 0.88

For illustration purpose, two representative cases of sun position (Table 2) were designed. One is in the

early morning when the sun’s altitude is low and the shading and blocking phenomena are common in the

heliostat field. The other case is in the middle of the day. The synthesized experimental field (Figure 6)

composes three regions with different sizes of flat heliostats (i.e., 3.2 m × 2.2 m, 2.0 m × 2.0 m, and 2.0 m ×
1.5 m). In each region, the row distance and column distance equal to 5.0 m. Heliostats in the adjacent rows

are elaborately staggered to alleviate the shading or blocking loss. The standard deviation of the heliostat slope

error σs is assumed to be 2.0 mrad in the ray tracing method. Nine heliostats were sampled for experiments,

whose parameters are listed in Table 3. (x,y,z) is the heliostat global coordinate, and d is its distance to the

receiver. All the heliostats focus the sunlight at the center (0.0, 110.0, 0.5) of the receiver plane, which is 12 m

× 12 m and faces geographical north.

The receiver plane is subdivided into uniform grids and the flux density of each grid is recorded. The

resolution of the receiver grids in the ray tracing method and the analytical models are identically set as 5 × 5

cm2/grid for a tradeoff between simulation accuracy and efficiency. Clearly, the flux power is the integration of

the flux density distribution over the receiver domain. Apart from the flux peak, the flux density distribution

and flux power received on the receiver are also important. Accordingly, three error metrics are adopted to
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Figure 6: A rectangular staggered heliostat field is created. The heliostats being investigated are indicated with their indexes.

quantitatively evaluate the analytical models: the root mean squared error (erms), flux power error (epower)

and peak error (epeak). These metrics are defined as follows:

erms =

√∑N
i=1(Fi

a − Fi
r)2

N
(W/m2), epower =

||P a − P r||
P r

(%), epeak =
||F a

max − F r
max||

F r
max

(%), (16)

where N is the number of receiver surface tessellation grids, Fi
a and Fi

r stand for the flux density value

predicted by the analytical method and the ray tracing method at the ith receiver grid, P a and P r are the

flux power of the analytical model and the ray tracing method, F a
max and F r

max are the flux peak value of the

analytical model and the ray tracing results, respectively. By the way, the normalized root mean squared error

is defined as:

e′rms =

√∑N
i=1(Fi

a − Fi
r)2

N
/F r

max (17)

4.1. Flux density distribution simulation results and comparisons

Figure 7 shows the flux density distribution simulated by the ray tracing method and the proposed iHFLCAL

model, along with the visualization of the heliostat silhouette projection on the image plane and receiver surface.

Note that the flux spots predicted by the iHFLCAL model are consistent with the ray tracing method, and

their orientations are in accordance with heliostat projections on the receiver.

Figure 8 and Figure 9 present the comparisons of the iHFLCAL model with the related models that based

on Gaussian distribution assumption in the midday and the early morning. The statistic results of three error

metrics (i.e., erms, epower, and epeak) (16) of all the sampled heliostats are presented in Figure 10.

By comparing the flux density contour images and statistic results of these models, several conclusions can

be reached. First, since the iHFLCAL model takes all the energy reduction factors into account, particularly the

shading and blocking effects, the flux powers predicted by the iHFLCAL model are always consistent with the

11
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Figure 7: Flux spot predicted by the ray tracing method (1st column), heliostat silhouette projection on the image plane (2nd
column) and on the receiver (3rd column), and the flux distribution result from the iHFLCAL model (4th column).

ray tracing results in both cases (Figure 10b;Figure 10e). By contrast, the circular Gaussian model work well in

the midday case but overestimate the flux power when the heliostat is partially shaded or blocked in the early

morning case. Second, the tilted flux spots on the receiver are more precisely approximated in the iHFLCAL

model. This can be ascribed to the consideration of heliostat projection edges on the image plane. The principle

axes of the flux spot predicted by the iHFLCAL model are consistent with the ground truth (obtained by the

ray tracing method), while the other two models manifest deviations, particularly the circular Gaussian model,

which is directly defined on the receiver plane without considering the heliostat reflected direction information.

Third, the peak errors of all the three methods in both cases are negligible (less than 0.1%). Finally, the erms

of the iHFLCAL model are smaller than or comparable to the other two models (Figure 10), indicating a more

accurate representation of the flux spots. These results arise from the modeling process of the image plane

to the receiver plane projection and the new flux density distribution equation. Furthermore, the root mean

squared errors (erms) of the three models tend to converge to a relative low value (consistently, the flux spots

are becoming analogous), as the heliostat-to-receiver distance increases. Theoretically, this is due to the fact

that for the heliostats far from the receiver (more than 300 m in the present field), the effects of the heliostat

geometry and position are concealed, and the sun shape and heliostat slope error take the dominant position.

4.2. Computational efficiency

Due to the simple and closed-form analytical expression of the iHFLCAL model, it is well suited for the

GPU rendering-pipeline-based simulation framework (He et al., 2017) and achieves fast performance. In general,

the calculation of the flux density distribution on the receiver (discrete grid resolution 2500 grids/m2) needs

approximately only 1.0 ms on the current machine. By contrast, the ray tracing method needs to trace a large

number of rays to obtain an accurate and stable result. The bidirectional ray tracing method (Duan et al.,

2019) was implemented, and 72 million rays were traced for the No. 2899 heliostat (3.2 m × 2.2 m), which is

located 289.71 m from the receiver. The process took 46 ms in the same experimental environment.
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Figure 8: Comparison of the simulation results of the proposed iHFLCAL model (left column), the circular Gaussian model (middle
column) and the refined HFLCAL model (right column) and in the midday case. The ray tracing simulation results (solid line)
are regarded as the ground truth.
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Figure 9: Comparison of the simulation results of the proposed iHFLCAL model (left column), the circular Gaussian model (middle
column) and the refined HFLCAL model (right column) and in the early morning case. The ray tracing simulation results (solid
line) are regarded as the ground truth.
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Figure 10: Statistics of the erms, epower, and epeak of the iHFLCAL model, Gaićıa’s model and the circular Gaussian model for
the midday and early morning cases.

4.3. Comparisons with the Cauchy analytical model

Another comparison is made against the state-of-the-art analytical model, i.e., the convolution-based Cauchy

model (He et al., 2019). The simulation and comparison results are presented in Figure 11. Some interesting

results were found from the comparison for the convolution-based analytical model and the Gaussian distribu-

tion assumption models. First, for the heliostats close to the receiver in the current experiment (approximately

less than 300 m), the iHFLCAL model is less accurate than the Cauchy model. Second, the iHFLCAL model

works well or even better than the Cauchy model for the heliostats in the middle or far distance, in which

the heliostat geometry has weak impact on the flux spot shape, while the sunshape and the slope error of the

heliostat become dominate factors for the spot diffusion. Third, the iHFLCAL model can be more efficiently

evaluated than the Cauchy model (1.0 ms and 1.4 ms on GPU, respectively) due to its simplified closed-form

expression.

4.4. Model discussions

The Gaussian function was originally adopted in the HFLCAL model to approximate the flux spot reflected

by a spherically curved heliostat composed of well-canted concentrating mirror facets (Schwarzbözl et al.,

2009). In fact, the Gaussian distribution assumption also holds for a flat heliostat (Garćıa et al., 2015) for flux

prediction purposes, as demonstrated by the experiments in Section 4.1. The iHFLCAL model is versatile to

flux simulation of flat mirror facet, which is the fundamental element of a composite focusing heliostat. Two

limitations remain in the proposed iHFLCAL model and in the previous HFLCAL models:

• As Schwarzbözl et al. (2009) indicated, the Gaussian model is not suitable for detail description of flux

density distributions. The elliptical Gaussian distribution assumption is still not sufficiently accurate
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Figure 11: Comparison of the simulation results of the proposed iHFLCAL model (left column) and the convolution-based Cauchy
model (right column) in the midday case (a,b) and the early morning case (c∼f).
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for the heliostats close to the receiver (Figure 8d; Figure 9d), in which the heliostat size makes the

dominant effect and the flux spot is primarily determined by the projection of the heliostat silhouette on

the receiver (Elsayed et al., 1995).

• In the proposed iHFLCAL model, shading and blocking effects are accommodated in a straightforward

manner by uniformly decreasing the reflected solar flux density distribution according to the actual

effective heliostat reflecting surface. Thus, the net power is consistent with the ground truth. However,

this treatment remains an approximate one in terms of the flux density distribution (Figure 9; Figure 11).

As a conclusion, the iHFLCAL model obeys the energy conservation principle and achieves more accurate

results than the related models based on Gaussian distribution assumption. By establishing new relationship

between the standard deviations of the elliptical Gaussian function and the heliostat projected edges, the

flux density distributions are better approximated in the iHFLCAL model (Figure 8g; Figure 8i). The model

still remains to be not adequately accurate in terms of flux density distribution for some kinds of heliostats.

However, due to its high implementing efficiency and accurate flux power prediction, the iHFLCAL model has

potential in heliostat field efficiency evaluation and field layout design and optimization.

5. Conclusion

In this paper, the iHFLCAL model with an elliptical Gaussian expression is proposed for modeling the

flux spot reflected by a flat heliostat, taking shading and blocking effects into account. The model obeys the

energy conservation principle. The factors that have impacts on flux spot are comprehensively analyzed. The

flux spots are better approximated by firstly modeling an elliptical Gaussian function on the image plane and

then projecting it to the receiver. The relationship between the standard deviations of the elliptical Gaussian

function and the heliostat length and width projections on the image plane is explored. Detail analysis and

derivation of the flux density distribution function are logically provided step by step. Extensive experiments

and comparisons demonstrate that the iHFLCAL model is more accurate than the related Gaussian distribution

assumption models. Thus the accuracy of the iHFLCAL model is improved effectively, while its simplicity and

conciseness remain unchanged. Since the iHFLCAL model can be evaluated efficiently in parallel on GPU for

fast flux simulation of a heliostat, it can be potentially applied in the heliostat field efficiency evaluation, layout

and focusing optimizations in future.
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